1
|
Liu R, Buttaci DR, Sokol CL. Neurogenic inflammation and itch in barrier tissues. Semin Immunol 2025; 77:101928. [PMID: 39798211 PMCID: PMC11893243 DOI: 10.1016/j.smim.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Once regarded as distinct systems, the nervous system and the immune system are now recognized for their complex interactions within the barrier tissues. The neuroimmune circuitry comprises a dual-network system that detects external and internal disturbances, providing critical information to tailor a context-specific response to various threats to tissue integrity, such as wounding or exposure to noxious and harmful stimuli like pathogens, toxins, or allergens. Using the skin as an example of a barrier tissue with the polarized sensory neuronal responses of itch and pain, we explore the molecular pathways driving neuronal activation and the effects of this activation on the immune response. We then apply these findings to other barrier tissues, to find common pathways controlling neuroimmune responses in the barriers.
Collapse
Affiliation(s)
- Rebecca Liu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dean R Buttaci
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Barbosa Bomfim CC, Génin H, Cottoignies-Callamarte A, Gallois-Montbrun S, Murigneux E, Sams A, Rosenberg AR, Belouzard S, Dubuisson J, Kosminder O, Pène F, Terrier B, Bomsel M, Ganor Y. CGRP inhibits SARS-CoV-2 infection of bronchial epithelial cells, and its pulmonary levels correlate with viral clearance in critical COVID-19 patients. J Virol 2024; 98:e0012824. [PMID: 39162434 PMCID: PMC11406896 DOI: 10.1128/jvi.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with critical coronavirus disease 2019 (COVID-19) present with life-threatening respiratory distress, pulmonary damage, and cytokine storm. One unexplored component in COVID-19 is the neuropeptide calcitonin gene-related peptide (CGRP), which is highly abundant in the airways and could converge in multiple aspects of COVID-19-related pulmonary pathophysiology. Whether CGRP affects SARS-CoV-2 infection directly remains elusive. We show that in critical COVID-19 patients, CGRP is increased in both plasma and lungs. Importantly, CGRP pulmonary levels are elevated in early SARS-CoV-2-positive patients and restored to baseline upon subsequent viral clearance in SARS-CoV-2-negative patients. We further show that CGRP and its stable analog SAX directly inhibit infection of bronchial Calu-3 epithelial cells with SARS-CoV-2 Omicron and Alpha variants in a dose-dependent manner. Both pre- and post-infection treatments with CGRP and/or SAX are enough to block SARS-CoV-2 productive infection of Calu-3 cells. CGRP-mediated inhibition occurs via activation of the CGRP receptor and involves down-regulation of both SARS-CoV-2 entry receptors at the surface of Calu-3 cells. Together, we propose that increased pulmonary CGRP mediates beneficial viral clearance in critical COVID-19 patients by directly inhibiting SARS-CoV-2 propagation. Hence, CGRP-based interventions could be harnessed for management of COVID-19.IMPORTANCEThe neuropeptide CGRP is highly abundant in the airways. Due to its immunomodulatory, vasodilatory, and anti-viral functions, CGRP could affect multiple aspects of COVID-19-related pulmonary pathophysiology. Yet, the interplay between CGRP and SARS-CoV-2 during COVID-19 remains elusive. Herein, we show that pulmonary levels of CGRP are increased in critical COVID-19 patients, at an early stage of their disease when patients are SARS-CoV-2-positive. Upon subsequent viral clearance, CGRP levels are restored to baseline in SARS-CoV-2-negative patients. We further show that pre- and post-infection treatments with CGRP directly inhibit infection of Calu-3 bronchial epithelial cells with SARS -CoV-2, via activation of the CGRP receptor leading to decreased expression of both SARS-CoV-2 entry receptors. Together, we propose that increased pulmonary CGRP is beneficial in COVID-19, as CGRP-mediated inhibition of SARS-CoV-2 infection could contribute to viral clearance in critical COVID-19 patients. Accordingly, CGRP-based formulations could be useful for COVID-19 management.
Collapse
Affiliation(s)
- Caio César Barbosa Bomfim
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Hugo Génin
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Andréa Cottoignies-Callamarte
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Sarah Gallois-Montbrun
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Host-Virus Interactions, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
| | - Emilie Murigneux
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Host-Virus Interactions, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
| | - Anette Sams
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Epoqe Pharma, Copenhagen, Denmark
| | - Arielle R. Rosenberg
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Virology, AP-HP Hôpital Cochin, Paris, France
| | - Sandrine Belouzard
- Molecular and Cellular Virology of Coronavirus, Infection and Immunity Center of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHRU, Lille, France
| | - Jean Dubuisson
- Molecular and Cellular Virology of Coronavirus, Infection and Immunity Center of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHRU, Lille, France
| | - Olivier Kosminder
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Biological Hematology, AP-HP Hôpitaux Universitaires Paris Centre, Paris, France
| | - Frédéric Pène
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Service of Intensive Medicine and Reanimation, AP-HP Hôpital Cochin, Paris, France
| | - Benjamin Terrier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP Hôpital Cochin, Paris, France
| | - Morgane Bomsel
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Yonatan Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| |
Collapse
|
3
|
Zidan AA, Zhu S, Elbasiony E, Najafi S, Lin Z, Singh RB, Naderi A, Yin J. Topical application of calcitonin gene-related peptide as a regenerative, antifibrotic, and immunomodulatory therapy for corneal injury. Commun Biol 2024; 7:264. [PMID: 38438549 PMCID: PMC10912681 DOI: 10.1038/s42003-024-05934-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a multifunctional neuropeptide abundantly expressed by corneal nerves. Using a murine model of corneal mechanical injury, we found CGRP levels in the cornea significantly reduced after injury. Topical application of CGRP as an eye drop accelerates corneal epithelial wound closure, reduces corneal opacification, and prevents corneal edema after injury in vivo. CGRP promotes corneal epithelial cell migration, proliferation, and the secretion of laminin. It reduces TGF-β1 signaling and prevents TGF-β1-mediated stromal fibroblast activation and tissue fibrosis. CGRP preserves corneal endothelial cell density, morphology, and pump function, thus reducing corneal edema. Lastly, CGRP reduces neutrophil infiltration, macrophage maturation, and the production of inflammatory cytokines in the cornea. Taken together, our results show that corneal nerve-derived CGRP plays a cytoprotective, pro-regenerative, anti-fibrotic, and anti-inflammatory role in corneal wound healing. In addition, our results highlight the critical role of sensory nerves in ocular surface homeostasis and injury repair.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuyan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sheyda Najafi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhirong Lin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Jiang HL, Yang HH, Liu YB, Duan JX, Guan XX, Zhang CY, Zhong WJ, Jin L, Li D, Li Q, Zhou Y, Guan CX. CGRP is essential for protection against alveolar epithelial cell necroptosis by activating the AMPK/L-OPA1 signaling pathway during acute lung injury. J Cell Physiol 2024; 239:e31169. [PMID: 38193350 DOI: 10.1002/jcp.31169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.
Collapse
Affiliation(s)
- Hui-Ling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Jia-Xi Duan
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Li
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan, China
| |
Collapse
|
5
|
Bonura A, Brunelli N, Marcosano M, Iaccarino G, Fofi L, Vernieri F, Altamura C. Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles-A Narrative Review. Int J Mol Sci 2023; 24:13979. [PMID: 37762283 PMCID: PMC10530509 DOI: 10.3390/ijms241813979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed throughout the human body. While primarily recognized as a nociceptive mediator, CGRP antagonists are currently utilized for migraine treatment. However, its role extends far beyond this, acting as a regulator of numerous biological processes. Indeed, CGRP plays a crucial role in vasodilation, inflammation, intestinal motility, and apoptosis. In this review, we explore the non-nociceptive effects of CGRP in various body systems, revealing actions that can be contradictory at times. In the cardiovascular system, it functions as a potent vasodilator, yet its antagonists do not induce arterial hypertension, suggesting concurrent modulation by other molecules. As an immunomodulator, CGRP exhibits intriguing complexity, displaying both anti-inflammatory and pro-inflammatory effects. Furthermore, CGRP appears to be involved in obesity development while paradoxically reducing appetite. A thorough investigation of CGRP's biological effects is crucial for anticipating potential side effects associated with its antagonists' use and for developing novel therapies in other medical fields. In summary, CGRP represents a neuropeptide with a complex systemic impact, extending well beyond nociception, thus offering new perspectives in medical research and therapeutics.
Collapse
Affiliation(s)
- Adriano Bonura
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Nicoletta Brunelli
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Marilena Marcosano
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Gianmarco Iaccarino
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Luisa Fofi
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Fabrizio Vernieri
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Claudia Altamura
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
6
|
Intranasal calcitonin gene-related peptide administration impairs fear memory retention in mice through the PKD/p-HDAC5/Npas4 pathway. Sci Rep 2022; 12:1450. [PMID: 35087146 PMCID: PMC8795377 DOI: 10.1038/s41598-022-05518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) suppresses fear memory retention in mice. Although intracerebroventricular administration of CGRP alters the fear memory processes, making it a promising therapeutic strategy for post-traumatic stress disorder (PTSD), direct brain injection into patients is not practical. Therefore, we propose that intranasal application may be an effective way to deliver CGRP to the brain. This study tested whether CGRP nasal administration exerts the same effect as intracerebroventricular administration using C57BL6J mice. The amount of CGRP in the cerebrospinal fluid and hippocampus 30 min after nasal administration of CGRP was significantly higher when compared with saline. Intranasal CGRP also elicited photophobic behaviors similar to intracerebroventricular injection. Moreover, intranasal CGRP decreased fear memory retention but did not affect reactivation and extinction of fear memory. We found intranasal CGRP significantly increased the expression of protein kinase D (PKD), phosphorylated histone deacetylase 5 (p-HDAC5) and neuronal PAS domain protein 4 (Npas4) in the hippocampus. CGRP-mediated impairment of fear memory and Npas4 expression increases were attenuated significantly by the CGRP receptor antagonist BIBN4096. Together, our data demonstrate that intranasal CGRP delivery activates the PKD/p-HDAC5/Npas4 pathway, decreases fear memory retention.
Collapse
|
7
|
Xue J, Liu Y, Zhang S, Ding L, Shen B, Shao Y, Wei Z. CGRP protects bladder smooth muscle cells stimulated by high glucose through inhibiting p38 MAPK pathway in vitro. Sci Rep 2021; 11:7643. [PMID: 33828162 PMCID: PMC8027675 DOI: 10.1038/s41598-021-87140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to explore the effect of calcitonin gene-related peptide (CGRP) on bladder smooth muscle cells (BSMCs) under high glucose (HG) treatment in vitro. BSMCs from Sprague-Dawley rat bladders were cultured and passaged in vitro. The third-generation cells were cultured and divided into control group, HG group, HG + CGRP group, HG + CGRP + asiatic acid (AA, p-p38 activator) group, CGRP group, AA group, HG + CGRP + CGRP-8-37 (CGRP receptor antagonist) group and HG + LY2228820 (p38 MAPK inhibitor) group. The cell viability, apoptosis, malondialdehyde (MDA) and superoxide dismutase (SOD) levels of BSMCs were observed by the relevant detection kits. The expressions of α-SM-actin, p38 and p-p38 were detected by qRT-PCR or Western blot analysis. Compared with the control group, the cell viability, SOD and α-SM-actin levels of BSMCs were decreased and apoptotic cells, MDA and p-p38 levels were increased after HG treatment, while these changes could be partly reversed when BSMCs were treated with HG and CGRP or LY2228820 together. Moreover, AA or CGRP-8-37 could suppress the effect of CGRP on BSMCs under HG condition. Our data indicate that CGRP protects BSMCs from oxidative stress induced by HG in vitro, and inhibit the α-SM-actin expression decrease through inhibiting the intracellular p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jun Xue
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Yadong Liu
- Department of Urology, The Third People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Sichong Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Liucheng Ding
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Yunpeng Shao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
8
|
Bjørklund G, Dadar M, Aaseth J, Chirumbolo S. Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury. Curr Med Chem 2021; 27:6294-6305. [PMID: 31333080 DOI: 10.2174/0929867326666190716125456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences,
University of Verona, Verona, Italy
| |
Collapse
|
9
|
Ochoa-Callejero L, García-Sanmartín J, Villoslada-Blanco P, Íñiguez M, Pérez-Matute P, Pujadas E, Fowkes ME, Brody R, Oteo JA, Martínez A. Circulating Levels of Calcitonin Gene-Related Peptide Are Lower in COVID-19 Patients. J Endocr Soc 2021; 5:bvaa199. [PMID: 33506161 PMCID: PMC7798995 DOI: 10.1210/jendso/bvaa199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Background To better understand the biology of COVID-19, we have explored the behavior of calcitonin gene-related peptide (CGRP), an angiogenic, vasodilating, and immune modulating peptide, in severe acute respiratory syndrome coronavirus 2 positive patients. Methods Levels of CGRP in the serum of 57 COVID-19 patients (24 asymptomatic, 23 hospitalized in the general ward, and 10 admitted to the intensive care unit) and healthy donors (n = 24) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, to better understand the physiological consequences of the observed variations, we investigated by immunofluorescence the distribution of receptor activity modifying protein 1 (RAMP1), one of the components of the CGRP receptor, in autopsy lung specimens. Results CGRP levels were greatly decreased in COVID-19 patients (P < 0.001) when compared to controls, and there were no significant differences due to disease severity, sex, age, or comorbidities. We found that COVID-19 patients treated with proton pump inhibitors had lower levels of CGRP than other patients not taking this treatment (P = 0.001). RAMP1 immunoreactivity was found in smooth muscle cells of large blood vessels and the bronchial tree and in the airways´ epithelium. In COVID-19 samples, RAMP1 was also found in proliferating type II pneumocytes, a common finding in these patients. Conclusions The lower levels of CGRP should negatively impact the respiratory physiology of COVID-19 patients due to vasoconstriction, improper angiogenesis, less epithelial repair, and faulty immune response. Therefore, restoring CGRP levels in these patients may represent a novel therapeutic approach for COVID-19.
Collapse
Affiliation(s)
| | | | | | - María Íñiguez
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain
| | | | - Elisabet Pujadas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary E Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José A Oteo
- Infectious Diseases, Microbiota, and Metabolism Unit (CIBIR), Logroño, Spain.,Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
10
|
Sun L, Wang G, He M, Mei Z, Zhang F, Liu P. Effect and mechanism of the CACNA2D1-CGRP pathway in osteoarthritis-induced ongoing pain. Biomed Pharmacother 2020; 129:110374. [PMID: 32570114 DOI: 10.1016/j.biopha.2020.110374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022] Open
Abstract
This study built an OA model in rats by monosodium iodoacetate (MIA) injection to determine the effects and mechanism of the voltage-dependent calcium channel subunit alpha-2/delta-1 (CACNA2D1)-calcitonin gene-related protein (CGRP) pathway in osteoarthritis (OA)-induced ongoing pain. CACNA2D1 expression was measured by qPCR assay, western blotting assay, and immunofluorescence. Pain behaviors in rats were assessed with the measurement of thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT). The expression of CACNA2D1, neuropeptide Y (NPY), activating transcription factor 3 (ATF3), CGRP, protein kinase A (PKA), phosphorylated (p)-PKA, adenylyl cyclase (AC), protein kinase C (PKC), p-PKC, phospholipase C (PLC), and mitogen-activated protein kinase (MAPK) signaling pathway proteins were measured, OA rats had higher CACNA2D1 expression than normal rats. Knockdown of CACNA2D1 led to the elevation of the pain threshold of OA rats, and CACNA2D1 over-expression decreased the pain threshold of normal rats. Moreover, CACNA2D1 over-expression inhibited the expression of CGRP, up-regulated the expressions of NPY, ATF3, p-PKA, AC, p-PKC, PLC, p-Jun N-terminal kinase (JNK), and p-p38, and had no significant effect on phosphorylated extracellular signal-regulated kinase (p-ERK) expression in vivo and in vitro. Using this model of MIA-induced OA, we demonstrated that CACNA2D1 might be involved in the process of pain by modulating the CGRP and AC-PKA/PKC/MAPK signaling pathways in the dorsal root ganglion.
Collapse
Affiliation(s)
- Liang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Guodong Wang
- Departments of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Meifang He
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mei
- Guangzhou Sihe Biotechnology Co., Ltd., Guangzhou, China
| | - Fazhou Zhang
- Guangzhou Sihe Biotechnology Co., Ltd., Guangzhou, China
| | - Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Taniguchi M, Saito K, Aida R, Ochiai A, Saitoh E, Tanaka T. Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. J Biosci Bioeng 2019; 128:142-148. [PMID: 30799089 DOI: 10.1016/j.jbiosc.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
Abstract
In our previous study, we identified multifunctional cationic peptides from enzymatic hydrolysates of rice bran proteins (RBPs) that have antimicrobial and lipopolysaccharide-neutralizing activities. In this study, we investigated the potential of the peptides RBP-LRR, RBP-EKL, and RBP-SSF to promote proliferation, angiogenesis (tube formation), and migration in human umbilical vein endothelial cells (HUVECs). To determine mechanisms of wound healing actions, angiogenic and migration-promoting activities of these peptides were evaluated following pretreatments of HUVECs with specific inhibitors. In these experiments, the cationic peptides RBP-LRR, RBP-EKL, and RBP-SSF induced cell proliferation at low concentrations of 0.1 μM or 1 μM. Moreover, the three cationic peptides had angiogenic activities at concentrations more than 1 μM in tube formation assays, and their effects were similar to those of LL-37. Subsequent scratch migration assays exhibited that RBP-LRR, RBP-EKL, and RBP-SSF promote wound closure at optimum concentrations of 10, 10, and 0.1 μM, respectively. In further studies, we performed tube formation assays using HUVECs pretreated with SU5416, which inhibits vascular endothelial growth factor (VEGF) receptors, and suggested the possibility that the three cationic peptides induce angiogenesis by activating VEGF receptors. In corresponding scratch migration assays using HUVECs, pretreatment with the proliferation inhibitor mitomycin C did not alter the effects of RBP-LRR and RBP-EKL, and significant contribution to wound closure were mediated by cell migration regardless of proliferation rates. In contrast, RBP-SSF contributed to wound closure exclusively by promoting cell proliferation. The present data indicate that RBP-LRR, RBP-EKL, and RBP-SSF are candidates for use as wound healing agents.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
12
|
Chung AM. Calcitonin gene-related peptide (CGRP): role in peripheral nerve regeneration. Rev Neurosci 2018; 29:369-376. [PMID: 29216010 DOI: 10.1515/revneuro-2017-0060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has an important anti-inflammatory role in the immune system. Research has shown that CGRP is an integral part in peripheral nerve regeneration by (1) suppressing tumor necrosis factor-α, (2) forming an initial nerve bridge by increasing fibroblast motility and extracellular matrix synthesis, (3) vascularizing the spinal cord injury site, and (4) inducing Schwann cell (SC) proliferation. In this treatise, the following hypotheses will be explored: (1) CGRP is induced by c-Jun to regulate SC dedifferentiation, (2) CGRP promotes the chemotaxic migration of SCs along the nerve bridge, and (3) CGRP induces myelinophagy by activating various signaling pathways, such as p38 mitogen-activated protein kinase and Raf/extracellular signal-regulated kinase. These processes provide a framework for understanding the role of CGRP in peripheral nerve regeneration, which may be important in developing better strategies for nerve repair and gaining further insight into demyelinating diseases.
Collapse
Affiliation(s)
- Albert M Chung
- University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267-0552, USA
| |
Collapse
|
13
|
Abstract
GENERAL PURPOSE To provide information about the clinical presentation of hypertrophic scars and keloids based on their varied structural components. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After completing this continuing education activity, you should be able to: ABSTRACT: Hypertrophic scars and keloids are firm, raised, erythematous plaques or nodules that manifest when the cicatrix fails to properly heal. They result from pathologic wound healing and often cause pain and decreased quality of life. The appearance of such cosmetically unappealing scars affects the confidence and self-esteem of many patients. These scars can also cause dysfunction by interfering with flexion and extension across joints. Both possess some unique and distinct histochemical and physiologic characteristics that set them apart morphologically and at the molecular level. While these entities have been the focus of research for many years, differentiating between them remains challenging for clinicians.This article reviews the clinical presentation of aberrant scars and illustrates how they can be differentiated. It outlines their pathophysiology and emphasizes the unique molecular mechanisms underlying each disorder. It also examines how altered expression levels and the distribution of several factors may contribute to their unique clinical characteristics and presentation. Further research is needed to elucidate optimal treatments and preventive measures for these types of aberrant scarring.
Collapse
|
14
|
Taniguchi M, Ochiai A, Namae T, Saito K, Kato T, Saitoh E, Tanaka T. The antimicrobial and anti-endotoxic peptide AmyI-1-18 from rice α-amylase and its [N3L] analog promote angiogenesis and cell migration. Peptides 2018; 104:78-84. [PMID: 29709624 DOI: 10.1016/j.peptides.2018.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/18/2023]
Abstract
In our previous studies, we showed that AmyI-1-18 and its single amino acid-substituted analogs have antimicrobial, anti-inflammatory, and anti-endotoxic activities and cause little or no hemolysis or cytotoxicity. In this study, we investigated the potential of these peptides to promote proliferation, angiogenesis (tube formation), and migration in human umbilical vein endothelial cells (HUVECs). Among five single amino acid-substituted analogs, [N3L]AmyI-1-18 induced cell proliferation in a concentration-dependent manner with similar efficacy to AmyI-1-18. In tube formation assays, AmyI-1-18 and [N3L]AmyI-1-18 had angiogenic activities at 1 μM and their effects were similar to those of LL-37. Moreover, scratch migration assays showed that AmyI-1-18, [N3L]AmyI-1-18, and LL-37 promote cell migration with optimum concentrations of 10, 1, and 0.1 μM, respectively. Subsequently, we performed tube formation assays using HUVECs pretreated with SU5416, which is an inhibitor of vascular endothelial growth factor (VEGF) receptors, and revealed that AmyI-1-18 and [N3L]AmyI-1-18 induce angiogenesis by activating VEGF receptors. Similarly, after pretreating HUVECs with mitomycin C, which inhibits cell proliferation, [N3L]AmyI-1-18 significantly contributed to wound closure in scratch migration assays. Moreover, enhancements of hydrophobicity following substitution of AmyI-1-18 asparagine with leucine led to greater increases in cell migration. The present data indicate that both peptides, particularly [N3L]AmyI-1-18, are candidates for use as wound healing agents.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toshiki Namae
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tetsuo Kato
- Department of Chemistry, Tokyo Dental College, Tokyo 101-0062, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
15
|
Chandra D, Poole JA, Bailey KL, Staab E, Sweeter JM, DeVasure JM, Romberger DJ, Wyatt TA. Dimethylarginine dimethylaminohydrolase (DDAH) overexpression enhances wound repair in airway epithelial cells exposed to agricultural organic dust. Inhal Toxicol 2018; 30:133-139. [PMID: 29793367 DOI: 10.1080/08958378.2018.1474976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE Workers exposed to dusts from concentrated animal feeding operations have a high prevalence of pulmonary diseases. These exposures lead to chronic inflammation and aberrant airway remodeling. Previous work shows that activating cAMP-dependent protein kinase (PKA) enhances airway epithelial wound repair while activating protein kinase C (PKC) inhibits wound repair. Hog barn dust extracts slow cell migration and wound repair via a PKC-dependent mechanism. Further, blocking nitric oxide (NO) production in bronchial epithelial cells prevents PKA activation. We hypothesized that blocking an endogenous NO inhibitor, asymmetric dimethylarginine, by overexpressing dimethylarginine dimethylaminohydrolase mitigates the effects of hog dust extract on airway epithelial would repair. MATERIALS/METHODS We cultured primary tracheal epithelial cells in monolayers from both wild-type (WT) and dimethylarginine dimethylaminohydrolase overexpressing C57Bl/6 (DDAH1 transgenic) mice and measured wound repair using the electric cell impedance sensing system. RESULTS Wound closure in epithelial cells from WT mice occurred within 24 h in vitro. In contrast, treatment of the WT cell monolayers with 5% hog dust extract prevented significant NO-stimulated wound closure. In cells from DDAH1 transgenic mice, control wounds were repaired up to 8 h earlier than seen in WT mice. A significant enhancement of wound repair was observed in DDAH cells compared to WT cells treated with hog dust extract for 24 h. Likewise, cells from DDAH1 transgenic mice demonstrated increased NO and PKA activity and decreased hog dust extract-stimulated PKC. DISCUSSION/CONCLUSION Preserving the NO signal through endogenous inhibition of asymmetric dimethylarginine enhances wound repair even in the presence of dust exposure.
Collapse
Affiliation(s)
- Deepak Chandra
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas
| | - Jill A Poole
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas
| | - Kristina L Bailey
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas.,b Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE Douglas
| | - Elizabeth Staab
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas
| | - Jenea M Sweeter
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas
| | - Jane M DeVasure
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas
| | - Debra J Romberger
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas.,b Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE Douglas
| | - Todd A Wyatt
- a Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE Douglas.,b Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE Douglas.,c Department of Environmental, Agricultural and Occupational Health , University of Nebraska Medical Center , Omaha , NE Douglas
| |
Collapse
|
16
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Duan JX, Zhou Y, Zhou AY, Guan XX, Liu T, Yang HH, Xie H, Chen P. Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Mol Immunol 2017; 91:105-113. [DOI: 10.1016/j.molimm.2017.08.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023]
|
18
|
Yoon SP, Kim J. Exogenous CGRP upregulates profibrogenic growth factors through PKC/JNK signaling pathway in kidney proximal tubular cells. Cell Biol Toxicol 2017; 34:251-262. [PMID: 28540451 DOI: 10.1007/s10565-017-9399-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
Abstract
Kidney denervation prevents the development of tubulointerstitial fibrosis, but the neuropeptide calcitonin gene-related peptide (CGRP) in the denervated kidneys restores the fibrotic feature through the upregulation of profibrogenic growth factors. CGRP is involved in aggravation of inflammation by increasing the number of circulating cells and chemotactic factors. However, it is not clear how CGRP contributes to the upregulation of profibrogenic factors during fibrogenesis. In both human and pig kidney proximal tubular cell lines, administration of 1 nM CGRP significantly increased the levels of transforming growth factor-β1 (TGF-β1) production and connective tissue growth factor (CTGF) expression at 6 and 24 h after the administration. Exogenous CGRP also increased the TGF-β1 and CTGF protein levels in the incubation media, indicating release of these proteins from the cells. Treatment with 100 nM CGRP receptor antagonist (CGRP8-37) for 24 h significantly inhibited the increase in intracellular levels and released levels of TGF-β1 and CTGF in CGRP-treated cells. Genetic inhibition of CGRP receptor using siRNA transfection also suppressed the increase in TGF-β1 production and release at 24 h after CGRP stimulation. Furthermore, treatment with a specific protein kinase C (PKC) inhibitor chelerythrine (1 thru 10 μM) markedly reduced the upregulation and release of TGF-β1 and CTGF 6 h after CGRP administration. Finally, inhibition of c-Jun N-terminal protein kinase (JNK) phosphorylation using 1 μM SP600125 prevented the increase in TGF-β1 and CTGF upregulation and release 6 h after CGRP administration. Consistent with the in vitro data, exogenous CGRP in denervated UUO kidneys upregulated and secreted TGF-β1 and CTGF in dependence on PKC activation and JNK phosphorylation. In conclusion, these data suggest that exogenous CGRP induces the upregulation and secretion of profibrogenic TGF-β1 and CTGF proteins through the CGRP receptor/PKC/JNK signaling pathway in kidney proximal tubular cells.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
19
|
Hegarty DM, Hermes SM, Yang K, Aicher SA. Select noxious stimuli induce changes on corneal nerve morphology. J Comp Neurol 2017; 525:2019-2031. [PMID: 28213947 DOI: 10.1002/cne.24191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Abstract
The surface of the cornea contains the highest density of nociceptive nerves of any tissue in the body. These nerves are responsive to a variety of modalities of noxious stimuli and can signal pain even when activated by low threshold stimulation. Injury of corneal nerves can lead to altered nerve morphology, including neuropathic changes which can be associated with chronic pain. Emerging technologies that allow imaging of corneal nerves in vivo are spawning questions regarding the relationship between corneal nerve density, morphology, and function. We tested whether noxious stimulation of the corneal surface can alter nerve morphology and neurochemistry. We used concentrations of menthol, capsaicin, and hypertonic saline that evoked comparable levels of nocifensive eye wipe behaviors when applied to the ocular surface of an awake rat. Animals were sacrificed and corneal nerves were examined using immunocytochemistry and three-dimensional volumetric analyses. We found that menthol and capsaicin both caused a significant reduction in corneal nerve density as detected with β-tubulin immunoreactivity 2 hr after stimulation. Hypertonic saline did not reduce nerve density, but did cause qualitative changes in nerves including enlarged varicosities that were also seen following capsaicin and menthol stimulation. All three types of noxious stimuli caused a depletion of CGRP from corneal nerves, indicating that all modalities of noxious stimuli evoked peptide release. Our findings suggest that studies aimed at understanding the relationship between corneal nerve morphology and chronic disease may also need to consider the effects of acute stimulation on corneal nerve morphology.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Katherine Yang
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
20
|
Kirkpatrick DR, McEntire DM, Smith TA, Dueck NP, Kerfeld MJ, Hambsch ZJ, Nelson TJ, Reisbig MD, Agrawal DK. Transmission pathways and mediators as the basis for clinical pharmacology of pain. Expert Rev Clin Pharmacol 2016; 9:1363-1387. [PMID: 27322358 PMCID: PMC5215101 DOI: 10.1080/17512433.2016.1204231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mediators in pain transmission are the targets of a multitude of different analgesic pharmaceuticals. This review explores the most significant mediators of pain transmission as well as the pharmaceuticals that act on them. Areas covered: The review explores many of the key mediators of pain transmission. In doing so, this review uncovers important areas for further research. It also highlights agents with potential for producing novel analgesics, probes important interactions between pain transmission pathways that could contribute to synergistic analgesia, and emphasizes transmission factors that participate in transforming acute injury into chronic pain. Expert commentary: This review examines current pain research, particularly in the context of identifying novel analgesics, highlighting interactions between analgesic transmission pathways, and discussing factors that may contribute to the development of chronic pain after an acute injury.
Collapse
Affiliation(s)
- Daniel R. Kirkpatrick
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Dan M. McEntire
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Tyler A. Smith
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Nicholas P. Dueck
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mitchell J. Kerfeld
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Zakary J. Hambsch
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Taylor J. Nelson
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mark D. Reisbig
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| |
Collapse
|
21
|
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, Chen YW, Tan Z, Huber JD, Rosen CL. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 2015; 43:711-724. [PMID: 25114088 PMCID: PMC4446718 DOI: 10.3233/jad-141422] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - James W. Simpkins
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daniel L. Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Kelly E. Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
23
|
Assas BM, Pennock JI, Miyan JA. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front Neurosci 2014; 8:23. [PMID: 24592205 PMCID: PMC3924554 DOI: 10.3389/fnins.2014.00023] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis.
Collapse
Affiliation(s)
- Bakri M Assas
- Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester Manchester, UK ; Department of Immunology, Faculty of Applied Sciences, King Abdulaziz University Jeddah, Saudi Arabia
| | - Joanne I Pennock
- Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester Manchester, UK
| | - Jaleel A Miyan
- Neurosciences, Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|