1
|
Zeng F, Li Y, Li X, Gu X, Cao Y, Cheng S, Tian H, Mei R, Mei X. Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury. Neural Regen Res 2026; 21:365-376. [PMID: 39435607 PMCID: PMC12094574 DOI: 10.4103/nrr.nrr-d-24-00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202601000-00040/figure1/v/2025-06-09T151831Z/r/image-tiff Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited. Microglia is the resident immune cells of the central nervous system, play a critical role in spinal cord injury. Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors. However, excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars, which hinder axonal regeneration. Despite this, the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood. To elucidate the role of microglia in spinal cord injury, we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia. We observed that sustained depletion of microglia resulted in an expansion of the lesion area, downregulation of brain-derived neurotrophic factor, and impaired functional recovery after spinal cord injury. Next, we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia. We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function. Additionally, brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury. Furthermore, through using specific transgenic mouse lines, TMEM119, and the colony-stimulating factor 1 receptor inhibitor PLX73086, we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages. In conclusion, our findings suggest the critical role of microglia in the formation of protective glial scars. Depleting microglia is detrimental to recovery of spinal cord injury, whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
Collapse
Affiliation(s)
- Fanzhuo Zeng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Department of Neurobiology, School of Basic Medical Sciences, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuxin Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xinyang Gu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue Cao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shuai Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Rongcheng Mei
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Xifan Mei
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
2
|
Liu G, Li W, Jiang S, Liang J, Song M, Wang L, Wang X, Liu X, Yang Z, Zhang L, Yang Y, Zhang B. ARA290, an alternative of erythropoietin, inhibits activation of NLRP3 inflammasome in schwann cells after sciatic nerve injury. Eur J Pharmacol 2025; 997:177610. [PMID: 40216181 DOI: 10.1016/j.ejphar.2025.177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The challenge of repairing peripheral nerve injury is a critical issue that needs to be addressed urgently. Previous research has shown that erythropoietin (EPO) and its prolonged peptides exhibit beneficial effects in neurological disorders. In our study, we demonstrated that both EPO and pyroglutamic acid helix B surface peptide (pHBSP, also known as ARA290) inhibit the early inflammatory response and promote functional recovery after sciatic nerve crush injury in rat models. Our experimental results demonstrate that significant inflammatory response occurred in Schwann cells after sciatic nerve injury, and that the activation of NLRP3 inflammasome in Schwann cells is inhibited after EPO and ARA290 treatment. Our study further demonstrated that EPO and ARA290 inhibit the activation of NLRP3 inflammasome in Schwann cells by inhibiting NF-κB phosphorylation and reducing reactive oxygen species (ROS) production. In summary, EPO and ARA290 promote repair and regeneration by inhibiting the activation of NLRP3 inflammasome after sciatic nerve injury.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Suli Jiang
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
3
|
Fu C, Jin X, Ji K, Lan K, Mao X, Huang Z, Chen J, Zhao F, Li P, Hu X, Sun L, Lu N, Zhong J, Chen Y, Wang L. Macrophage-targeted Mms6 mRNA-lipid nanoparticles promote locomotor functional recovery after traumatic spinal cord injury in mice. SCIENCE ADVANCES 2025; 11:eads2295. [PMID: 40138430 PMCID: PMC11939073 DOI: 10.1126/sciadv.ads2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Traumatic spinal cord injury (SCI) causes severe central nervous system damage. M2 macrophages within the lesion are crucial for SCI recovery. Our previous research revealed that M2 macrophages transfected with magnetotactic bacteria-derived Mms6 gene can resist ferroptosis and enhance SCI recovery. To address the limitations of M2 macrophage transplantation, we developed lipid nanoparticles (LNPs) encapsulating Mms6 mRNA targeting macrophages (Mms6 mRNA-PS/LNPs). The targeting efficiency and therapeutic effect of these LNPs in SCI mice were evaluated. Intravenous administration of Mms6 mRNA-PS/LNPs delivered more Mms6 mRNAs to lesion-site macrophages than those in the Mms6 mRNA-LNP group, which resulted in enhancing motor function recovery, reducing lesion area and scar formation, and promoting neuronal survival and nerve fiber repair. These effects were nullified when macrophages were depleted. These findings suggest that macrophage-targeted delivery of Mms6 mRNA is a promising therapeutic strategy for promoting spinal cord repair and motor function recovery in patients with traumatic SCI.
Collapse
Affiliation(s)
- Chunyan Fu
- Department of Orthopaedics of Sir Run Run Shaw Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310016, PR China
| | - Xiaoqin Jin
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ke Lan
- Department of Medical Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhaobo Huang
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Jian Chen
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Fengdong Zhao
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Pengfei Li
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Xuefei Hu
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Liwen Sun
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Ning Lu
- Tarim University School of Medicine, Alaer 843300, PR China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yingying Chen
- Department of Obstetrics of the Second Affiliated Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Linlin Wang
- Department of Orthopaedics of Sir Run Run Shaw Hospital and Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310016, PR China
- Tarim University School of Medicine, Alaer 843300, PR China
| |
Collapse
|
4
|
Zhang X, Yang W, Zhu B, Su L, Li H. Photobiomodulation therapy facilitates transplantation of dental pulp stem cells for spinal cord injury. Photodiagnosis Photodyn Ther 2025; 53:104559. [PMID: 40090474 DOI: 10.1016/j.pdpdt.2025.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND While dental pulp stem cells (DPSCs) show therapeutic potential for spinal cord injury (SCI), post-traumatic oxidative stress and mitochondrial dysfunction critically compromise grafted cell survival. Photobiomodulation therapy (PBMT) is a noninvasive approach that may enhance regenerative efficacy. This study investigates whether PBMT improves the survival and neural differentiation of transplanted DPSCs in SCI models. METHODS In vitro, the anti-apoptotic effects of PBMT were investigated in H2O2-induced DPSCs injury model via TUNEL staining, flow cytometry, biochemical assays and transmission electron microscopy. In vivo, spinal cord restoration was evaluated using behavioral tests and histological staining, and the survival status and neural differentiation of grafted DPSCs were respectively tracked through bioluminescence imaging and immunofluorescent staining in DPSCs co-expressing luciferin and green fluorescent protein (Luc-GFP-DPSCs) transplanted SCI mice with/without PBMT. RESULTS PBMT demonstrated protective effects by relieving apoptosis and oxidative stress in engrafted DPSCs in vitro. Furthermore, PBMT-assisted DPSCs transplantation significantly promoted cell survival and neural differentiation, achieving superior functional recovery compared to transplantation alone. CONCLUSIONS PBMT facilitates DPSCs transplantation in SCI through mitigation of oxidative apoptosis and enhancement of grafted cell survival and differentiation.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenwen Yang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Beijing 100045, China
| | - Lin Su
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Haotian Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
An J, Liu Z, Wang Y, Meng K, Wang Y, Sun H, Li M, Tang Z. Drug delivery strategy of hemostatic drugs for intracerebral hemorrhage. J Control Release 2025; 379:202-220. [PMID: 39793654 DOI: 10.1016/j.jconrel.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rates of mortality and disability, underscoring an urgent need for effective therapeutic interventions. The clinical prognosis of ICH remains limited, primarily due to the absence of targeted, precise therapeutic options. Advances in novel drug delivery platforms, including nanotechnology, gel-based systems, and exosome-mediated therapies, have shown potential in enhancing ICH management. This review delves into the pathophysiological mechanisms of ICH and provides a thorough analysis of existing treatment strategies, with an emphasis on innovative drug delivery approaches designed to address critical pathological pathways. We assess the benefits and limitations of these therapies, offering insights into future directions in ICH research and highlighting the transformative potential of next-generation drug delivery systems in improving patient outcomes.
Collapse
Affiliation(s)
- Junyan An
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Ke Meng
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Yixuan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Miao Li
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
6
|
Tang Y, Wang X, Huang M, Li Y, Liu X, Zeng H, Yang Y, Zhou M. Sports training improves motor function after spinal cord injury by regulating microtubule dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167587. [PMID: 39586504 DOI: 10.1016/j.bbadis.2024.167587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Spinal cord injury (SCI) often results in persistent disabilities, primarily due to deficient axon regeneration and irreversible neuronal loss. Sports training is a widely adopted intervention in clinical practice and research to promote axonal sprouting and synaptic plasticity, thereby improving motor function after SCI. However, the precise mechanisms by which sports training improves motor function after SCI remain incompletely understood. We established a rat model of T9 spinal cord contusion and initiated sports training 1 week after SCI, which continued for eight weeks. Using transcriptome sequencing validated through western blotting and immunostaining, we demonstrated that sports training effectively reduced neuroinflammation and prevented neuronal loss. Furthermore, we discovered that sports training changed neuronal microtubule dynamics, facilitating axon regeneration and synaptic plasticity and ultimately improving motor function. These findings indicate that the modulation of neuronal microtubule dynamics may represent a critical mechanism through which sports training improves motor function after SCI.
Collapse
Affiliation(s)
- Yue Tang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Mengjie Huang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Yijie Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Xiaoxie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Hong Zeng
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yanyan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China.
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China.
| |
Collapse
|
7
|
Li J, Cui S, Li Y, Zhang C, Chang C, Jian F. Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential. CNS Neurosci Ther 2025; 31:e70244. [PMID: 39915897 PMCID: PMC11802336 DOI: 10.1111/cns.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex central nervous system disorder characterized by multifaceted pathological processes, including inflammation, oxidative stress, programmed cell death, autophagy, and mitochondrial dysfunction. Sirtuin 1 (Sirt1), a critical NAD+-dependent deacetylase, has emerged as a promising therapeutic target for SCI repair due to its potential to protect neurons, regulate glial and vascular cells, and optimize the injury microenvironment. However, the regulatory roles of Sirt1 in SCI are complex and challenging, as its effects vary depending on activation timing, expression levels, and cell types. METHODS A systematic literature review was conducted using PubMed, Scopus, and Web of Science to identify studies investigating Sirt1 in SCI. Relevant publications were analyzed to synthesize current evidence on Sirt1's mechanisms, therapeutic effects, and challenges in SCI repair. RESULTS Sirt1 exerts broad regulatory effects across diverse pathological processes and cell types post-SCI. It promotes neuronal survival and axonal regeneration, modulates astrocytes and microglia to resolve inflammation, supports oligodendrocyte-mediated myelination, and enhances vascular endothelial function. Proper Sirt1 activation may mitigate secondary injury, whereas excessive or prolonged activation could impair inflammatory resolution or disrupt cellular homeostasis. This review highlights Sirt1 activation as potential therapies, but challenges include optimizing spatiotemporal activation and addressing dual roles in different cell types. CONCLUSION Targeting Sirt1 represents a viable strategy for SCI repair, given its multifaceted regulation of neuroprotection, immunomodulation, and tissue remodeling. However, translating these findings into therapies requires resolving critical issues such as cell type-specific delivery, precise activation timing, and dosage control. This review provides a theoretical foundation and practical insights for advancing Sirt1-based treatments for SCI.
Collapse
Affiliation(s)
- Jinze Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shengyu Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yanqiu Li
- Center for Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Can Zhang
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chao Chang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
| | - Fengzeng Jian
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Huang K, Fang J, Xiao S, Wang W, Zhang G, Sun W, Shuai L, Bi H. Transcranial alternating current stimulation inhibits ferroptosis and promotes functional recovery in spinal cord injury via the cGMP-PKG signalling pathway. Life Sci 2025; 362:123341. [PMID: 39740757 DOI: 10.1016/j.lfs.2024.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
AIMS This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI). MAIN METHODS By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model. Motor function outcomes were measured using the Basso-Beattie-Bresnahan (BBB) scoring scale and footprint analysis. To thoroughly understand the impact of tACS, we conducted a series of histological evaluations two weeks post-injury. These included q-PCR, enzyme-linked immunosorbent assays (ELISA), transmission electron microscopy (TEM), immunofluorescence staining, and Western blotting. The mechanisms underlying the role of tACS will be elucidated through comprehensive analyses. KEY FINDINGS Simultaneously, tACS reduced the levels of reactive oxygen species (ROS), Fe, and malondialdehyde (MDH), and increased the levels of glutathione (GSH) after SCI. Additionally, tACS significantly enhanced motor function, reduced fibrotic scar tissue formation, and provided substantial neuroprotection. It also contributed to the restoration of the blood-spinal cord barrier and supported the regeneration of essential neural components, including axons, myelin, and synapses. The cGMP-PKG signalling pathway was identified as playing a crucial role in these processes. SIGNIFICANCE Our findings suggest that tACS inhibits ferroptosis and necrotic degeneration by modulating the cGMP-PKG signalling pathway. This highlights the importance of tACS in promoting neural repair and functional recovery in SCI patients. Overall, tACS emerges as a highly effective and cost-efficient rehabilitative approach for SCI, offering new hope for improving patient outcomes.
Collapse
Affiliation(s)
- Ke Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Fang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shining Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wansong Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guodong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Weiming Sun
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Lang Shuai
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Haidi Bi
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
9
|
Li J, Yang Y, Zhao C, Zhao J, Wang X, Ye S, Wang D, Zhou C, Li J, Wang S, Li K, Liu C, He X, Qin J. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery. J Neuroinflammation 2025; 22:29. [PMID: 39891259 PMCID: PMC11786472 DOI: 10.1186/s12974-025-03362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
CAAT/Enhancer Binding Protein β (C/EBPβ) is associated with inflammatory responses in neurodegenerative pathologies, particularly in the brain. However, the regulatory role of C/EBPβ in spinal cord injury and its impact on neurological recovery remain unknown. In this study, we observed significant upregulation of C/EBPβ in microglia after spinal cord injury in mice and was associated with neuroinflammation. Knocking down C/EBPβ in the spinal cord attenuated microglia pyroptosis, reduced the production of proinflammatory cytokines, and inhibited neuronal apoptosis. Mechanistically, C/EBPβ promoted the transcription of Fcgr1, which was involved in activating microglia pyroptosis. In both in-vivo and in-vitro experiments, knocking down Cebpb or Fcgr1, or the pyroptosis inhibitor VX765 inhibited neuronal apoptosis and improved neurological recovery in mice. These findings indicate that C/EBPβ functions as a key regulator that participates in the microglia pyroptosis-mediated neuroinflammation by activating Fcgr1 transcription.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yubing Yang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenguang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinghao Zhao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohui Wang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shengshou Ye
- Department of Neurology, Qinghai Cardiocerebrovascular Disease Specialised Hospital, Xining, Qinghai, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengdong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Li
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Shuang Wang
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Ke Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chunmiao Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Orthopedics, Xi'an International Rehabilitation Medical Center, Xi'an, Shaanxi, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Xia L, Sun Y, Zhou Y, Yang Q, Huang J, Liu D. Major ozonated autohemotherapy promoted functional recovery following spinal cord injury in adult rats via the inhibition of oxidative stress and inflammation. Open Life Sci 2024; 19:20221004. [PMID: 39759102 PMCID: PMC11699552 DOI: 10.1515/biol-2022-1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/31/2024] [Accepted: 10/18/2024] [Indexed: 01/07/2025] Open
Abstract
This study sought to explore the value of major ozonated autohemotherapy (MOA) as a treatment for spinal cord injury (SCI) in a rat model system. In total, 54 female Sprague-Dawley rats were randomized into sham-operated, SCI model, and MOA treatment groups. We found that relative to the SCI model group, rats that underwent MOA treatment exhibited improved locomotor scores on days 14, 21, and 28 after injury (p < 0.05) together with reduced residual urine on days 5, 7, 14, and 21 after injury (p < 0.05). MOA treatment also lowered proinflammatory TNF-α, IL-1α, and C1q levels on day 3 post-injury (p < 0.05), decreased malondialdehyde levels, and enhanced superoxide dismutase activity (p < 0.001). Activated astrocytes in MOA-treated rats exhibited larger soma and higher levels of extracellular matrix secretion, whereas reactive microglia in the MOA group presented with a ramified morphology in contrast to the amoeboid morphology exhibited by these cells in SCI model rats. MOA offers potential value as a means of protecting spinal cord integrity, potentially through anti-inflammatory, antioxidant, and regulatory effects that shape the polarization of astrocytes and microglia.
Collapse
Affiliation(s)
- Liwei Xia
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yongming Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yue Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qian Yang
- Department of Clinical Medicine, Suzhou Medical College of Soochow University, Suzhou, 215000, China
| | - Jianhan Huang
- Department of Orthopaedics, Guangxi Zhuang Autonomous Region Jiangbin Hospital, Nanning, 532001, China
| | - Dong Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| |
Collapse
|
11
|
Kong J, Zhang Q, Zheng H, Tang D, Fang L, An S, Li J, Fan Z. TGN-020 ameliorates motor dysfunction post-spinal cord injury via enhancing astrocyte autophagy and mitigating inflammation by activating AQP4/PPAR-γ/mTOR pathway. Exp Neurol 2024; 382:114975. [PMID: 39326822 DOI: 10.1016/j.expneurol.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Spinal Cord Injury (SCI) is a severe condition that often leads to substantial neurological impairments. This study aimed to explore the role of Aquaporin-4 (AQP4) in regulating astrocyte autophagy and neuroinflammation post-SCI, as well as to evaluate the therapeutic potential of AQP4 inhibition using the specific inhibitor TGN-020. Using Western blot, CCK8 assays, immunofluorescence staining, histopathological assessments, and behavioral analyses, we investigated the effects of TGN-020 on SCI-induced alterations in autophagy, neuroinflammation, astrocyte proliferation, neuronal damage, and motor function recovery in both rat and astrocyte models. Our findings indicate that TGN-020 significantly enhances astrocyte autophagy, reduces neuroinflammation, thereby leading to mitigated astrocyte activation by suppressing AQP4 expression. These beneficial effects are associated with the activation of the peroxisome proliferator-activated receptor-γ/mammalian target of rapamycin (PPAR-γ/mTOR) signaling pathway. Notably, the introduction of the PPAR-γ specific inhibitor GW9662 abrogated the positive regulatory effects of TGN-020 on SCI-induced autophagy and neuroinflammation. Collectively, our in vivo and in vitro experiments demonstrate that TGN-020, by down-regulating AQP4, activates the PPAR-γ/mTOR pathway, ameliorates astrocyte autophagy, diminishes neuroinflammation, and ultimately enhances motor function recovery.
Collapse
Affiliation(s)
- Jundong Kong
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Qiangqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Haohong Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Diandong Tang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Li Fang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Shuaihao An
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhongkai Fan
- Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
12
|
He L, Ye J, Zhuang X, Shi J, Wu W. Omega-3 polyunsaturated fatty acids alleviate endoplasmic reticulum stress-induced neuroinflammation by protecting against traumatic spinal cord injury through the histone deacetylase 3/ peroxisome proliferator-activated receptor-γ coactivator pathway. J Neuropathol Exp Neurol 2024; 83:939-950. [PMID: 39190872 DOI: 10.1093/jnen/nlae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) attenuate inflammatory responses in the central nervous system, leading to neuroprotective effects. Inhibition of histone deacetylase 3 (HDAC3) has neuroprotective effects after spinal cord injury (SCI) through the SIRT1 pathway, but the pathophysiological mechanisms of SCI are complex and the interactions between ω-3 PUFAs and organelles remain largely unknown. This study aimed to investigate the effect of ω-3 PUFAs on endoplasmic reticulum (ER) stress-induced neuroinflammation through the HDAC3/peroxisome proliferator-activated receptor-γ coactivator (PGC)-1ɑ pathway after SCI. To this end, a contusion-induced SCI rat model was established to evaluate the effects of ω-3 PUFAs on ER stress-mediated inflammation in SCI. ER stress was rapidly induced in spinal cord lesions after SCI and was significantly reduced after ω-3 PUFA treatment. Consistent with reduced ER stress, HDAC3 expression levels and inflammatory responses were decreased, and PGC-1ɑ expression levels were increased after SCI. We found that ω-3 PUFA treatment attenuated ER stress through HDAC3 inhibition, thereby reducing SCI-induced inflammation. Taken together, these results suggest a role for ω-3 PUFA in protecting against SCI-induced neuroinflammation and promoting neurological functional recovery by regulating the histone deacetylase 3/ peroxisome proliferator-activated receptor-γ coactivator pathway.
Collapse
Affiliation(s)
- Lijiang He
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingfang Ye
- Department of Nursing Faculty, Quanzhou Medical College, Quanzhou, Fujian Province, China
| | - Xunrong Zhuang
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jinnan Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wenhua Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
13
|
Cao J, Yu X, Liu J, Fu J, Wang B, Wu C, Zhang S, Chen H, Wang Z, Xu Y, Sui T, Chang J, Cao X. Ruxolitinib improves the inflammatory microenvironment, restores glutamate homeostasis, and promotes functional recovery after spinal cord injury. Neural Regen Res 2024; 19:2499-2512. [PMID: 38526286 PMCID: PMC11090442 DOI: 10.4103/nrr.nrr-d-23-01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00030/figure1/v/2024-03-08T184507Z/r/image-tiff The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury. Ruxolitinib, a JAK-STAT inhibitor, exhibits effectiveness in autoimmune diseases, arthritis, and managing inflammatory cytokine storms. Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma, the exact mechanism by which it enhances functional recovery after spinal cord injury, particularly its effect on astrocytes, remains unclear. To address this gap, we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury. Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury, restored EAAT2 expression, reduced glutamate levels, and alleviated excitatory toxicity. Furthermore, ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β, interleukin-6, and tumor necrosis factor-α. Additionally, in glutamate-induced excitotoxicity astrocytes, ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3, thereby reducing glutamate-induced neurotoxicity, calcium influx, oxidative stress, and cell apoptosis, and increasing the complexity of dendritic branching. Collectively, these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes, reduces neurotoxicity, and effectively alleviates inflammatory and immune responses after spinal cord injury, thereby promoting functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Jiang Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingcheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiaju Fu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Binyu Wang
- Department of Trauma Surgery, Subei People’s Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chaoqin Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sheng Zhang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, China
| | - Hongtao Chen
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zi Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yinyang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Sui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Chang
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Zhang H, Wang W, Hu X, Wang Z, Lou J, Cui P, Zhao X, Wang Y, Chen X, Lu S. Heterophyllin B enhances transcription factor EB-mediated autophagy and alleviates pyroptosis and oxidative stress after spinal cord injury. Int J Biol Sci 2024; 20:5415-5435. [PMID: 39494322 PMCID: PMC11528460 DOI: 10.7150/ijbs.97669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Traumatic spinal cord injury (SCI) has devastating physical, psychosocial, and vocational implications for patients and caregivers. Heterophyllin B (HB) is a brain-permeable cyclopeptide from Pseudostellaria heterophylla that promotes axonal regeneration and neuroinflammation. However, the efficacy of HB in improving functional recovery following SCI and the underlying mechanisms remain unclear. This study utilized a murine model for SCI assessment to evaluate the therapeutic effects of HB. following HB intervention, functional recovery post-SCI, was assessed through the Basso Mouse Scale, gait analysis, and the detection of motor-evoked potentials (MEPs). RNA sequencing was used to study the roles of pyroptosis, oxidative stress, and autophagy in HB's impact on SCI. Techniques such as Western blot, immunofluorescence, and enzyme-linked immunosorbent assay were used to evaluate pyroptosis, oxidative stress, and autophagy markers. Associated virus vectors were used to suppress transcription factor EB (TFEB), an autophagy regulator, in a living organism. HB promoted autophagy by enhancing TFEB nuclear translocation. In contrast, it inhibited pyroptosis and oxidative stress. Based on using the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C, the AMPK-TRPML1-calcineurin pathway was involved in HB's regulation of TFEB. In summary, this study demonstrated that HB facilitated functional recuperation by stimulating TFEB-driven autophagy while simultaneously suppressing pyroptosis and oxidative stress after SCI, indicating its potential for clinical application.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
15
|
Geng Y, Lou J, Wu J, Tao Z, Yang N, Kuang J, Wu Y, Zhang J, Xiang L, Shi J, Cai Y, Wang X, Chen J, Xiao J, Zhou K. NEMO-Binding Domain/IKKγ Inhibitory Peptide Alleviates Neuronal Pyroptosis in Spinal Cord Injury by Inhibiting ASMase-Induced Lysosome Membrane Permeabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405759. [PMID: 39225315 PMCID: PMC11516130 DOI: 10.1002/advs.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
A short peptide termed NEMO-binding domain (NBD) peptide has an inhibitory effect on nuclear factor kappa-B (NF-κB). Despite its efficacy in inhibiting inflammatory responses, the precise neuroprotective mechanisms of NBD peptide in spinal cord injury (SCI) remain unclear. This study aims to determine whether the pyroptosis-related aspects involved in the neuroprotective effects of NBD peptide post-SCI.Using RNA sequencing, the molecular mechanisms of NBD peptide in SCI are explored. The evaluation of functional recovery is performed using the Basso mouse scale, Nissl staining, footprint analysis, Masson's trichrome staining, and HE staining. Western blotting, enzyme-linked immunosorbent assays, and immunofluorescence assays are used to examine pyroptosis, autophagy, lysosomal membrane permeabilization (LMP), acid sphingomyelinase (ASMase), and the NF-κB/p38-MAPK related signaling pathway.NBD peptide mitigated glial scar formation, reduced motor neuron death, and enhanced functional recovery in SCI mice. Additionally, NBD peptide inhibits pyroptosis, ameliorate LMP-induced autophagy flux disorder in neuron post-SCI. Mechanistically, NBD peptide alleviates LMP and subsequently enhances autophagy by inhibiting ASMase through the NF-κB/p38-MAPK/Elk-1/Egr-1 signaling cascade, thereby mitigating neuronal death. NBD peptide contributes to functional restoration by suppressing ASMase-mediated LMP and autophagy depression, and inhibiting pyroptosis in neuron following SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Yibo Geng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junnan Wu
- Department of PharmacyThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - Zhichao Tao
- Renji College of Wenzhou Medical UniversityWenzhou325027China
| | - Ningning Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaxuan Kuang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuzhe Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiacheng Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Linyi Xiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jingwei Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuepiao Cai
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Xiangyang Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jian Xiao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Kailiang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| |
Collapse
|
16
|
Liu G, Liang J, Li W, Jiang S, Song M, Xu S, Du Q, Wang L, Wang X, Liu X, Tang L, Yang Z, Zhou M, Meng H, Zhang L, Yang Y, Zhang B. The protective effect of erythropoietin and its novel derived peptides in peripheral nerve injury. Int Immunopharmacol 2024; 138:112452. [PMID: 38943972 DOI: 10.1016/j.intimp.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
17
|
Liu R, Jiang L, Chen Y, Shao J, Chen K, Li X, Lv J, Cai W, Cai H, Zhu Z, Wang C, Zhou K, Huang J, Xiao J, Ni W, Wu C. Ginsenoside-Rh2 Promotes Functional Recovery after Spinal Cord Injury by Enhancing TFEB-Mediated Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14727-14746. [PMID: 38907713 DOI: 10.1021/acs.jafc.4c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Background: Following spinal cord injury (SCI), autophagy plays a positive role in neuronal protection, whereas pyroptosis triggers an inflammatory response. Ginsenoside-Rh2 (GRh2), known for its neuroprotective effects, is considered a promising drug. However, the exact molecular mechanisms underlying these protective effects remain unclear. Aim of the Study: Explore the therapeutic value of GRh2 in SCI and its potential mechanisms of action. Materials and Methods: An SCI mouse model was established, followed by random grouping and drug treatments under different conditions. Subsequently, the functional recovery of SCI mice after GRh2 treatment was assessed using hematoxylin and eosin, Masson's trichrome, and Nissl staining, footprint analysis, Basso Mouse Scale scoring, and inclined plane tests. The expression levels of relevant indicators in the mice were detected using Western blotting, immunofluorescence, and a quantitative polymerase chain reaction. Network pharmacology analysis was used to identify the relevant signaling pathways through which GRh2 exerts its therapeutic effects. Results: GRh2 promoted functional recovery after SCI. GRh2 significantly inhibits pyroptosis by enhancing autophagy in SCI mice. Simultaneously, the neuroprotective effect of GRh2, achieved through the inhibition of pyroptosis, is partially reversed by 3-methyladenine, an autophagy inhibitor. Additionally, the increase in autophagy induced by GRh2 is mediated by the promotion of transcription factor EB (TFEB) nuclear translocation and dephosphorylation. Partial attenuation of the protective effects of GRh2 was observed after TFEB knockdown. Additionally, GRh2 can modulate the activity of TFEB in mice post-SCI through the EGFR-MAPK signaling pathway, and NSC228155 (an EGFR activator) can partially reverse the effect of GRh2 on the EGFR-MAPK signaling pathway. Conclusions: GRh2 improves functional recovery after SCI by upregulating TFEB-mediated autophagic flux and inhibiting pyroptosis, indicating its potential clinical applicability.
Collapse
Affiliation(s)
- Rongjie Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqin Shao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kongbin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxu Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhefan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinfeng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
18
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
19
|
Lou Y, Li Z, Zheng H, Yuan Z, Li W, Zhang J, Shen W, Gao Y, Ran N, Kong X, Feng S. New strategy to treat spinal cord injury: Nafamostat mesilate suppressed NLRP3-mediated pyroptosis during acute phase. Int Immunopharmacol 2024; 134:112190. [PMID: 38703569 DOI: 10.1016/j.intimp.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Zonghao Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Han Zheng
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Zhongze Yuan
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Wenxiang Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Jianping Zhang
- Division of Surgery and Interventional Science, University College London, London HA7 4LP, United Kingdom
| | - Wenyuan Shen
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yiming Gao
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Ning Ran
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China.
| | - Xiaohong Kong
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| |
Collapse
|