1
|
Botelho M, Cavadas C. Neuropeptide Y: An Anti-Aging Player? Trends Neurosci 2016; 38:701-711. [PMID: 26549884 DOI: 10.1016/j.tins.2015.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that neuropeptide Y (NPY) has a role in aging and lifespan determination. In this review, we critically discuss age-related changes in NPY levels in the brain, together with recent findings concerning the contribution of NPY to, and impact on, six hallmarks of aging, specifically: loss of proteostasis, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing, cellular senescence, and mitochondrial dysfunction. Understanding how NPY contributes to, and counteracts, these hallmarks of aging will open new avenues of research on limiting damage related to aging.
Collapse
Affiliation(s)
- Mariana Botelho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Ghahramanian Golzar M, Babri S, Ataie Z, Ebrahimi H, Mirzaie F, Mohaddes G. NPY Receptors Blockade Prevents Anticonvulsant Action of Ghrelin in the Hippocampus of Rat. Adv Pharm Bull 2013; 3:265-71. [PMID: 24312846 DOI: 10.5681/apb.2013.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Ghrelin has been shown to have antiepileptic function. However, the underlying mechanisms by which, ghrelin exerts its antiepileptic effects are still unclear. In the present study, we investigated whether neuropeptide Y (NPY) mediates ghrelin anticonvulsant effect in the brain through its Y1, Y2 or Y5 receptors. METHODS Male Wistar rats were bilaterally microinjected with ghrelin 0.3 nmol/μl/side and NPY antagonists; GR231118 (Y1 receptor antagonist), BIIE0246 (Y2 receptor antagonist), CGP71683 (Y5 receptor antagonist) or solvents (Saline, DMSO) into the dorsal hippocampus 20 minutes before ghrelin administration. Thirty minutes after ghrelin microinjection, a single convulsive dose of pentylenetetrazole (PTZ) (50 mg/kg) was injected intraperitoneally (ip). Afterwards, duration of seizure and total seizure score (TSS) were assessed for 30 minutes in all animals. RESULTS Intrahippocampal injection of 0.3 nmol/μl/side ghrelin decreased duration of seizure and TSS induced by PTZ. The suppression of both duration (p<0.001) and TSS (p<0.001) induced by ghrelin in hippocampus were significantly blocked by GR231118 (10 μg/μl/side), BIIE0246 (400 pmol/μl/side) and CGP 71683A (5 nmol/μl/side). CONCLUSION Our findings suggest that NPY Y1, Y2 and Y5 receptors in the hippocampus may somehow mediate the anticonvulsive action of ghrelin. Therefore, it is possible to speculate that ghrelin acts in the hippocampus to modulate seizures via NPY.
Collapse
|
3
|
Olesen MV, Christiansen SH, Gøtzsche CR, Holst B, Kokaia M, Woldbye DPD. Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 2012; 46:71-9. [PMID: 22342800 DOI: 10.1016/j.npep.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) has been implicated in anxiolytic- and antidepressant-like behaviour as well as seizure-suppressant effects in rodents. Although these effects appear to be predominantly mediated via other NPY receptors (Y1 and/or Y2), several studies have also indicated a role for Y5 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY, Y1 or Y2 receptors in the hippocampus or amygdala has previously been shown to modulate emotional behaviour and seizures in rodents. The present study explored the potential effects of gene therapy with the Y5 receptor, by testing effects of recombinant adeno-associated viral vector (rAAV) encoding Y5 (rAAV-Y5) in anxiety- and depression-like behaviour as well as in kainate-induced seizures in adult mice. The rAAV-Y5 vector injected into the hippocampus and amygdala induced a pronounced and sustained increase in Y5 receptor mRNA expression and functional Y5 receptor binding, but no significant effects were found with regard to anxiety- and depression-like behaviours or seizure susceptibility. Instead, rAAV-mediated Y5 receptor transgene overexpression resulted in moderate hyperactivity in the open field test. These results do not support a potential role for single transgene overexpression of Y5 receptors for modulating anxiety-/depression-like behaviours or seizures in adult mice. Whether the induction of hyperactivity by rAAV-Y5 could be relevant for other conditions remains to be studied.
Collapse
Affiliation(s)
- M V Olesen
- Protein Laboratory & Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
4
|
Gøtzsche CR, Nikitidou L, Sørensen AT, Olesen MV, Sørensen G, Christiansen SH, Ängehagen M, Woldbye DP, Kokaia M. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures. Neurobiol Dis 2012; 45:288-96. [DOI: 10.1016/j.nbd.2011.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/23/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023] Open
|
5
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
6
|
Dag E, Aydin S, Ozkan Y, Erman F, Dagli AF, Gurger M. Alteration in chromogranin A, obestatin and total ghrelin levels of saliva and serum in epilepsy cases. Peptides 2010; 31:932-7. [PMID: 20172008 DOI: 10.1016/j.peptides.2010.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/11/2010] [Accepted: 02/11/2010] [Indexed: 11/23/2022]
Abstract
This study was designed to measure the levels of chromogranin A (CgA), ghrelin and obestatin in serum and saliva (including CgA expression in healthy tissue) in epileptic patients to determine any significant differences between these patients and healthy controls. Samples were obtained from a total of 91 subjects: 10 newly-diagnosed primary generalized epilepsy (PGE) patients who had started treatment with valproic acid and phenytoin for seizure control; 18 PGE patients who were previously and currently receiving treatment with valproic acid and phenytoin for seizure control; 37 patients with partial epilepsy (PE) (simple, n=17 or complex, n=20) who had been and were still being treated with carbazebime for seizures; and 26 healthy controls. CgA immunoreactivity in healthy salivary gland was analyzed by immunohistochemistry and ELISA. The levels of CgA, total ghrelin and obestatin in serum and saliva were measured by ELISA. The results revealed that normal salivary gland produces its own CgA. Before treatment, CgA levels in saliva and serum were significantly greater in patients newly-diagnosed with PGE than controls. Ghrelin and CgA concentrations were also greater in PGE patients previously or currently treated with drugs, and in patients with simple or complex partial epilepsy (PE) previously or currently treated with drugs, than in healthy normal controls. In conclusion, salivary concentrations of CgA, ghrelin and obestatin were similar to their serum levels, so saliva might be a desirable alternative to serum for measuring these hormones because it is easy and painless to collect.
Collapse
Affiliation(s)
- Ersel Dag
- Department of Neurology, Elazig Research and Education Hospital, Elazig 23119, Turkey
| | | | | | | | | | | |
Collapse
|
7
|
Olling JD, Ulrichsen J, Correll M, Woldbye DPD. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats. Alcohol Clin Exp Res 2009; 34:462-70. [PMID: 20028355 DOI: 10.1111/j.1530-0277.2009.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
8
|
Colombo JA, Bentham C. Immunohistochemical analysis of subcortical white matter astroglia of infant and adult primate brains, with a note on resident neurons. Brain Res 2006; 1100:93-103. [PMID: 16765327 DOI: 10.1016/j.brainres.2006.04.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 11/26/2022]
Abstract
An immunohistochemical analysis of brain subcortical white matter astroglia from human (infant, adult) and adult monkey (Cebus apella, Macaca nemestrina) cases without any known neurological disease, is described. Expression of synaptic vesicle-associated proteins, excitatory amino acid transporters (EAAT1 and EAAT2) and GABAA Ralpha2 receptor produced coarse punctate labeling in human adult white matter astrocytes. A finer, generalized, punctate labeling was observed in human infants and adult C. apella monkeys. Labeling of neuronal somata and processes with microtubule-associated proteins (MAP2a-c) and neuron nuclear (NeuN) antibodies, was also observed in subcortical white matter of humans and monkeys. Results suggest competence of subcortical white matter astroglia of the primate brain to participate in various transmitter regulatory pathways. It is also proposed that, collectively with resident neurons, they may exert some role in affecting the transfer of information that takes place through the various associational and projecting fiber systems coursing through this brain compartment.
Collapse
Affiliation(s)
- Jorge A Colombo
- Unidad de Neurobiología Aplicada (UNA) (CEMIC), Av. Galván 4102, 1431 Ciudad de, Buenos Aires, Argentina.
| | | |
Collapse
|
9
|
El Bahh B, Balosso S, Hamilton T, Herzog H, Beck-Sickinger AG, Sperk G, Gehlert DR, Vezzani A, Colmers WF. The anti-epileptic actions of neuropeptide Y in the hippocampus are mediated by Y2 and not Y5 receptors. Eur J Neurosci 2005; 22:1417-30. [PMID: 16190896 DOI: 10.1111/j.1460-9568.2005.04338.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuropeptide Y (NPY) potently inhibits glutamate release and seizure activity in rodent hippocampus in vitro and in vivo, but the nature of the receptor(s) mediating this action is controversial. In hippocampal slices from rats and several wild-type mice, a Y2-preferring agonist mimicked, and the Y2-specific antagonist BIIE0246 blocked, the NPY-mediated inhibition both of glutamatergic transmission and of epileptiform discharges in two different slice models of temporal lobe epilepsy, stimulus train-induced bursting (STIB) and 0-Mg2+ bursting. Whereas Y5 receptor-preferring agonists had small but significant effects in vitro, they were blocked by BIIE0246, and a Y5 receptor-specific antagonist did not affect responses to any agonist tested in any preparation. In slices from mice, NPY was without effect on evoked potentials or in either of the two slice seizure models. In vivo, intrahippocampal injections of Y2- or Y5-preferring agonists inhibited seizures caused by intrahippocampal kainate, but again the Y5 agonist effects were insensitive to a Y5 antagonist. Neither Y2- nor Y5-preferring agonists affected kainate seizures in mice. A Y5-specific antagonist did not displace the binding of two different NPY ligands in WT or mice, whereas all NPY binding was eliminated in the mouse. Thus, we show that Y2 receptors alone mediate all the anti-excitatory actions of NPY seen in the hippocampus, whereas our findings do not support a role for Y5 receptors either in vitro or in vivo. The results suggest that agonists targeting the Y2 receptor may be useful anticonvulsants.
Collapse
Affiliation(s)
- Bouchaïb El Bahh
- Department of Pharmacology, University of Alberta. Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Woldbye DPD, Nanobashvili A, Sørensen AT, Husum H, Bolwig TG, Sørensen G, Ernfors P, Kokaia M. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors. Neurobiol Dis 2005; 20:760-72. [PMID: 15979311 DOI: 10.1016/j.nbd.2005.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 04/14/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo.
Collapse
Affiliation(s)
- David P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dautzenberg FM, Neysari S. Irreversible binding kinetics of neuropeptide Y ligands to Y2 but not to Y1 and Y5 receptors. Pharmacology 2005; 75:21-9. [PMID: 15908753 DOI: 10.1159/000085897] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 03/29/2005] [Indexed: 01/10/2023]
Abstract
Neuropeptide Y (NPY) receptors type 1 (Y1), type 2 Y2) and type 5 (Y5) were tested for their kinetic properties to bind radiolabeled NPY or PYY. Rapid association and dissociation was observed with recombinant (HEK293 cells) and endogenous (SK-N-MC cells) human Y1 and recombinant mouse Y5 receptors. Recombinant (HEK293) and endogenous (SMS-KAN) human Y2 receptors bound both radiolabels comparable to the Y1 receptors, but only minimal ( approximately 20%) dissociation of both radiolabels was observed after long incubation time (>8 h). Furthermore, neither peptide nor small molecule Y2 ligands efficiently competed for binding to Y2 receptors once association binding had been initiated. The Y2-selective antagonist BIIE0246 behaved as an insurmountable antagonist in functional assays when pre-incubated for 30 min before agonist addition, but was a competitive antagonist when co-applied with the agonist. These data show that Y2 receptors in contrast to Y1 and Y5 receptors bind their ligands in an irreversible manner.
Collapse
|