1
|
Isildar B, Beydogan AB, Koyuturk E, Coskun Yazici ZM, Koyuturk M, Bolkent S. Effects of ∆-9 tetrahydrocannabinol on the small intestine altered by high fructose diet: A Histopathological study. Histochem Cell Biol 2024; 162:363-372. [PMID: 39110194 PMCID: PMC11393283 DOI: 10.1007/s00418-024-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Basak Isildar
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ece Koyuturk
- Faculty of Medicine, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
2
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
3
|
Dwivedi PS, Rasal VP, Chavan RS, Khanal P, Gaonkar VP. Feronia elephantum reverses insulin resistance in fructose-induced hyper-insulinemic rats; an in-silico, in-vitro, and in-vivo approach. JOURNAL OF ETHNOPHARMACOLOGY 2023:116686. [PMID: 37279812 DOI: 10.1016/j.jep.2023.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Feronia elephantum corr. (synonym: Feronia limonia, Murraya odorata, Schinus Limonia, or Limonia acidissima; common names: Bela, Kath, Billin, and Kavitha), belonging to the family Rutaceae has been known for clinical conditions such as pruritus, diarrhea, impotence, dysentery, heart diseases, and is also used as a liver tonic. However, the effect of the fruit pulp of F. elephantum on insulin resistance has yet not been reported. AIM OF THE STUDY The present study aimed to assess the effect of hydroalcoholic extract/fraction of F. elephantum fruit pulp on fasting blood glucose, oral glucose tolerance test, and glucose uptake in fructose-induced insulin-resistant rats and predict the gene-set enrichment of lead hits of F. elephantum with targets related to insulin resistance. MATERIAL AND METHODS System biology tools were used to predict the best category of fraction and propose a possible mechanism. Docking was carried out with adiponectin and its receptor (hub gene). Further, fructose supplementation was used for the induction of insulin resistance. Later, three doses of extract (400, 200, and 100 mg/kg) and a flavonoid-rich fraction (63 mg/kg) were used for treatment along with metformin as standard. The physical parameters like body weight, food intake, and water intake were measured along with oral glucose tolerance test, insulin tolerance test, glycogen content in skeletal muscles and liver, glucose uptake by rat hemidiaphragm, lipid profiles, anti-oxidant biomarkers, and histology of the liver and adipose tissue. RESULTS Network pharmacology reflected the potency of F. elephantum to regulate adiponectin (ADIPOQ) which may promote the reversal of insulin resistance and inhibit α-amylase and α-glucosidase. Vitexin was predicted to modulate the most genes associated with diabetes mellitus. Further, F. elephantum ameliorated the exogenous glucose clearance, promoted insulin sensitivity, reduced oxidative stress, and improved glucose and lipid metabolism. HPLC profiling revealed the presence of apigenin and quercetin in the extract for the first time. CONCLUSION The fruit pulp of F. elephantum reverses insulin resistance by an increase in glucose uptake and a decrease in gluconeogenesis which may be due to the regulation of multiple proteins via multiple bio-actives.
Collapse
Affiliation(s)
- Prarambh Sr Dwivedi
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
| | - V P Rasal
- Department of Pharmacology, Rani Chennamma College of Pharmacy, Belagavi, 590010, India
| | - Rajashekar S Chavan
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
| | - Vishakha Parab Gaonkar
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| |
Collapse
|
4
|
Alshuniaber MA, Alshammari GM, Eleawa SM, Yagoub AEA, Al-Khalifah AS, Alhussain MH, Al-Harbi LN, Yahya MA. Camel milk protein hydrosylate alleviates hepatic steatosis and hypertension in high fructose-fed rats. PHARMACEUTICAL BIOLOGY 2022; 60:1137-1147. [PMID: 35672152 PMCID: PMC9176680 DOI: 10.1080/13880209.2022.2079678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Camel milk is used in traditional medicine to treat diabetes mellitus hypertension and other metabolic disorders. OBJECTIVE This study evaluated the antisteatotic and antihypertensive effects of camel milk protein hydrolysate (CMH) in high fructose (HF)-fed rats and compared it with the effects afforded by the intact camel milk protein extract (ICM). MATERIALS AND METHODS Adult male Wistar rats were divided into 6 groups (n = 8 each) as 1) control, 2) ICM (1000 mg/kg), 3) CMH (1000 mg/kg), 4) HF (15% in drinking water), 5) HF (15%) + ICM (1000 mg/kg), and 6) HF (15%) + CMH (1000 mg/kg). All treatments were given orally for 21 weeks, daily. RESULTS Both ICM and CMH reduced fasting glucose and insulin levels, serum and hepatic levels of cholesterol and triglycerides, and serum levels of ALT and AST, angiotensin II, ACE, endothelin-1, and uric acid in HF-fed rats. In addition, both ICM and CMH reduced hepatic fat deposition in the hepatocytes and reduced hepatocyte damage. This was associated with an increase in the hepatic activity of AMPK, higher PPARα mRNA, reduced expression of fructokinase C, SREBP1, SREBP2, fatty acid synthase, and HMG-CoA-reductase. Both treatments lowered systolic and diastolic blood pressure. However, the effects of CMH on all these parameters were greater as compared to ICM. DISCUSSION AND CONCLUSIONS The findings of this study encourage the use of CMH in a large-scale population and clinical studies to treat metabolic steatosis and hypertension.
Collapse
Affiliation(s)
- Mohammad A. Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samy M. Eleawa
- College of Health Sciences, Applied Medical Sciences Department, PAAET, Safat, Kuwait
| | - Abu ElGasim A. Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullrahman S. Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Mert H, İrak K, Çibuk S, Yıldırım S, Mert N. The effect of evening primrose oil ( Oenothera biennis) on the level of adiponectin and some biochemical parameters in rats with fructose induced metabolic syndrome. Arch Physiol Biochem 2022; 128:1539-1547. [PMID: 32594769 DOI: 10.1080/13813455.2020.1781900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of evening primrose oil on adiponectin level and some biochemical parameters in model of fructose-induced metabolic syndrome were investigated. The rats were divided into 4 groups: control, evening primrose oil, fructose, fructose + evening primrose oil. Body weight, daily feed and water consumptions and systolic blood pressures of animals were measured. At the end of trial, blood samples were taken, livers were excised and histopathological examination was performed. Glucose, uric acid, triglyceride, T.cholesterol, LDL, HDL, VLDL, ALT, AST, ALP, LDH, adiponectin, insulin, IL-6, TNF-α, TAC, and TOS levels were analysed. Some analysed parameters and systolic blood pressure of fructose + evening primrose oil group decreased significantly compared to fructose group and adiponectin, TAC, and HDL levels were significantly increased. As conclusion, evening primrose oil can be considered as antioxidant agent by reducing oxidative stress, increasing adiponectin levels and insulin sensitivity, anti-inflammatory properties, exhibiting anti-atherogenic effect by regulating dyslipidemia and systolic blood pressure.
Collapse
Affiliation(s)
- Handan Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Faculty of Veterinary Medicine, Department of Biochemistry, Siirt University, Siirt, Turkey
| | - Salih Çibuk
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Faculty of Veterinary Medicine, Department of Pathology, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Faculty of Veterinary Medicine, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
6
|
Khanal P, Patil BM. Reversal of insulin resistance by Ficus benghalensis bark in fructose-induced insulin-resistant rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114761. [PMID: 34678414 DOI: 10.1016/j.jep.2021.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| | - B M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| |
Collapse
|
7
|
Kaji N, Namekawa J, Takagi Y, Watanabe A, Nemoto S, Minami Y, Katayanagi A, Kobayashi T, Asai F. Fructose prevents the development of hyperglycemia in WBN/Kob diabetic fatty rats via maintaining high insulin levels. Clin Exp Pharmacol Physiol 2022; 49:577-585. [PMID: 35108433 DOI: 10.1111/1440-1681.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
Abstract
Fructose is considered to negatively affect type 2 diabetes mellitus (T2DM); however, there are contradictory reports. The present study aimed to elucidate the effects of fructose-rich diet (FRD) on glucose metabolism of WBN/Kob fatty diabetic (WBKDF) rats, a spontaneous T2DM model, and Wistar rats. WBKDF and Wistar rats were fed either FRD or standard diet (STD) for 4 weeks. The food intake, body weight, plasma glucose and insulin were measured weekly. After the 4-week challenge, rats were subjected to an intravenous glucose tolerance test (IVGTT). The liver and pancreas were used for histological analysis. The 4-week challenge of FRD in Wistar rats did not cause hyperglycemia, but increased insulin resistance (HOMA-IR). Feeding WBKDF rats with a FRD accelerated obesity but prevented the onset of severe hyperglycemia via maintaining high plasma insulin levels. HOMA-IR in WBKDF rats was not changed by FRD feeding. IVGTT revealed that FRD feeding in Wistar rats did not affect glucose tolerance, but slightly increased the plasma insulin level. In contrast, FRD feeding in WBKDF rats significantly reduced the glucose tolerance, but insulin response was not improved. FRD feeding did not alter the beta cell area in Wistar rats, but significantly increased it in WBKDF rats. In conclusion, FRD caused insulin resistance in Wistar rats, suggesting that fructose overconsumption is a risk factor for T2DM, whereas FRD inhibited severe hyperglycemia by maintaining high insulin levels in WBKDF rats. Fructose may be a beneficial sugar for T2DM patients with severe obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | | | - Yoshiichi Takagi
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Ayaka Watanabe
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sayaka Nemoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | | | | | - Taiki Kobayashi
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan.,TEIJIN Pharma Limited, Hino, Tokyo, 191-8512, Japan
| | - Fumitoshi Asai
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
8
|
Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent Developments in Rodent Models of High-Fructose Diet-Induced Metabolic Syndrome: A Systematic Review. Nutrients 2021; 13:nu13082497. [PMID: 34444658 PMCID: PMC8401262 DOI: 10.3390/nu13082497] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Ming Medical Sdn. Bhd., D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1A/22, Petaling Jaya 47101, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Correspondence: ; Tel.: +60-3-9145-7704
| |
Collapse
|
9
|
Neural mechanisms underlying the role of fructose in overfeeding. Neurosci Biobehav Rev 2021; 128:346-357. [PMID: 34182019 DOI: 10.1016/j.neubiorev.2021.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Fructose consumption has been linked with metabolic syndrome and obesity. Fructose-based sweeteners like high fructose corn syrup taste sweeter, improve food palatability, and are increasingly prevalent in our diet. The increase in fructose consumption precedes the rise in obesity and is a contributing driver to the obesity epidemic worldwide. The role of dietary fructose in obesity can be multifactorial by promoting visceral adiposity, hypertension, and insulin resistance. Interestingly, one emergent finding from human and animal studies is that dietary fructose promotes overfeeding. As the brain is a critical regulator of food intake, we reviewed the evidence that fructose can act in the brain and elucidated the major brain systems underlying fructose-induced overfeeding. We found that fructose acts on multiple interdependent brain systems to increase orexigenic drive and the incentive salience of food while decreasing the latency between food bouts and reducing cognitive control to disinhibit feeding. We concluded that the collective actions of fructose may promote feeding behavior by producing a hunger-like state in the brain.
Collapse
|
10
|
Gumede NM, Lembede BW, Brooksbank RL, Erlwanger KH, Chivandi E. β-Sitosterol Shows Potential to Protect Against the Development of High-Fructose Diet-Induced Metabolic Dysfunction in Female Rats. J Med Food 2020; 23:367-374. [DOI: 10.1089/jmf.2019.0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Nontobeko M. Gumede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Busisani W. Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard L. Brooksbank
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Beydogan AB, Coskun ZM, Bolkent S. The protective effects of Δ 9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia. J Pharm Pharmacol 2018; 71:408-416. [PMID: 30427077 DOI: 10.1111/jphp.13042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications. The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia. METHODS Sprague-Dawley rats were divided into groups: control, fructose (10% fructose in drinking water for 12 weeks), THC (1.5 mg/kg/day for the last 4 weeks, intraperitoneally) and fructose+THC groups. Biochemical parameters were measured spectrophotometrically. ELISA method was used for insulin measurement. Apoptosis and inflammation markers were detected by the streptavidin-biotin peroxidase method. KEY FINDINGS The consumptions of food and fluid are inversely proportional to fructose and non-fructose groups. Insulin levels were the highest in fructose group. The reduced glutathione-S-transferase level significantly increased in fructose + THC group compared with fructose group. Total cholesterol level in the fructose + THC group was higher than the fructose group. Caspase-3 and NF-κβ immunopositive cell numbers increased in fructose + THC rats compared with fructose group. The number of IL-6 immunopositive cell decreased in fructose + THC group compared with fructose group. CONCLUSIONS According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.
Collapse
Affiliation(s)
- Alisa Bahar Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Fructose consumption and its impact on human health: Diet and risk of cardiovascular disease. Rev Port Cardiol 2017; 36:943-944. [PMID: 29208335 DOI: 10.1016/j.repc.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Fructose consumption and its impact on human health: Diet and risk of cardiovascular disease. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|