1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yang AY, Kim JY, Gwon MG, Kim K, Kwon HH, Leem J, Kim SW. Protective effects and mechanisms of cynaroside on renal fibrosis in mice with unilateral ureteral obstruction. Redox Rep 2025; 30:2500271. [PMID: 40322965 PMCID: PMC12054570 DOI: 10.1080/13510002.2025.2500271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Renal fibrosis is a key factor in the progression of chronic kidney disease (CKD), and current treatments remain inadequate. In this study, we investigated the therapeutic effects of cynaroside (Cyn), a natural flavonoid, in a mouse model of renal fibrosis induced by unilateral ureteral obstruction. Cyn treatment significantly ameliorated tubular injury and interstitial fibrosis while improving renal function. Mechanistically, Cyn inhibited the expression of fibrosis-related proteins and suppressed Smad2/3 phosphorylation. Additionally, Cyn reduced myofibroblast accumulation by inhibiting epithelial-mesenchymal transition, as indicated by increased E-cadherin expression and decreased levels of mesenchymal markers. Cyn also reduced oxidative stress by downregulating the prooxidant enzyme NADPH oxidase 4 and restoring antioxidant enzymes. Furthermore, Cyn attenuated ferroptosis by regulating key proteins, including acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and glutathione peroxidase 4, while also restoring glutathione levels. Cyn alleviated endoplasmic reticulum stress, as evidenced by the downregulation of key markers such as glucose-regulated protein 78 and activating transcription factor 6, and reduced inflammation, as confirmed by decreased macrophage infiltration and lower cytokine production. Overall, Cyn demonstrated broad protective effects against renal fibrosis by modulating oxidative stress, ferroptosis, ER stress, and inflammation, positioning it as a potential therapeutic agent for CKD management.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Zhou J, Yang F, Zhang X, Wang C, Wu Z, Gao J. Jiangniaosuan formula inhibits hyperuricemia-induced apoptosis of renal tubular epithelial cells via ROS/HIF-1α/EZH2 pathway: A network pharmacology analysis and experimental validation. Bioorg Chem 2025; 159:108363. [PMID: 40088688 DOI: 10.1016/j.bioorg.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to explore the main chemical components of Jiangniaosuan Formula (JNSF), the therapeutic effect of JNSF on hyperuricemia (HUA) mice, and the underlying mechanism by which JNSF inhibits renal tubular epithelial cell apoptosis. METHODS Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical composition of JNSF and its serum metabolites. Network pharmacology was performed to predict the potential target genes and pathways. In vitro and in vivo models were established to verify the lower serum uric acid (SUA) and renal protective effects. RESULTS UPLC-Q-TOF-MS identified 61 chemical compounds in JNSF and 56 metabolites in serum after oral administration. Network pharmacology suggested that Hypoxia-Inducible Factor 1-Alpha (HIF-1α), Cysteine-dependent Aspartate-specific Protease-3 (Caspase-3) and B-cell Lymphoma 2 (Bcl-2) might be the therapeutic targets of JNSF for the HUA treatment and JNSF may exert the therapeutic effect on uric acid nephropathy (UAN) through regulating HIF-1α signaling pathway and apoptosis pathway. In vivo experiments showed that JNSF could reduce SUA, protect renal function and tubular function, alleviate renal interstitial edema and fibrosis, reduce the expression of Reactive Oxygen Species (ROS), HIF-1α and Enhancer of Zeste Homolog 2 (EZH2), and inhibit cell apoptosis in HUA mice. In vitro experiments demonstrated that JNSF reversed apoptosis induced by EZH2 overexpression plasmid. Furthermore, we found that UA could promote the binding of HIF-1α to EZH2 protein and its promoter, enhancing EZH2 transcription, suggesting that JNSF could alleviate the progression of HUA-induced kidney injury by inhibiting the activation of ROS/HIF-1α/EZH2 pathway. CONCLUSION JNSF may attenuate HUA-induced renal injury by inhibiting apoptosis through the downregulation of ROS/HIF-1α/EZH2 pathway.
Collapse
Affiliation(s)
- Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| |
Collapse
|
4
|
Guan Y, Li L, Yang R, Lu Y, Tang J. Targeting mitochondria with natural polyphenols for treating Neurodegenerative Diseases: a comprehensive scoping review from oxidative stress perspective. J Transl Med 2025; 23:572. [PMID: 40410831 PMCID: PMC12100838 DOI: 10.1186/s12967-025-06605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Neurodegenerative diseases are a class of conditions with widespread detrimental impacts, currently lacking effective therapeutic drugs. Recent studies have identified mitochondrial dysfunction and the resultant oxidative stress as crucial contributors to the pathogenesis of neurodegenerative diseases. Polyphenols, naturally occurring compounds with inherent antioxidant properties, have demonstrated the potential to target mitochondria and mitigate oxidative stress. This therapeutic potential has garnered significant attention in recent years. Investigating the mitochondrial targeting capacity of polyphenols, their role in functional regulation, and their ability to modulate oxidative stress, along with exploring novel technologies and strategies for modifying polyphenol compounds and their formulations, holds promise for providing new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rui Yang
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yun Lu
- Department of Emergency Medicine, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jun Tang
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
5
|
Liu J, Qing T, He M, Xu L, Wu Z, Huang M, Liu Z, Zhang Y, Li Z, Yang W, Liu J, Li J. Transcriptomics, single-cell sequencing and spatial sequencing-based studies of cerebral ischemia. Eur J Med Res 2025; 30:326. [PMID: 40275374 PMCID: PMC12020253 DOI: 10.1186/s40001-025-02596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
With high disability and mortality rate as well as highly complex pathogenesis, cerebral ischemia is highly morbid, prone to recurrence. To comprehensively understand the pathophysiological process of cerebral ischemia and to find new therapeutic strategies, a new approach to cerebral ischemia transcriptomics has emerged in recent years. By integrating data from multiple levels of transcriptomics, such as transcriptomics, single-cell transcriptomics, and spatial transcriptomics, this new approach can provide powerful help in revealing the molecular mechanisms of cerebral ischemia occurrence and development. Key findings highlight the critical roles of inflammation, blood-brain barrier dysfunction, and mitochondrial dysregulation in cerebral ischemia, offering potential biomarkers and therapeutic targets for early diagnosis and personalized treatment. A review of the research progress of cerebral ischemic injury mechanism under the analysis of the comprehensive transcriptomics research method was presented in this article, aiming to study the potential mechanism to provide new, innovative therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Jiaming Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Tao Qing
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan, China
| | - Liu Xu
- International Education School, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhuxiang Wu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Meiting Huang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zheyu Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Ye Zhang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zisheng Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Wenhui Yang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Junbo Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Jie Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China.
- Huaihua Key Laboratory of Ion Channels and Complex Diseases, Huaihua, Hunan, China.
| |
Collapse
|
6
|
Zhang D, Li Z, Gao Y, Sun H. MiR-556-3p mediated repression of klotho under oxidative stress promotes fibrosis of renal tubular epithelial cells. Sci Rep 2025; 15:12182. [PMID: 40204752 PMCID: PMC11982550 DOI: 10.1038/s41598-025-85479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/03/2025] [Indexed: 04/11/2025] Open
Abstract
Chronic kidney disease (CKD) is a global health issue characterized by renal fibrosis, which leads to irreversible tissue damage. Oxidative stress plays a key role in driving the fibrotic processes associated with CKD. This study investigates the roles of oxidative stress, miR-556-3p, and klotho in renal tubular epithelial cells, focusing on their influence on fibrotic pathways. Using human renal tubular epithelial cells HK-2, we conducted various in vitro assays to measure reactive oxygen species (ROS) levels, cell death, viability, and proliferation. Oxidative stress, induced by H2O2 treatment, was found to suppress klotho expression while increasing the expression of fibrotic markers. Overexpression of klotho mitigated these effects, highlighting its protective role against oxidative stress-induced fibrosis. Moreover, miR-556-3p was upregulated in response to oxidative stress activated transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), contributing to the suppression of klotho. Inhibition of Nrf2, a key regulator of oxidative stress responses, attenuated the expression of miR-556-3p and fibrotic markers. Targeting the Nrf2-miR-556-3p-klotho axis may offer novel therapeutic avenues to restore klotho levels and attenuate renal fibrosis. Our study contributes significantly to the understanding of the molecular mechanisms driving CKD progression and highlights potential targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Dong Zhang
- The First Department of Nephrology, Cangzhou Central Hospital, 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
| | - Zongying Li
- The First Department of Nephrology, Cangzhou Central Hospital, 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Yuan Gao
- The First Department of Nephrology, Cangzhou Central Hospital, 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Hailing Sun
- Department of Hematology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| |
Collapse
|
7
|
Xu Y, You J, Yao J, Hou B, Wang W, Hao Z. Klotho alleviates oxidative stress and mitochondrial dysfunction through the Nrf2/HO-1 pathway, thereby reducing renal senescence induced by calcium oxalate crystals. Urolithiasis 2025; 53:61. [PMID: 40156629 DOI: 10.1007/s00240-025-01734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Klotho is an antiaging protein that is primarily secreted by the kidneys. This study aimed to explore the protective effects of Klotho against calcium oxalate (CaOx) crystal-induced renal aging and the underlying mechanisms involved. We established a mouse model of CaOx crystal deposition via the intraperitoneal injection of glyoxylate (Gly) and constructed an in vitro model by stimulating HK2 cells with calcium oxalate monohydrate (COM). Renal aging levels were assessed through β-galactosidase (SA-β-gal) staining and the detection of senescence-associated markers. By overexpressing Klotho both in vitro and in vivo, we examined oxidative stress, mitochondrial function, and renal aging levels. We then evaluated the role of Nrf2/HO-1 signalling pathway-mediated oxidative stress in CaOx crystal-induced renal aging by applying the oxidative stress scavenger N-acetylcysteine (NAC) and overexpressing or inhibiting Nrf2 in HK2 cells. We subsequently overexpressed Klotho while inhibiting Nrf2 to confirm that Klotho exerts its protective effects through the Nrf2/HO-1 pathway. Finally, we measured the methylation levels of the Klotho promoter and assessed the degree of renal aging induced by CaOx crystals after the inhibition of Klotho DNA methylation. We found that the overexpression of Klotho alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thereby reducing renal aging. NAC mitigated CaOx crystal-induced renal aging. The overexpression of Nrf2 alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thus reducing renal aging, whereas the knockdown of Nrf2 exacerbated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, leading to more severe renal aging. The combination of Klotho overexpression and Nrf2 knockdown reversed the protective effects of Klotho. CaOx crystals induced an increase in the DNA methylation levels of Klotho in the kidneys, and the inhibition of DNA methylation alleviated CaOx-induced renal aging. This study revealed that Klotho plays a crucial role in calcium oxalate crystal-induced kidney senescence by influencing kidney oxidative stress and mitochondrial function through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Jianmin You
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Junfeng Yao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
- Department of Urology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Lu Q, Liu J, Xiong Y, Jian J, Wang J, Chen Z, Wan S, Liu X, Wang L. Cyanidin-3-glucoside upregulated NDRG2 through the PI3K/AKT pathway to alleviate EMT and ECM in renal fibrosis. Sci Rep 2025; 15:10695. [PMID: 40155416 PMCID: PMC11953473 DOI: 10.1038/s41598-025-94918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Renal fibrosis is a critical progression of chronic kidney disease, and epithelial-to-mesenchymal transition (EMT) and extracellular matrix(ECM) deposition are crucial pathologic change of renal fibrosis, which still lacks of effective treatment. In this study, it was found that cyanidin-3-O-glucoside (C3G) could inhibit EMT and ECM activated by unilateral ureteral obstruction (UUO) and transforming growth factor-β1 (TGF-β1) stimulation. Moreover, N-Myc downstream-regulated gene 2(NDRG2), which involved in the progression of renal fibrosis, was down-regulated in vivo and in vitro model. However, C3G pretreatment could reverse the reductive expression of NDRG2. Furthermore, we found that the combined treatment of C3G and si-NDRG2 could reverse the decreased EMT and ECM, which induced by C3G treatment only. And the activation of Phosphatidylinositol 3-kinase (PI3K)/ Protein Kinase B (AKT) pathway significantly enhanced EMT and ECM, which was decreased by C3G treatment only in TGF-β1 induced Human Kidney 2 (HK-2) cells. In conclusion, our results demonstrated that C3G alleviated EMT and ECM by elevating NDRG2 expression through the PI3K/AKT pathway, indicating that C3G could be a potential treatment against renal fibrosis.
Collapse
Affiliation(s)
- Qianxue Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yufeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
10
|
Yang AY, Kim JY, Gwon MG, Kwon HH, Leem J, Jeon EJ. Protective Effects of Tormentic Acid on Unilateral Ureteral Obstruction-Induced Renal Injury, Inflammation, and Fibrosis: A Comprehensive Approach to Reducing Oxidative Stress, Apoptosis, and Ferroptosis. Antioxidants (Basel) 2024; 14:13. [PMID: 39857346 PMCID: PMC11762340 DOI: 10.3390/antiox14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Chronic kidney disease (CKD) progresses through mechanisms involving inflammation, fibrosis, and oxidative stress, leading to the gradual structural and functional deterioration of the kidneys. Tormentic acid (TA), a triterpenoid compound with known anti-inflammatory and antioxidant properties, shows significant potential in counteracting these pathological processes. This study explored the protective role of TA in a unilateral ureteral obstruction (UUO)-induced CKD model. Mice received TA through intraperitoneal injections at a dosage of 5 mg/kg per day for 8 consecutive days, commencing a day before the UUO procedure. The TA treatment significantly improved both structural and functional kidney injury. It suppressed cytokine expression and reduced immune cell infiltration, inhibited the activation of the mitogen-activated protein kinase cascade, and alleviated endoplasmic reticulum stress. Moreover, TA displayed potent anti-fibrotic effects by reversing epithelial-to-mesenchymal transition and inhibiting Smad2/3 activation, reducing extracellular matrix deposition. TA also mitigated oxidative stress by attenuating lipid peroxidation and boosting antioxidant defenses. Additionally, it inhibited apoptosis and ferroptosis by reducing oxidative stress and modulating key cell death markers. Collectively, these findings indicate that TA provides comprehensive renoprotection in the UUO model by effectively targeting inflammation, fibrosis, oxidative stress, and tubular cell death in CKD progression.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (J.-Y.K.); (M.-G.G.)
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (J.-Y.K.); (M.-G.G.)
| | - Mi-Gyeong Gwon
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (J.-Y.K.); (M.-G.G.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (J.-Y.K.); (M.-G.G.)
| | - Eon-Ju Jeon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
11
|
Zhao Y, Jia Q, Hao G, Han L, Gao Y, Zhang X, Yan Z, Li B, Wu Y, Zhang B, Li Y, Qin J. JiangyaTongluo decoction ameliorates tubulointerstitial fibrosis via regulating the SIRT1/PGC-1α/mitophagy axis in hypertensive nephropathy. Front Pharmacol 2024; 15:1491315. [PMID: 39726785 PMCID: PMC11669701 DOI: 10.3389/fphar.2024.1491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction With the increasing prevalence of hypertension, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Jiangya Tongluo decoction (JYTL), a recognized prescription in traditional Chinese medicine (TCM), is commonly used to calm an overactive liver and reduce excess yang, while also promoting blood flow to alleviate obstructions in the meridians. Previous research has indicated that JYTL may help mitigate kidney damage caused by hypertension; however, the underlying mechanisms have not been thoroughly assessed. Methods First, an amalgamation of UPLC-QE/MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of JYTL in treating hypertensive nephropathy (HN). Then, we used spontaneous hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) to evaluate the efficacy of JYTL on HN with valsartan as a positive reference. We also conducted DCFH-DA fluorescence staining in rat renal tissues to detect the level of ROS. Western blotting and immunohistochemistry were performed to investigate further the effect of JYTL decoction on key targets and signaling pathways. Results Through UPLC-QE/MS and network analysis, 189 active ingredients and 5 hub targets were identified from JYTL. GSEA in the MitoCarta3.0 database and PPI network analysis revealed that JYTL predominantly engages in the Sirt1-mitophagy signaling pathway. Tanshinone iia, quercetin, and adenosine in JYTL are the main active ingredients for treating HN. In vivo validation showed that JYTL decoction could improve kidney function, ameliorate tubulointerstitial fibrosis (TIF), and improve mitochondrial function by inhibiting ROS production and regulating mitochondrial dynamics in SHRs. JYTL treatment could also increase the expression of SIRT1, PGC-1α, Nrf1, and TFAM, and activate PINK1/Parkin-mediated mitophagy. Conclusion JYTL decoction may exert renal function protective and anti-fibrosis effects in HN by ameliorating mitochondrial function and regulating the SIRT1/PGC-1α-mitophagy pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boya Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Qin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Chen Y, Zhang M, Jia R, Qian B, Jing C, Zeng C, Zhu D, Liu Z, Zen K, Li L. Podocyte SIRPα reduction in diabetic nephropathy aggravates podocyte injury by promoting pyruvate kinase M2 nuclear translocation. Redox Biol 2024; 78:103439. [PMID: 39586122 PMCID: PMC11625355 DOI: 10.1016/j.redox.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Podocyte injury is a critical event in the pathogenesis of diabetic nephropathy (DN). Hyperglycemia, oxidative stress, inflammation, and other factors contribute to podocyte damage in DN. In this study, we demonstrate that signaling regulatory protein alpha (SIRPα) plays a pivotal role in regulating the metabolic and immune homeostasis of podocytes. Deletion of SIRPα in podocytes exacerbates, while transgenic overexpression of SIRPα alleviates, podocyte injury in experimental DN mice. Mechanistically, SIRPα downregulation promotes pyruvate kinase M2 (PKM2) phosphorylation, initiating a positive feedback loop that involves PKM2 nuclear translocation, NF-κB activation, and oxidative stress, ultimately impairing aerobic glycolysis. Consistent with this mechanism, shikonin ameliorates podocyte injury by reducing PKM2 nuclear translocation, preventing oxidative stress and NF-κB activation, thereby restoring aerobic glycolysis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China
| | - Ruoyu Jia
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Dihan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, 210002, China.
| | - Ke Zen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
13
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
15
|
Liu M, Chen J, Sun M, Zhang L, Yu Y, Mi W, Ma Y, Wang G. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy. Chin Med J (Engl) 2024; 137:2603-2614. [PMID: 38407220 PMCID: PMC11556958 DOI: 10.1097/cm9.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (R-I/R) injury is the most prevalent cause of acute kidney injury, with high mortality and poor prognosis. However, the underlying pathological mechanisms are not yet fully understood. Therefore, this study aimed to investigate the role of N-myc downstream-regulated gene 2 ( Ndrg2 ) in R-I/R injury. METHODS We examined the expression of Ndrg2 in the kidney under normal physiological conditions and after R-I/R injury by immunofluorescence staining, real-time polymerase chain reaction, and western blotting. We then detected R-I/R injury in Ndrg2-deficient ( Ndrg2-/- ) mice and wild type ( Ndrg2+/+ ) littermates in vivo , and detected oxygen and glucose deprivation and reperfusion (OGD-R) injury in HK-2 cells. We further conducted transcriptomic sequencing to investigate the role of Ndrg2 in R-I/R injury and detected levels of oxidative stress and mitochondrial damage by dihydroethidium staining, biochemical assays, and western blot. Finally, we measured the levels of mitophagy in Ndrg2+/+ and Ndrg2-/- mice after R-I/R injury or HK-2 cells in OGD-R injury. RESULTS Ndrg2 was primarily expressed in renal proximal tubules and its expression was significantly decreased 24 h after R-I/R injury. Ndrg2-/- mice exhibited significantly attenuated R-I/R injury compared to Ndrg2+/+ mice. Transcriptomics profiling showed that Ndrg2 deficiency induced perturbations of multiple signaling pathways, downregulated inflammatory responses and oxidative stress, and increased autophagy following R-I/R injury. Further studies revealed that Ndrg2 deficiency reduced oxidative stress and mitochondrial damage. Notably, Ndrg2 deficiency significantly activated phosphatase and tensin homologue on chromosome ten-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy. The downregulation of NDRG2 expression significantly increased cell viability after OGD-R injury, increased the expression of heme oxygenase-1, decreased the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, and increased the expression of the PINK1/Parkin pathway. CONCLUSION Ndrg2 deficiency might become a therapy target for R-I/R injury by decreasing oxidative stress, maintaining mitochondrial homeostasis, and activating PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jianwen Chen
- Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yao Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Weidong Mi
- Department of Anesthesiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
16
|
Liu H, Jiang B, Hua R, Liu X, Qiao B, Zhang X, Liu X, Wang W, Yuan Q, Wang B, Wei S, Chen Y. ALDH2 mediates the effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on improving cardiac remodeling. Cardiovasc Diabetol 2024; 23:380. [PMID: 39462342 PMCID: PMC11520054 DOI: 10.1186/s12933-024-02477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are now recommended for patients with heart failure, but the mechanisms that underlie the protective role of SGLT2i in cardiac remodeling remain unclear. Aldehyde dehydrogenase 2 (ALDH2) effectively prevents cardiac remodeling. Here, the key role of ALDH2 in the efficacy of SGLT2i on cardiac remodeling was studied. METHODS Analysis of multiple transcriptomic datasets and two-sample Mendelian randomization were performed to find out the differentially expressed genes between pathological cardiac hypertrophy models (patients) and controls. A pathological cardiac hypertrophy mouse model was established via transverse aortic constriction (TAC) or isoproterenol (ISO). Cardiomyocyte-specific ALDH2 knockout mice (ALDH2CMKO) and littermate control mice (ALDH2flox/flox) were generated to determine the critical role of ALDH2 in the preventive effects of dapagliflozin (DAPA) on cardiac remodeling. RNA sequencing, gene knockdown or overexpression, bisulfite sequencing PCR, and luciferase reporter assays were performed to explore the underlying molecular mechanisms involved. RESULTS Only ALDH2 was differentially expressed when the differentially expressed genes obtained via Mendelian analysis and the differentially expressed genes obtained from the multiple transcriptome datasets were combined. Mendelian analysis revealed that ALDH2 was negatively related to the severity of myocardial hypertrophy in patients. DAPA alleviated cardiac remodeling in mouse hearts subjected to TAC or ISO. ALDH2 expression was reduced, whereas ALDH2 expression was restored by DAPA in hypertrophic hearts. Cardiomyocyte specific ALDH2 knockout abolished the protective role of DAPA in preventing cardiac remodeling. ALDH2 expression and activity were increased in DAPA-treated neonatal rat primary cardiomyocytes (NRCMs), H9C2 cells and AC16 cells. Moreover, DAPA upregulated ALDH2 in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes. Sodium/proton exchanger 1 (NHE1) inhibition contributed to the regulation of ALDH2 by DAPA. DAPA suppressed the production of reactive oxygen species (ROS), downregulated DNA methyltransferase 1 (DNMT1) and subsequently reduced the ALDH2 promoter methylation level. Further studies revealed that DAPA enhanced the binding of nuclear transcription factor Y, subunit A (NFYA) to the promoter region of ALDH2, which was due to the decreased promoter methylation level of ALDH2. CONCLUSIONS The upregulation of ALDH2 plays a critical role in the protection of DAPA against cardiac remodeling. DAPA enhances the binding of NFYA to the ALDH2 promoter by reducing the ALDH2 promoter methylation level through NHE1/ROS/DNMT1 pathway.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Rats
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Benzhydryl Compounds/pharmacology
- Cardiomegaly/enzymology
- Cardiomegaly/metabolism
- Cardiomegaly/prevention & control
- Cardiomegaly/physiopathology
- Cardiomegaly/pathology
- Cardiomegaly/genetics
- Databases, Genetic
- Disease Models, Animal
- Glucosides/pharmacology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Signal Transduction
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Han Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Bingchen Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Rui Hua
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xiangxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xilong Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Bailu Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci 2024; 25:10803. [PMID: 39409132 PMCID: PMC11477142 DOI: 10.3390/ijms251910803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis has revealed numerous factors and signaling pathways involved. However, the interactions between these pathways remain unclear. A comprehensive understanding of the entire signaling network that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary depending on the cell context. Understanding these complex and context-dependent interactions is crucial for developing effective strategies for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia; (N.B.); (E.K.)
| |
Collapse
|
18
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
19
|
Li X, Ma TK, Wang P, Shi H, Hai S, Qin Y, Zou Y, Zhu WT, Li HM, Li YN, Yin L, Xu YY, Yang Q, Zhang S, Ding H. HOXD10 attenuates renal fibrosis by inhibiting NOX4-induced ferroptosis. Cell Death Dis 2024; 15:398. [PMID: 38844470 PMCID: PMC11156659 DOI: 10.1038/s41419-024-06780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-β1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-β1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-β1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.
Collapse
Affiliation(s)
- Xin Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Biological Therapy Department, First Hospital of China Medical University, Shenyang, China
| | - Pu Wang
- General Practice Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hang Shi
- Intensive Care Unit Department, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Sang Hai
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yun Zou
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Wan-Ting Zhu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hui-Min Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Nong Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Zhao X, Li Y, Yu J, Teng H, Wu S, Wang Y, Zhou H, Li F. Role of mitochondria in pathogenesis and therapy of renal fibrosis. Metabolism 2024; 155:155913. [PMID: 38609039 DOI: 10.1016/j.metabol.2024.155913] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
21
|
Ma Z, Ma Y, Feng J, Xu Z, Cheng C, Qin J, Li S, Jiang J, Kong R. NDRG2 acts as a negative regulator of the progression of small-cell lung cancer through the modulation of the PTEN-AKT-mTOR signalling cascade. Toxicol Appl Pharmacol 2024; 485:116915. [PMID: 38537875 DOI: 10.1016/j.taap.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) has been recognised as a negative regulator of the progression of numerous tumours, yet its specific role in small-cell lung carcinoma (SCLC) is not fully understood. The purpose of the current study was to investigate the biological role and mechanism of NDRG2 in SCLC. Initial investigation using the Gene Expression Omnibus (GEO) dataset revealed marked downregulation of NDRG2 transcripts in SCLC. The decreased abundance of NDRG2 in SCLC was verified by examining clinical specimens. Increasing NDRG2 expression in SCLC cell lines caused significant changes in cell proliferation, cell cycle progression, colony formation, and chemosensitivity. NDRG2 overexpression decreased the levels of phosphorylated PTEN, AKT and mTOR. In PTEN-depleted SCLC cells, the upregulation of NDRG2 did not result in any noticeable impact on AKT or mTOR activation. Additionally, the reactivation of AKT reversed the antitumour effects of NDRG2 in SCLC cells. Notably, increasing NDRG2 expression retarded the growth of SCLC cell-derived xenografts in vivo. In conclusion, NDRG2 serves as an inhibitor of SCLC, and its cancer-inhibiting effects are achieved through the suppression of AKT/mTOR via the activation of PTEN. This work suggests that NDRG2 is a potential druggable target for SCLC treatment.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chuantao Cheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
22
|
Li J, Liu Y, Huang H, Jin L. Cardiovascular health of offspring conceived by assisted reproduction technology: a comprehensive review. Front Cardiovasc Med 2024; 11:1287060. [PMID: 38292241 PMCID: PMC10824981 DOI: 10.3389/fcvm.2024.1287060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Recently, the use of assisted reproductive technology (ART) has rapidly increased. As a result, an increasing number of people are concerned about the safety of offspring produced through ART. Moreover, emerging evidence suggests an increased risk of cardiovascular disease (CVD) in offspring conceived using ART. In this review, we discuss the epigenetic mechanisms involved in altered DNA methylation, histone modification, and microRNA expression, as well as imprinting disorders. We also summarize studies on cardiovascular changes and other risk factors for cardiovascular disease, such as adverse intrauterine environments, perinatal complications, and altered metabolism following assisted reproductive technology (ART). Finally, we emphasize the epigenetic mechanisms underlying the increased risk of CVD in offspring conceived through ART, which could contribute to the early diagnosis and prevention of CVD in the ART population.
Collapse
Affiliation(s)
| | | | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|
24
|
Li B, Ming H, Qin S, Zhou L, Huang Z, Jin P, Peng L, Luo M, Zhang T, Wang K, Liu R, Liou Y, Nice EC, Jiang J, Huang C. HSPA8 Activates Wnt/β-Catenin Signaling to Facilitate BRAF V600E Colorectal Cancer Progression by CMA-Mediated CAV1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306535. [PMID: 37973552 PMCID: PMC10797426 DOI: 10.1002/advs.202306535] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 11/19/2023]
Abstract
BRAF V600E attracts wide attention in the treatment of colorectal cancer (CRC) as stratifying and predicting a refractory classification of CRC. Recent evidence indicates that Wnt/β-catenin signaling is broadly activated and participates in the refractoriness of BRAF V600E CRC, but the underlying molecular mechanism needs to be elucidated. Here, heat shock 70 kDa protein 8 (HSPA8), an essential regulator in chaperone-mediated autophagy (CMA), is identified as a potential therapeutic target for advanced BRAF V600E CRC. These results show that HSPA8 is transcriptionally upregulated in BRAF V600E CRC, which promotes CMA-dependent degradation of caveolin-1 (CAV1) to release β-catenin into the nucleus and thus activates the Wnt/β-catenin pathway, contributing to metastasis and progression of BRAF V600E CRC. Of note, HSPA8 directly interacts with the KIFSN motif on CAV1, the interaction can be enhanced by p38 MAPK-mediated CAV1 S168 phosphorylation. Furthermore, pharmacological targeting HSPA8 by VER155008 exhibits synergistic effects with BRAF inhibitors on CRC mouse models. In summary, these findings discover the important role of the HSPA8/CAV1/β-catenin axis in the development of refractory BRAF V600E CRC and highlight HSPA8 as a predictive biomarker and therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Rui Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuan610041P. R. China
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingapore117543Singapore
- Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117573Singapore
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3800Australia
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengdu610041P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengdu610041P. R. China
| |
Collapse
|