1
|
Wu H, Duan H. Research progress in Pusher Syndrome after stroke. Front Neurol 2025; 16:1591872. [PMID: 40308217 PMCID: PMC12040677 DOI: 10.3389/fneur.2025.1591872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Post-stroke Pusher Syndrome is a postural control disorder. It is characterized by active tilting toward the hemiplegic side and resistance to correction. This significantly impacts patients' motor function and quality of life. Its incidence varies greatly due to different research designs and assessment criteria. Literature reports an incidence ranging from 5% to 63%, and the incidence in patients with right brain damage (17.4%) is much higher than that in patients with left brain damage (9.5%). Etiological studies indicate that damage to the parietal lobe, thalamus, insula, and postcentral gyrus is the main pathological basis. The key mechanism is the interruption of thalamocortical connections. Typical clinical manifestations include trunk tilting in supine position, asymmetric weight-bearing in sitting, weight shift in standing, and impaired weight transfer during gait. Patients often have unilateral spatial neglect, which exacerbates balance disorders. Prognosis shows about 90% of patients recover within 6 months, but 10% to 15% may have long-term symptoms. Early rehabilitation intervention can significantly improve functional outcomes. This article comprehensively reviews the nomenclature, incidence, etiology, lesion sites, clinical manifestations, and prognosis of Pusher Syndrome, providing a research foundation for future studies on post-stroke Pusher Syndrome.
Collapse
Affiliation(s)
- Huayong Wu
- College of Sports Science and Health, Harbin Sport University, Harbin, China
| | - Haoyang Duan
- Department of Rehabilitation Medicine, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Haleem MH, Baig MO, Abualait T, Yoo WK, Obaid S, Bashir S. Effects of transcranial direct current stimulation combined with motor relearning program on strength and balance in stroke patients. PeerJ 2025; 13:e18925. [PMID: 39989752 PMCID: PMC11846504 DOI: 10.7717/peerj.18925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Background A stroke is characterized by neurological deficits that result in compromised muscle strength and balance, impacting the overall wellbeing of the patient, including decreased quality of life, socialization and participation in daily activities. The aim of the study is to determine the effects of transcranial direct current stimulation combined with a motor relearning program on strength and balance in sub-acute stroke patients. Methods The randomized controlled trial involved 44 subacute stroke patients, randomly assigned to either the experimental group (n = 22) or control group (n = 22). The intervention included anodal transcranial direct current stimulation (tDCS) for the experimental group and sham stimulation with a motor relearning program for the control groups. Assessments were conducted using manual muscle testing for muscle strength and the Berg Balance Scale for balance at baseline, the fourth week, and the eighth week. Results There were no statistically significant effects in the experimental group for either strength or balance (p-value > 0.05) but there were time effects for both variables especially during the intervention period in both the experimental and control groups. Conclusion There does not appear to be any short term or long-term additional effects of anodal transcranial direct current stimulation on strength and balance in subacute stroke patients.
Collapse
Affiliation(s)
- Muhammad Hamad Haleem
- Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Islamabad, Pakistan
- National Excellence Institute, Islamabad, Pakistan
| | - Mirza Obaid Baig
- Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine & Rehabilitation, Sacred Heart Hospital, Hallym University, Anyang, Republic of South Korea
| | - Sumaiyah Obaid
- Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Islamabad, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Suresh RE, Zobaer MS, Triano MJ, Saway BF, Grewal P, Rowland NC. Exploring Machine Learning Classification of Movement Phases in Hemiparetic Stroke Patients: A Controlled EEG-tDCS Study. Brain Sci 2024; 15:28. [PMID: 39851397 PMCID: PMC11764431 DOI: 10.3390/brainsci15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Noninvasive brain stimulation (NIBS) can boost motor recovery after a stroke. Certain movement phases are more responsive to NIBS, so a system that auto-detects these phases would optimize stimulation timing. This study assessed the effectiveness of various machine learning models in identifying movement phases in hemiparetic individuals undergoing simultaneous NIBS and EEG recordings. We hypothesized that transcranial direct current stimulation (tDCS), a form of NIBS, would enhance EEG signals related to movement phases and improve classification accuracy compared to sham stimulation. METHODS EEG data from 10 chronic stroke patients and 11 healthy controls were recorded before, during, and after tDCS. Eight machine learning algorithms and five ensemble methods were used to classify two movement phases (hold posture and reaching) during each of these periods. Data preprocessing included z-score normalization and frequency band power binning. RESULTS In chronic stroke participants who received active tDCS, the classification accuracy for hold vs. reach phases increased from pre-stimulation to the late intra-stimulation period (72.2% to 75.2%, p < 0.0001). Late active tDCS surpassed late sham tDCS classification (75.2% vs. 71.5%, p < 0.0001). Linear discriminant analysis was the most accurate (74.6%) algorithm with the shortest training time (0.9 s). Among ensemble methods, low gamma frequency (30-50 Hz) achieved the highest accuracy (74.5%), although this result did not achieve statistical significance for actively stimulated chronic stroke participants. CONCLUSIONS Machine learning algorithms showed enhanced movement phase classification during active tDCS in chronic stroke participants. These results suggest their feasibility for real-time movement detection in neurorehabilitation, including brain-computer interfaces for stroke recovery.
Collapse
Affiliation(s)
- Rishishankar E. Suresh
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (R.E.S.); (M.J.T.); (B.F.S.); (N.C.R.)
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA;
| | - M S Zobaer
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Matthew J. Triano
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (R.E.S.); (M.J.T.); (B.F.S.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian F. Saway
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (R.E.S.); (M.J.T.); (B.F.S.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Parneet Grewal
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan C. Rowland
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (R.E.S.); (M.J.T.); (B.F.S.); (N.C.R.)
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Sato T, Katagiri N, Suganuma S, Laakso I, Tanabe S, Osu R, Tanaka S, Yamaguchi T. Simulating tDCS electrode placement to stimulate both M1 and SMA enhances motor performance and modulates cortical excitability depending on current flow direction. Front Neurosci 2024; 18:1362607. [PMID: 39010941 PMCID: PMC11246916 DOI: 10.3389/fnins.2024.1362607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.
Collapse
Affiliation(s)
- Takatsugu Sato
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Saki Suganuma
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
6
|
Rodríguez-Huguet M, Ayala-Martínez C, Vinolo-Gil MJ, Góngora-Rodríguez P, Martín-Valero R, Góngora-Rodríguez J. Transcranial direct current stimulation in physical therapy treatment for adults after stroke: A systematic review. NeuroRehabilitation 2024; 54:171-183. [PMID: 38143386 DOI: 10.3233/nre-230213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Stroke is a clinical syndrome that can cause neurological disorders due to a reduction or interruption in the blood flow at the brain level. Transcranial direct current stimulation (TDCS) is a non-invasive electrotherapy technique with the ability to modulate the function of nervous tissue. OBJECTIVE The aim of this review is to analyze the effects derived from the application of the TDCS for post-stroke patients on functionality and mobility. METHODS The data search was conducted in PubMed, PEDro, Cochrane Library, Web of Science and Scopus between July and August 2023. The search focused on randomized clinical trials conducted in the period of 2019-2023, and according to the selection criteria, seven studies were obtained. RESULTS The results found are mainly focused on the analysis of the scales Fugl-Meyer Assessment for Upper Extremity and Wolf Motor Function Test. CONCLUSION The application of TDCS presents benefits in post-stroke individuals on functionality, mobility and other secondary studied variables.
Collapse
Affiliation(s)
| | | | - Maria Jesus Vinolo-Gil
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- Rehabilitation Clinical Management Unit, Interlevels-Intercenters Hospital Puerta del Mar, Hospital Puerto Real, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | | | - Rocío Martín-Valero
- Department of Physiotherapy, Faculty of Health Science, CTS-1071 Research Group, University of Málaga, Málaga, Spain
| | | |
Collapse
|
7
|
Qurat-ul-ain, Ahmad Z, Ilyas S, Ishtiaq S, Tariq I, Nawaz Malik A, Liu T, Wang J. Comparison of a single session of tDCS on cerebellum vs. motor cortex in stroke patients: a randomized sham-controlled trial. Ann Med 2023; 55:2252439. [PMID: 38100750 PMCID: PMC10732189 DOI: 10.1080/07853890.2023.2252439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine whether a single session of trans-cranial direct current stimulation (tDCS) of the cerebellum and M1 has any advantages over one another or sham stimulation in terms of balance, gait and lower limb function. METHODS A total of 66 patients who had experienced their first ever stroke were recruited into three groups for this double-blinded, parallel, randomized, sham-controlled trial: cerebellar stimulation group (CbSG), M1 stimulation group (MSG) and sham stimulation group (SSG). A single session of anodal tDCS with an intensity of 2 mA for a duration of 20 min was administered in addition to gait and balance training based on virtual reality using an Xbox 360 with Kinect. Balance, gait, cognition and risk of fall were assessed using outcome measures before intervention (T0), immediately after intervention (T1) and an hour after intervention (T2). RESULTS Across group analysis of all outcome measures showed statistically non-significant results (p > .05) except for Six Minute Walk Test (p value T0 = .003, p value T1 = .025, p value T2 = .016). The training effect difference showed a significant difference in balance, gait and cognition, as well as cerebral and cerebellar stimulation, in comparison to sham stimulation (p < .05). The risk of falls remained unaffected by any stimulation (p > .05). CONCLUSIONS In addition to Xbox Kinect-based rehabilitation training, a single session of anodal tDCS to the M1 or cerebellum may be beneficial for improving lower limb function, balance and gait performance.
Collapse
Affiliation(s)
- Qurat-ul-ain
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Zafran Ahmad
- Department of Logistics Engineering, Kunming University of Science & Technology, Kunming, China
| | - Saad Ilyas
- Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan
- Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Summaiya Ishtiaq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Iqbal Tariq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Tian Liu
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Jue Wang
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| |
Collapse
|
8
|
Lu H, Wang X, Zhang Y, Huang P, Xing C, Zhang M, Zhu X. Increased interbrain synchronization and neural efficiency of the frontal cortex to enhance human coordinative behavior: A combined hyper-tES and fNIRS study. Neuroimage 2023; 282:120385. [PMID: 37832708 DOI: 10.1016/j.neuroimage.2023.120385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Coordination is crucial for individuals to achieve common goals; however, the causal relationship between coordination behavior and neural activity has not yet been explored. Interbrain synchronization (IBS) and neural efficiency in cortical areas associated with the mirror neuron system (MNS) are considered two potential brain mechanisms. In the present study, we attempted to clarify how the two mechanisms facilitate coordination using hypertranscranial electrical stimulation (hyper-tES). A total of 124 healthy young adults were randomly divided into three groups (the hyper-tACS, hyper-tDCS and sham groups) and underwent modulation of the right inferior frontal gyrus (IFG) during functional near-infrared spectroscopy (fNIRS). Increased IBS of the PFC or neural efficiency of the right IFG (related to the MNS) was accompanied by greater coordination behavior; IBS had longer-lasting effects on behavior. Our findings highlight the importance of IBS and neural efficiency of the frontal cortex for coordination and suggest potential interventions to improve coordination in different temporal windows.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Yajuan Zhang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Peng Huang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China
| | - Chen Xing
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China.
| | - Mingming Zhang
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200233, China.
| | - Xia Zhu
- Department of Military Medical Psychology, Air Force Military Medical University, Xi 'an 710032, China.
| |
Collapse
|
9
|
Lima E, de Souza Neto JMR, Andrade SM. Effects of transcranial direct current stimulation on lower limb function, balance and quality of life after stroke: a systematic review and meta-analysis. Neurol Res 2023; 45:843-853. [PMID: 37183510 DOI: 10.1080/01616412.2023.2211457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE This systematic review with meta-analysis aimed to evaluate the effectiveness of tDCS on lower limb function, balance and quality of life in stroke patients. METHODS The search included PubMed, CENTRAL, PEDro, Web of Science, SCOPUS, PsycINFO Ovid, CINAHL EBSCO, EMBASE, ScienceDirect, reference lists of relevant reviews, clinical trials registries and academic google, in June and July 2021. Randomized controlled trials were selected, which present the effect of tDCS on lower limb motor function recovery in stroke patients, comparing any type of active tDCS versus sham; parallel or crossover study design; adult patients; stimulation on the primary motor cortex; articles published in any language; without restriction of publication period. RESULTS Nineteen studies were included. The treatment with active tDCS did not improve motor function (Chi2 = 32,87, I2 = 76%, SMD = 0,36 e 95% CI -0,18-0,90). Subgroup analyzes showed a significant effect favorable to tDCS, in relation to motor function, in the acute and subacute post stroke phases. However, the quality of evidence for this outcome was very low. Regarding balance outcome, a meta-analysis showed a significant difference in favor of active tDCS, but the quality of the evidence was considered very low. As for the quality of life outcome, no statistically significant difference was found in favor of tDCS. DISCUSSION There is a lack of evidence in recommending the use of tDCS in isolation in the treatment of patients after stroke, aiming at improving motor function, balance and quality of life. However, it is possible that tDCS can be beneficial when associated with other therapies or interventions.
Collapse
Affiliation(s)
- Eloise Lima
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Brazil
| | | | | |
Collapse
|
10
|
Massaferri R, Montenegro R, de Freitas Fonseca G, Bernardes W, Cunha FA, Farinatti P. Multimodal physical training combined with tDCS improves physical fitness components in people after stroke: a double-blind randomized controlled trial. Top Stroke Rehabil 2023:1-14. [PMID: 36603594 DOI: 10.1080/10749357.2023.2165260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) seems to be a potential tool to optimize the long-term effects of multimodal physical training (MPT) on fitness components in post-stroke patients. OBJECTIVE We investigated the effects of cortical tDCS combined with MPT on motor function reflected by strength, motor performance, and cardiorespiratory capacity in chronic stroke patients. METHODS This double-blind randomized controlled trial included 18 volunteers (55 ± 10 y, 72 ± 13 kg), who underwent MPT preceded by either sham stimulation (SHAM) or 2 mA bi-hemispheric tDCS. MPT consisted of 24 sessions of 60-70 min performed 2 d/wk within 12-16 weeks, with individualized intensity. Outcomes were Fugl-Meyer scores for lower limbs (FM-LL), and total (FM-Total); speed in the 10-m walk test (10MWT); oxygen uptake and work output at maximal effort (VO2max and Wmax), and gas exchange threshold (VO2-GET and W-GET); peak torque of isokinetic knee extension (PT-EXT) and flexion (PT-FLEX) of paretic and non-paretic limbs; bilateral strength deficit during knee extension (DS-EXT) and flexion (DS-FLEX). RESULTS Pre- vs. post-intervention improvements were detected in tDCS vs. SHAM (p < 0.05) for FM-total (29.6% vs. 15.9%; effect size [ES] = 0.78), FM-LL (35.9% vs. 9.0%; ES = 1.23), 10MWT (10.6% vs. 3.8%; ES = 0.67), Wmax (75.0% vs. 4.3%; ES = 1.68), W-GET (91.6% vs. 12.4%; ES = 1.62), PT-EXT (25.6% vs. -6.5%; ES = 1.94) and PT-FLEX (26.3% vs. 9.8%; ES = 0.65) of the paretic limb, and DS-EXT (-13.7% vs. 2.5; ES = 1.43). CONCLUSION Bi-hemispheric cortical tDCS optimized the effects of MPT performed with moderate volume and intensity upon muscle strength, motor function, and cardiorespiratory performance in stroke hemiparetic survivors. (Registration number RBR-22rh3p).
Collapse
Affiliation(s)
- Renato Massaferri
- Graduate Program in Operational Human Performance, Air Force University, RJ, Brazil.,Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil
| | - Rafael Montenegro
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil
| | - Guilherme de Freitas Fonseca
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil.,Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, RJ, Brazil
| | - Wendell Bernardes
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil
| | - Felipe A Cunha
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil.,Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil.,Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, RJ, Brazil
| |
Collapse
|
11
|
Parikh V, Medley A, Chung YC, Goh HT. Optimal timing and neural loci: a scoping review on the effect of non-invasive brain stimulation on post-stroke gait and balance recovery. Top Stroke Rehabil 2023; 30:84-100. [PMID: 34859744 DOI: 10.1080/10749357.2021.1990467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/02/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Little is known about the optimal timing and neural loci for applying noninvasive brain stimulation (NIBS) to promote gait and balance recovery after stroke. OBJECTIVE To identify the optimal timing and neural loci of NIBS for gait and balance recovery after stroke. METHODS We performed a PubMed search using keywords of stroke, transcranial magnetic stimulation, transcranial direct current stimulation, NIBS, balance, and gait. Interventional trials with various designs published in English were selected. Both flowcharts and tables were used for the result presentation. RESULTS The majority of selected 31 studies included individuals with chronic stroke and primary motor cortex (M1) stimulation. Studies' quality ranged from 4 to 10 (max = 10) on the Pedro scale. NIBS led to improvements in gait and balance in individuals with chronic and subacute stroke, yet the evidence for the acute phase of stroke is limited. Further, stimulation over the ipsilesional M1 resulted in improvement in gait and balanced performance. Stimulation over non-motor regions such as the cerebellum has been limitedly explored. CONCLUSION Current evidence supports the use of NIBS to the M1 in conjunction with behavioral training to improve gait and balance performance in individuals with subacute and chronic stroke. Future research is recommended to evaluate the effect of NIBS during acute stroke and over neural loci other than M1, and to implement a more rigorous method.
Collapse
Affiliation(s)
- Vyoma Parikh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Ann Medley
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| |
Collapse
|
12
|
Corominas-Teruel X, Mozo RMSS, Simó MF, Colomina Fosch MT, Valero-Cabré A. Transcranial direct current stimulation for gait recovery following stroke: A systematic review of current literature and beyond. Front Neurol 2022; 13:953939. [PMID: 36158971 PMCID: PMC9490093 DOI: 10.3389/fneur.2022.953939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background Over the last decade, transcranial direct current stimulation (tDCS) has set promise contributing to post-stroke gait rehabilitation. Even so, results are still inconsistent due to low sample size, heterogeneity of samples, and tDCS design differences preventing comparability. Nonetheless, updated knowledge in post-stroke neurophysiology and stimulation technologies opens up opportunities to massively improve treatments. Objective The current systematic review aims to summarize the current state-of-the-art on the effects of tDCS applied to stroke subjects for gait rehabilitation, discuss tDCS strategies factoring individual subject profiles, and highlight new promising strategies. Methods MEDLINE, SCOPUS, CENTRAL, and CINAHL were searched for stroke randomized clinical trials using tDCS for the recovery of gait before 7 February 2022. In order to provide statistical support to the current review, we analyzed the achieved effect sizes and performed statistical comparisons. Results A total of 24 records were finally included in our review, totaling n = 651 subjects. Detailed analyses revealed n = 4 (17%) studies with large effect sizes (≥0.8), n = 6 (25%) studies with medium ones (≥0.5), and n = 6 (25%) studies yielding low effects sizes (≤ 0.2). Statistically significant negative correlations (rho = −0.65, p = 0.04) and differences (p = 0.03) argued in favor of tDCS interventions in the sub-acute phase. Finally, significant differences (p = 0.03) were argued in favor of a bifocal stimulation montage (anodal M1 ipsilesional and cathodal M1 contralesional) with respect to anodal ipsilesional M1. Conclusion Our systematic review highlights the potential of tDCS to contribute to gait recovery following stroke, although also the urgent need to improve current stimulation strategies and subject-customized interventions considering stroke severity, type or time-course, and the use of network-based multifocal stimulation approaches guided by computational biophysical modeling. Systematic review registration PROSPERO: CRD42021256347.
Collapse
Affiliation(s)
- Xavier Corominas-Teruel
- Department of Psychology, Neurobehavior and Health Research Group (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, Paris, France
| | | | - Montserrat Fibla Simó
- Rehabilitation and Physical Medicine Department, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Maria Teresa Colomina Fosch
- Department of Psychology, Neurobehavior and Health Research Group (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Antoni Valero-Cabré
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, Paris, France
- Cognitive Neuroscience and Information Tech. Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Department of Anatomy and Neurobiology, Laboratory of Cerebral Dynamics, Boston University School of Medicine, Boston, MA, United States
- Maria Teresa Colomina Fosch
| |
Collapse
|
13
|
Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil 2022; 19:84. [PMID: 35922846 PMCID: PMC9351139 DOI: 10.1186/s12984-022-01062-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives This systematic review and meta-analysis aim to summarize and analyze the available evidence of non-invasive brain stimulation/spinal cord stimulation on gait, balance and/or lower limb motor recovery in stroke patients. Methods The PubMed database was searched from its inception through to 31/03/2021 for randomized controlled trials investigating repetitive transcranial magnetic stimulation or transcranial/trans-spinal direct current/alternating current stimulation for improving gait, balance and/or lower limb motor function in stroke patients. Results Overall, 25 appropriate studies (including 657 stroke subjects) were found. The data indicates that non-invasive brain stimulation/spinal cord stimulation is effective in supporting recovery. However, the effects are inhomogeneous across studies: (1) transcranial/trans-spinal direct current/alternating current stimulation induce greater effects than repetitive transcranial magnetic stimulation, and (2) bilateral application of non-invasive brain stimulation is superior to unilateral stimulation. Conclusions The current evidence encourages further research and suggests that more individualized approaches are necessary for increasing effect sizes in stroke patients.
Collapse
Affiliation(s)
- Jitka Veldema
- Department of Sport Science, Bielefeld University, 33 501, Bielefeld, Germany. .,Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Aneksan B, Sawatdipan M, Bovonsunthonchai S, Tretriluxana J, Vachalathiti R, Auvichayapat P, Pheungphrarattanatrai A, Piriyaprasarth P, Klomjai W. Five-Session Dual-Transcranial Direct Current Stimulation With Task-Specific Training Does Not Improve Gait and Lower Limb Performance Over Training Alone in Subacute Stroke: A Pilot Randomized Controlled Trial. Neuromodulation 2022; 25:558-568. [PMID: 35667771 DOI: 10.1111/ner.13526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the effect of five-session dual-transcranial direct current stimulation (dual-tDCS) combined with task-specific training on gait and lower limb motor performance in individuals with subacute stroke. MATERIALS AND METHODS Twenty-five participants who had a stroke in the subacute phase with mild motor impairment were recruited, randomized, and allocated into two groups. The active group (n = 13) received dual-tDCS with anodal over the lesioned hemisphere M1 and cathodal over the nonlesioned hemisphere, at 2 mA for 20 min before training for five consecutive days, while the sham group (n = 12) received sham mode before training. Gait speed as a primary outcome, temporospatial gait variables, lower-limb functional tasks (sit-to-stand and walking mobility), and muscle strength as secondary outcomes were collected at preintervention and postintervention (day 5), one-week follow-up, and one-month follow-up. RESULTS The primary outcome and most of the secondary outcomes were improved in both groups, with no significant difference between the two groups, and most of the results indicated small to moderate effect sizes of active tDCS compared to sham tDCS. CONCLUSION The combined intervention showed no benefit over training alone in improving gait variables and lower-limb performance. However, some performances were saturated at some point, as moderate to high function participants were recruited in the present study. Future studies should consider recruiting participants with more varied motor impairment levels and may need to determine the optimal stimulation protocols and parameters to improve gait and lower-limb performance.
Collapse
Affiliation(s)
- Benchaporn Aneksan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Montawan Sawatdipan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Sunee Bovonsunthonchai
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Jarugool Tretriluxana
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Roongtiwa Vachalathiti
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Paradee Auvichayapat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pagamas Piriyaprasarth
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Wanalee Klomjai
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand.
| |
Collapse
|
15
|
Klomjai W, Aneksan B. A randomized sham-controlled trial on the effects of dual-tDCS "during" physical therapy on lower limb performance in sub-acute stroke and a comparison to the previous study using a "before" stimulation protocol. BMC Sports Sci Med Rehabil 2022; 14:68. [PMID: 35428346 PMCID: PMC9013129 DOI: 10.1186/s13102-022-00463-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Dual-transcranial direct current stimulation (tDCS) has been used to rebalance the cortical excitability of both hemispheres following unilateral-stroke. Our previous study showed a positive effect from a single-session of dual-tDCS applied before physical therapy (PT) on lower limb performance. However, it is still undetermined if other timings of brain stimulation (i.e., during motor practice) induce better effects. The objective of this study was to examine the effect of a single-session of dual-tDCS “during” PT on lower limb performance in sub-acute stroke and then compare the results with our previous data using a “before” stimulation paradigm. Method For the current “during” protocol, 19 participants were participated in a randomized sham-controlled crossover trial. Dual-tDCS over the M1 of both cortices (2 mA) was applied during the first 20 min of PT. The Timed Up and Go and Five-Times-Sit-To-Stand tests were assessed at pre- and post-intervention and 1-week follow-up. Then, data from the current study were compared with those of the previous “before” study performed in a different group of 19 subjects. Both studies were compared by the difference of mean changes from the baseline. Results Dual-tDCS “during” PT and the sham group did not significantly improve lower limb performance. By comparing with the previous data, performance in the “before” group was significantly greater than in the “during” and sham groups at post-intervention, while at follow-up the “before” group had better improvement than sham, but not greater than the “during” group. Conclusion A single-session of dual-tDCS during PT induced no additional advantage on lower limb performance. The “before” group seemed to induce better acute effects; however, the benefits of the after-effects on motor learning for both stimulation protocols were probably not different. Trial registration Current randomized controlled trials was prospectively registered at the clinicaltrials.gov, registration number: NCT04051671. The date of registration was 09/08/2019.
Collapse
Affiliation(s)
- Wanalee Klomjai
- Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.,Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Benchaporn Aneksan
- Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand. .,Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
16
|
Review of tDCS Configurations for Stimulation of the Lower-Limb Area of Motor Cortex and Cerebellum. Brain Sci 2022; 12:brainsci12020248. [PMID: 35204011 PMCID: PMC8870282 DOI: 10.3390/brainsci12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.
Collapse
|
17
|
Selamat SNS, Che Me R, Ahmad Ainuddin H, Salim MSF, Ramli HR, Romli MH. The Application of Technological Intervention for Stroke Rehabilitation in Southeast Asia: A Scoping Review With Stakeholders' Consultation. Front Public Health 2022; 9:783565. [PMID: 35198531 PMCID: PMC8858807 DOI: 10.3389/fpubh.2021.783565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The technological intervention is considered as an adjunct to the conventional therapies applied in the rehabilitation session. In most high-income countries, technology has been widely used in assisting stroke survivors to undergo their treatments. However, technology use is still lacking in Southeast Asia, especially in middle- and low-income countries. This scoping review identifies and summarizes the technologies and related gaps available in Southeast Asia pertaining to stroke rehabilitation. METHODS The JBI manual for evidence synthesis was used to conduct a scoping study. Until September 2021, an electronic search was performed using four databases (Medline, CINAHL, Scopus, ASEAN Citation Index). Only the studies that were carried out in Southeast Asia were chosen. RESULTS Forty-one articles were chosen in the final review from 6,873 articles found during the initial search. Most of the studies reported the implementation of technological intervention combined with conventional therapies in stroke rehabilitation. Advanced and simple technologies were found such as robotics, virtual reality, telerehabilitation, motion capture, assistive devices, and mobility training from Singapore, Thailand, Malaysia, and Indonesia. The majority of the studies show that technological interventions can enhance the recovery period of stroke survivors. The consultation session suggested that the technological interventions should facilitate the needs of the survivors, caregivers, and practitioners during the rehabilitation. CONCLUSIONS The integration of technology into conventional therapies has shown a positive outcome and show significant improvement during stroke recovery. Future studies are recommended to investigate the potential of home-based technological intervention and lower extremities.
Collapse
Affiliation(s)
- Siti Nur Suhaidah Selamat
- Department of Industrial Design, Faculty of Design and Architecture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Rosalam Che Me
- Department of Industrial Design, Faculty of Design and Architecture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Husna Ahmad Ainuddin
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Centre of Occupational Therapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Shah Alam, Malaysia
| | - Mazatulfazura S. F. Salim
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Hospital Pengajar, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Hafiz Rashidi Ramli
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Muhammad Hibatullah Romli
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Hospital Pengajar, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
18
|
Chen SC, Yang LY, Adeel M, Lai CH, Peng CW. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021; 18:106. [PMID: 34193179 PMCID: PMC8244182 DOI: 10.1186/s12984-021-00901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) and intermittent theta burst stimulation (iTBS) were both demonstrated to have therapeutic potentials to rapidly induce neuroplastic effects in various rehabilitation training regimens. Recently, we developed a novel transcranial electrostimulation device that can flexibly output an electrical current with combined tDCS and iTBS waveforms. However, limited studies have determined the therapeutic effects of this special waveform combination on clinical rehabilitation. Herein, we investigated brain stimulation effects of tDCS-iTBS on upper-limb motor function in chronic stroke patients. Methods Twenty-four subjects with a chronic stroke were randomly assigned to a real non-invasive brain stimulation (NIBS; who received the real tDCS + iTBS output) group or a sham NIBS (who received sham tDCS + iTBS output) group. All subjects underwent 18 treatment sessions of 1 h of a conventional rehabilitation program (3 days a week for 6 weeks), where a 20-min NIBS intervention was simultaneously applied during conventional rehabilitation. Outcome measures were assessed before and immediately after the intervention period: Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Jebsen-Taylor Hand Function Test (JTT), and Finger-to-Nose Test (FNT). Results Both groups showed improvements in FMA-UE, JTT, and FNT scores after the 6-week rehabilitation program. Notably, the real NIBS group had greater improvements in the JTT (p = 0. 016) and FNT (p = 0. 037) scores than the sham NIBS group, as determined by the Mann–Whitney rank-sum test. Conclusions Patients who underwent the combined ipsilesional tDCS-iTBS stimulation with conventional rehabilitation exhibited greater impacts than did patients who underwent sham stimulation-conventional rehabilitation in statistically significant clinical responses of the total JTT time and FNT after the stroke. Preliminary results of upper-limb functional recovery suggest that tDCS-iTBS combined with a conventional rehabilitation intervention may be a promising strategy to enhance therapeutic benefits in future clinical settings. Trial registration: ClinicalTrials.gov Identifier: NCT04369235. Registered on 30 April 2020.
Collapse
Affiliation(s)
- Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Yu Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,School of Gerontology Health Management, College of Nursing, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
19
|
Dong K, Meng S, Guo Z, Zhang R, Xu P, Yuan E, Lian T. The Effects of Transcranial Direct Current Stimulation on Balance and Gait in Stroke Patients: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:650925. [PMID: 34113308 PMCID: PMC8186497 DOI: 10.3389/fneur.2021.650925] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Balance dysfunction after stroke often results in individuals unable to maintain normal posture, limits the recovery of gait and functional independence. We explore the short-term effects of transcranial direct current stimulation (tDCS) on improving balance function and gait in stroke patients. Methods: We systematically searched on PubMed, Web of Science, EMBASE, Cochrane Central Register of Controlled Trials, and Google Scholar for studies that explored the effects of tDCS on balance after stroke until August 2020. All involved studies used at least one measurement of balance, gait, or postural control as the outcome. Results: A total of 145 studies were found, of which 10 (n = 246) met the inclusion criteria and included in our studies. The present meta-analysis showed that active tDCS have beneficial effects on timed up and go test (TUGT) [mean difference (MD): 0.35; 95% confidence interval (CI): 0.11 to 0.58] and Functional Ambulation Category (FAC) (MD: −2.54; 95% CI: −3.93 to −1.15) in stroke patients. However, the results were not significant on the berg balance scale (BBS) (MD: −0.20; 95% CI: −1.44 to 1.04), lower extremity subscale of Fugl-Meyer Assessment (FMA-LE) (MD: −0.43; 95% CI: −1.70 to 0.84), 10-m walk test (10 MWT) (MD: −0.93; 95% CI: −2.68 to 0.82) and 6-min walking test (6 MWT) (MD: −2.55; 95% CI: −18.34 to 13.23). Conclusions: In conclusion, we revealed that tDCS might be an effective option for restoring walking independence and functional ambulation for stroke patients in our systematic review and meta-analysis. Systematic Review Registration: CRD42020207565.
Collapse
Affiliation(s)
- Ke Dong
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shifeng Meng
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziqi Guo
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Rufang Zhang
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Erfen Yuan
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Tao Lian
- Department of Rehabilitation Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Young J, Zoghi M, Khan F, Galea MP. The Effect of Transcranial Direct Current Stimulation on Chronic Neuropathic Pain in Patients with Multiple Sclerosis: Randomized Controlled Trial. PAIN MEDICINE 2021; 21:3451-3457. [PMID: 32594139 DOI: 10.1093/pm/pnaa128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Chronic neuropathic pain is a common symptom in multiple sclerosis (MS). This randomized controlled single-blinded study investigated whether a new protocol involving five days of transcranial direct current stimulation (tDCS) with an interval period would be effective to reduce pain using the visual analog scale (VAS). Other secondary outcomes included the Neuropathic Pain Scale (NPS), Depression Anxiety Stress Score (DASS), Short Form McGill Pain Questionnaire (SFMPQ), and Multiple Sclerosis Quality of Life 54 (MSQOL54). DESIGN A total of 30 participants were recruited for the study, with 15 participants randomized to a sham group or and 15 randomized to an active group. After a five-day course of a-tDCS, VAS and NPS scores were measured daily and then weekly after treatment up to four weeks after treatment. Secondary outcomes were measured pretreatment and then weekly up to four weeks. RESULTS After a five-day course of a-tDCS, VAS scores were significantly reduced compared with sham tDCS and remained significantly low up to week 2 post-treatment. There were no statistically significant mean changes in MSQOL54, SFMPQ, NPS, or DASS for the sham or treatment group before treatment or at four-week follow-up. CONCLUSIONS This study shows that repeated stimulation with a-tDCS for five days can reduce pain intensity for a prolonged period in patients with MS who have chronic neuropathic pain.
Collapse
Affiliation(s)
- Jamie Young
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine and Radiology, Integrated Critical Care, University of Melbourne, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Fary Khan
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Mary P Galea
- RehabilitationDepartment, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Transcranial direct current stimulation for improving ambulation after stroke: a systematic review and meta-analysis. Int J Rehabil Res 2021; 43:299-309. [PMID: 32675686 PMCID: PMC7643800 DOI: 10.1097/mrr.0000000000000427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Achieving a sufficient level of functional ambulation remains to be a challenge to most stroke survivors. Different modes of transcranial direct current stimulation (tDCS) have been applied for improving various aspects of walking and mobility following stroke. However, systematic reviews before 2017 provided only general effects of tDCS on limited walking outcomes. Therefore, the aims of this study were to update the evidence of tDCS for improving walking and mobility after stroke with emphasis on individual outcomes and to delineate the effects of different modes of tDCS in subgroup analysis. The systematic search of PubMed, Medline, PEDro, Scopus, and Cochrane databases for studies published up to January 2019 identified 14 eligible reports. The PEDro scale indicated a good methodological quality of the included studies (score 6.8). The meta-analysis of primary outcomes revealed that active tDCS had no better effect than sham on walking speed [n = 7, standardized mean difference (SMD) = 0.189, P = 0.252] and 6-minute walking distance (n = 3, SMD = 0.209, P = 0.453). Among the secondary outcomes, significant positive effects were found on functional ambulation category (FAC) (n = 5, SMD = 0.542, P = 0.008), Rivermead Mobility Index (n = 3, SMD = 0.699, P = 0.008), and timed up and go test (TUG) (n = 5, SMD = 0.676, P = 0.001), whereas non-significant positive effects were found on Tinetti test (n = 3, SMD = 0.441, P = 0.062) and Berg Balance Scale (n = 2, SMD = 0.408, P = 0.177). In subgroup analyses, anodal tDCS had significant positive effects on FAC (n = 4, SMD = 0.611, P = 0.005) and dual-hemispheric tDCS on TUG (n = 2, SMD = 1.090, P = 0.000). The results provide up-to-date evidence of variable effects of tDCS on walking and functional mobility after stroke.
Collapse
|
22
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Chagas TDJ, Cravo ISDS, Bazan R, de Souza LAPS, Luvizutto GJ. Effects of transcranial direct current stimulation on balance after ischemic stroke (SANDE trial): Study protocol for a multicentric randomized controlled trial. Contemp Clin Trials 2021; 105:106396. [PMID: 33831502 DOI: 10.1016/j.cct.2021.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Among the tools used for motor rehabilitation after stroke, transcranial direct current electrical stimulation (tDCS) aims to modify cortical excitability and improve motor function. Despite promising results, the effects of tDCS on balance after stroke have not yet been assessed using specific protocols. Therefore, this study will aim to evaluate the effects of tDCS and rehabilitation on balance after stroke. METHODS Eighty-two ischemic stroke patients across two inpatient rehabilitation sites in Brazil will be randomized into one of two treatment programs (anodic tDCS and sham tDCS), both associated with balance training, each 2 days/week, for six weeks and monitored for exertion, repetition and quality of movements. The primary outcome measure is the balance. Secondary outcomes will include clinical and functional measures. Outcome data will be assessed at two time points. DISCUSSION This trial will contribute to clarify if anodal tDCS is effective when associated with balance training to stroke recovery.
Collapse
Affiliation(s)
- Tatiane de Jesus Chagas
- Physical Therapy Department, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Gustavo José Luvizutto
- Physical Therapy Department, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Navarro-López V, Molina-Rueda F, Jiménez-Jiménez S, Alguacil-Diego IM, Carratalá-Tejada M. Effects of Transcranial Direct Current Stimulation Combined with Physiotherapy on Gait Pattern, Balance, and Functionality in Stroke Patients. A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11040656. [PMID: 33916442 PMCID: PMC8066876 DOI: 10.3390/diagnostics11040656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The effectiveness of transcranial direct current stimulation (tDCS) together with conventional physiotherapy in motor rehabilitation after stroke has been widely studied. Despite this, few studies have focused on its application in gait and balance rehabilitation. This review aimed to determine the efficacy of transcranial direct current stimulation combined with conventional physiotherapy on gait, balance, and the functionality of the lower limb after stroke. Methods: This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four electronic databases were systematically searched for relevant articles. Randomized clinical trials in English or Spanish that evaluated the use of the transcranial direct current stimulation, combined with physiotherapy, to improve gait, balance, and lower limb functionality after stroke were included. Main results: 10 articles were included, with a total of 222 subjects. Data about population, assessment tools, protocols, sessions, and results were extracted. The methodological quality of the included studies ranged between 3 and 5. Conclusion: The use of transcranial direct current stimulation combined with physiotherapy improves gait parameters, static and dynamic balance, and lower limb functionality in stroke patients. Long-term effects have not yet been demonstrated.
Collapse
Affiliation(s)
- Víctor Navarro-López
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain;
| | - Francisco Molina-Rueda
- Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Department, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain; (F.M.-R.); (M.C.-T.)
| | | | - Isabel M Alguacil-Diego
- Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Department, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain; (F.M.-R.); (M.C.-T.)
- Correspondence:
| | - María Carratalá-Tejada
- Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Department, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain; (F.M.-R.); (M.C.-T.)
| |
Collapse
|
25
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
26
|
Prathum T, Piriyaprasarth P, Aneksan B, Hiengkaew V, Pankhaew T, Vachalathiti R, Klomjai W. Effects of home-based dual-hemispheric transcranial direct current stimulation combined with exercise on upper and lower limb motor performance in patients with chronic stroke. Disabil Rehabil 2021; 44:3868-3879. [PMID: 33645368 DOI: 10.1080/09638288.2021.1891464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to determine the effects of home-based dual-hemispheric transcranial direct current stimulation (dual-tDCS) combined with exercise on motor performance in patients with chronic stroke. MATERIALS AND METHODS We allocated 24 participants to the active or sham group. They completed 1-h home-based exercise after 20-min dual-tDCS at 2-mA, thrice a week for 4 weeks. The patients were assessed using the Fugl-Meyer Assessment (FMA), Wolf Motor Function Test, Timed Up and Go test, Five Times Sit-to-Stand Test, Six-meter Walk Test, and muscle strength assessment. RESULTS Compared with the sham group, the active group showed improved FMA scores, which were sustained for at least 1 month. There was no between-group difference in the outcomes of the functional tasks. CONCLUSION Home-based dual-tDCS could facilitate motor recovery in patients with chronic stroke with its effect lasting for at least 1 month. However, its effects on functional tasks remain unclear. tDCS is safe and easy for home-based self-administration for patients who can use their paretic arms. This could benefit patients without access to health care centres or in situations requiring physical distancing. This home-based tDCS combined with exercise has the potential to be incorporated into telemedicine in stroke rehabilitation.IMPLICATIONS FOR REHABILITATIONTwelve sessions of home-based dual-tDCS combined with exercises (3 days/week for 4 weeks) facilitated upper and lower limb motor recovery in patients with chronic stroke compared with exercise alone, with a post-effect for at least 1 month.Home-based tDCS could be safe and easily self-administrable by patients who can use their paretic arms.This intervention could be beneficial for patients living in the community without easy access to a health care centre or in situations where physical distancing is required.
Collapse
Affiliation(s)
- Thatchaya Prathum
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Pagamas Piriyaprasarth
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Benchaporn Aneksan
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Vimonwan Hiengkaew
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | | | | | - Wanalee Klomjai
- Faculty of Physical Therapy, Neuro Electrical Stimulation laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand.,Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
27
|
O'Leary GH, Jenkins DD, Coker-Bolt P, George MS, Kautz S, Bikson M, Gillick BT, Badran BW. From adults to pediatrics: A review noninvasive brain stimulation (NIBS) to facilitate recovery from brain injury. PROGRESS IN BRAIN RESEARCH 2021; 264:287-322. [PMID: 34167660 DOI: 10.1016/bs.pbr.2021.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke is a major problem worldwide that impacts over 100 million adults and children annually. Rehabilitation therapy is the current standard of care to restore functional impairments post-stroke, however its effects are limited and many patients suffer persisting functional impairments and life-long disability. Noninvasive Brain Stimulation (NIBS) has emerged as a potential rehabilitation treatment option in both adults and children with brain injury. In the last decade, Transcranial Magnetic Stimulation (TMS), Transcranial Direct Current Stimulation (tDCS) and Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) have been investigated to improve motor recovery in adults post-stroke. These promising adult findings using NIBS, however, have yet to be widely translated to the area of pediatrics. The limited studies exploring NIBS in children have demonstrated safety, feasibility, and utility of stimulation-augmented rehabilitation. This chapter will describe the mechanism of NIBS therapy (cortical excitability, neuroplasticity) that underlies its use in stroke and motor function and how TMS, tDCS, and taVNS are applied in adult stroke treatment paradigms. We will then discuss the current state of NIBS in early pediatric brain injury and will provide insight regarding practical considerations and future applications of NIBS in pediatrics to make this promising treatment option a viable therapy in children.
Collapse
Affiliation(s)
- Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Dorothea D Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Patricia Coker-Bolt
- Division of Occupational Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Steve Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, United States
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
28
|
EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON MUSCLE FATIGUE IN RECREATIONAL RUNNERS - RANDOMISED, SHAM-CONTROLLED, TRIPLE-BLIND, CROSS-OVER STUDY - PROTOCOL STUDY. Am J Phys Med Rehabil 2021; 101:279-283. [PMID: 33605575 DOI: 10.1097/phm.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Evaluate the effects of Transcranial Direct Current Stimulation (tDCS) on central and peripheral fatigue in recreational runners. METHODOLOGY A clinical randomized, sham-controlled, triple-blind, cross-over study. There will be 20 adult runners who will be randomized on the first day of the intervention to receive active or sham tDCS before fatigue protocol. After one week, the participants will receive the opposite therapy to the one that they received on the first day. Intervention: The tDCS, 2 mA, will be applied for 20 minutes over the motor cortex. The fatigue protocol will be performed after tDCS, in which the participant should perform concentric knee flexion/ extension contractions until reaching three contractions at only 50% of maximum voluntary contraction. Evaluations: Central fatigue will be evaluated with the motor evoked potential of the quadriceps muscle; peripheral fatigue with the peak torque (N.m) using an isokinetic dynamometer; the electrical activity of the quadriceps muscle using surface electromyography (Hz); blood lactate level (mmol/L); and the subjective perception of effort (Borg scale). All evaluations will be repeated pre and post the interventions. CONCLUSION This study will evaluate the effect of tDCS on fatigue in runners, possibly determining an application protocol for this population.
Collapse
|
29
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2020; 11:CD009645. [PMID: 33175411 PMCID: PMC8095012 DOI: 10.1002/14651858.cd009645.pub4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence). AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
- Department of Physiotherapy, SRH Hochschule für Gesundheit Gera, 07548 Gera, Germany
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Marcus Pohl
- Neurological Rehabilitation, Helios Klinik Schloss Pulsnitz, Pulsnitz, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| |
Collapse
|
30
|
Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol Sci 2020; 42:2785-2793. [PMID: 33159273 DOI: 10.1007/s10072-020-04875-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stroke is one of the main causes of impairment affecting daily activities and quality of life. There is a growing effort to potentiate the recovery of functional gait and to enable stroke patients to walk independently. AIM To estimate the effects of dual-site transcranial direct current stimulation (dstDCS) on gait recovery in chronic stroke patients provided with robot-aided gait training (RAGT). METHODS Thirty-seven patients were included in this retrospective clinical study. Nine patients were provided with dstDCS during the first 10 min of RAGT by using Lokomat®Pro (on-RAGT), 15 patients immediately after RAGT (post-RAGT), and 13 patients immediately before RAGT (pre-RAGT). RESULTS Each group improved over time concerning disability burden and lower limb strength. on-RAGT and post-RAGT experienced better improvement in balance (p < 0.001) and, moderately, gait endurance (p = 0.04) as compared to pre-RAGT. Furthermore, all treatments decreased the facilitation of the unaffected hemisphere (p < 0.001) and the inhibition of the affected hemisphere (p < 0.001). The duration of such aftereffects was found to be greater for post-RAGT. DISCUSSION AND CONCLUSION This is the first trial with dstDCS coupled with RAGT in chronic stroke patients with gait impairment. When timely coupled with RAGT, dstDCS may be considered an effective tool for the recovery of lower limb function in patients with first unilateral stroke in the chronic phase. Moreover, our data suggest the ductility of dstDCS concerning RAGT timing, thus making this intervention suitable in a neurorehabilitation setting and well adaptable to patients' needs.
Collapse
|
31
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
32
|
Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Gowan S, Hordacre B. Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions. Brain Sci 2020; 10:brainsci10050310. [PMID: 32455671 PMCID: PMC7287858 DOI: 10.3390/brainsci10050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.
Collapse
Affiliation(s)
- Samuel Gowan
- Interdisciplinary Neuroscience Program, Department of Biology, University of Wisconsin—La Crosse, La Crosse, WI 54601, USA
- Correspondence: ; Tel.: +61-8-83021286
| | - Brenton Hordacre
- IIMPACT in Health, University of South Australia, Adelaide, SA 5001, Australia;
| |
Collapse
|
34
|
Bornheim S, Thibaut A, Beaudart C, Maquet P, Croisier JL, Kaux JF. Evaluating the effects of tDCS in stroke patients using functional outcomes: a systematic review. Disabil Rehabil 2020; 44:13-23. [PMID: 32394750 DOI: 10.1080/09638288.2020.1759703] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background and purpose: Transcranial direct current stimulation (tDCS) has been extensively studied over the past 20 years to promote functional motor recovery after stroke. However, tDCS clinical relevance still needs to be determined. The present systematic review aims to determine whether tDCS applied to the primary motor cortex (M1) in stroke patients can have a positive effect on functional motor outcomes.Materials and methods: Two databases (Medline & Scopus) were searched for randomized, double-blinded, sham-controlled trials pertaining to the use of M1 tDCS on cerebral stroke patients, and its effects on validated functional motor outcomes. When data were provided, effect sizes were calculated. PROSPERO registration number: CRD42018108157Results: 46 studies (n = 1291 patients) met inclusion criteria. Overall study quality was good (7.69/10 on the PEDro scale). Over half (56.5%) the studies were on chronic stroke patients. There seemed to be a certain pattern of recurring parameters, but tDCS protocols still remain heterogeneous. Overall results were positive (71.7% of studies found that tDCS has positive results on functional motor outcomes). Effect-sizes ranged from 0 to 1.33. No severe adverse events were reported.Conclusion: Despite heterogeneous stimulation parameters, outcomes and patient demographics, tDCS seems to be complementary to classical and novel rehabilitation approaches. With minimal adverse effects (if screening parameters are respected), none of which were serious, and a high potential to improve recovery when using optimal parameters (i.e.: 20 min of stimulation, at 2 mA with 25 or 35cm2 electrodes that are regularly humidified), tDCS could potentially be ready for clinical applications.Implications for RehabilitationtDCS could potentially be ready for clinical application.Evidence of very low to very high quality is available on the effectiveness of tDCS to improve motor control following stroke.This should with caution be focused on the primary motor cortex.
Collapse
Affiliation(s)
- Stephen Bornheim
- Department of Physical Medicine and Rehabilitation, Liege University Hospital Center, Liege, Belgium.,Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| | - Aurore Thibaut
- Coma science group, GIGA-Research, University and University hospital of Liege, Liege, Belgium
| | - Charlotte Beaudart
- Department of Public Health, Epidemiology and Health Economics, University of Liege, Liege, Belgium
| | - Pierre Maquet
- Department of Neurology, Liege University Hospital Center, Liege, Belgium
| | - Jean-Louis Croisier
- Department of Physical Medicine and Rehabilitation, Liege University Hospital Center, Liege, Belgium.,Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| | - Jean-François Kaux
- Department of Physical Medicine and Rehabilitation, Liege University Hospital Center, Liege, Belgium.,Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| |
Collapse
|
35
|
Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, Datta A, Sabel BA, Nitsche MA, Loo C, Edwards D, Ekhtiari H, Knotkova H, Woods AJ, Hampstead BM, Badran BW, Peterchev AV. Transcranial electrical stimulation nomenclature. Brain Stimul 2019; 12:1349-1366. [PMID: 31358456 DOI: 10.1016/j.brs.2019.07.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial electrical stimulation (tES) aims to alter brain function non-invasively by applying current to electrodes on the scalp. Decades of research and technological advancement are associated with a growing diversity of tES methods and the associated nomenclature for describing these methods. Whether intended to produce a specific response so the brain can be studied or lead to a more enduring change in behavior (e.g. for treatment), the motivations for using tES have themselves influenced the evolution of nomenclature, leading to some scientific, clinical, and public confusion. This ambiguity arises from (i) the infinite parameter space available in designing tES methods of application and (ii) varied naming conventions based upon the intended effects and/or methods of application. Here, we compile a cohesive nomenclature for contemporary tES technologies that respects existing and historical norms, while incorporating insight and classifications based on state-of-the-art findings. We consolidate and clarify existing terminology conventions, but do not aim to create new nomenclature. The presented nomenclature aims to balance adopting broad definitions that encourage flexibility and innovation in research approaches, against classification specificity that minimizes ambiguity about protocols but can hinder progress. Constructive research around tES classification, such as transcranial direct current stimulation (tDCS), should allow some variations in protocol but also distinguish from approaches that bear so little resemblance that their safety and efficacy should not be compared directly. The proposed framework includes terms in contemporary use across peer-reviewed publications, including relatively new nomenclature introduced in the past decade, such as transcranial alternating current stimulation (tACS) and transcranial pulsed current stimulation (tPCS), as well as terms with long historical use such as electroconvulsive therapy (ECT). We also define commonly used terms-of-the-trade including electrode, lead, anode, and cathode, whose prior use, in varied contexts, can also be a source of confusion. This comprehensive clarification of nomenclature and associated preliminary proposals for standardized terminology can support the development of consensus on efficacy, safety, and regulatory standards.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Devin Adair
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany; Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment ant Human Factors, Dept. Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Dylan Edwards
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA; Edith Cowan University, Joondalup, Australia
| | | | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical & Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
36
|
Santos Ferreira I, Teixeira Costa B, Lima Ramos C, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. J Neuroeng Rehabil 2019; 16:90. [PMID: 31315679 PMCID: PMC6637619 DOI: 10.1186/s12984-019-0561-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation. METHODS AND RESULTS Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery. CONCLUSIONS In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.
Collapse
Affiliation(s)
- Isadora Santos Ferreira
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Beatriz Teixeira Costa
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Clara Lima Ramos
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Pedro Lucena
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|