1
|
Li Z, Wu Y, Qian M, Zhang B, Deng X, Mao P, Fan Z, Fang X, Cheng L, Liu X, Wang L, Liu H. Multi-omics analysis reveals BPF exposure causes hepatic glucose and lipid metabolism disorder in rats by disrupting energy homeostasis. Toxicology 2025; 515:154130. [PMID: 40188933 DOI: 10.1016/j.tox.2025.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Bisphenol F (BPF) is one of the main substitutes for Bisphenol A (BPA) and is widely used in the manufacture of household products. In addition, BPF threatens human health through environmental pollution and the food chain. However, the hepatotoxicity of BPF and its effects on glucose and lipid metabolism remain unclear. This study used male SD rats as an animal model to investigate the hepatotoxicity of BPF and its effects on glucose and lipid metabolism. The results of the HE staining, serum and liver biochemical indicators show that BPF can damage the basic structure of the liver, cause liver dysfunction and lead to disorders of liver glucose metabolism and lipid metabolism. Furthermore, we conducted metabolomics and proteomics analyses on the livers of the BPF exposed group at 100 mg/kg/d in comparison with the control group. The results indicated that BPF exposure had a significant effect on liver metabolism. Combined with biological analysis and the validation of changes in genes and proteins related to glucose and lipid metabolism in the liver, it was elucidated that BPF can promote fatty acid oxidation and inhibit fatty acid synthesis through the AMPK and PPAR signaling pathways, leading to a reduction in fatty acids. Furthermore, it has been demonstrated that BPF can promote glycogen synthesis and gluconeogenesis via the AKT pathway, which can result in disorders of glucose metabolism.
Collapse
Affiliation(s)
- Zhi Li
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Bingya Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xinxin Deng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Penghui Mao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Zhonghua Fan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China
| | - Xu Fang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China.
| |
Collapse
|
2
|
Wang S, Lang H, Cheng J, Ma J, Wang J, Tang Z. Bisphenol compounds in female underwear manufactured in China and their potential risks to women's health. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137934. [PMID: 40101634 DOI: 10.1016/j.jhazmat.2025.137934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Currently, there is limited information regarding the presence of chemicals in female underwear and the potential risks involved. This study investigated the levels of ten bisphenols in brassieres and briefs made in China, revealing total concentrations ranging from 13.9 to 52,967 ng/g. Bisphenol S (BPS), bisphenol F (BPF), and bisphenol A (BPA) made up a median of 53.2 %, 24.4 %, and 22.2 % of the total concentrations, respectively. The concentrations of bisphenols were significantly higher in darker samples compared to most other colors. When compared to previous reports on other textiles, this study found similar levels of BPA but higher concentrations of BPF and BPS. Furthermore, the median migration rates of BPF (39.1 %) and BPS (25.2 %) in artificial sweat were significantly greater than that of BPA (6.58 %), leading to higher exposure levels for BPF and BPS. The estimated non-carcinogenic risks associated with the three primary bisphenols in the underwear were deemed acceptable. However, the estimated exposure to BPS and BPF from this source represented about 2.53-12.0 % and 11.8-38.2 % of total human exposure, respectively, suggesting that the contamination of these chemicals in underwear is a concern that should not be overlooked.
Collapse
Affiliation(s)
- Shumiao Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hongdong Lang
- Zhejiang Jinhua Eco-Environmental Monitoring Center, Jinhua, Zhejiang 321015, China.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Jiayi Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiayu Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
3
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
4
|
Tekin S, Bolat M, Atasever A, Bolat İ, Çinar B, Shadidizaji A, Dağ Y, Şengül E, Yildirim S, Hacimuftuoglu A, Warda M. Mechanistic insights into the P-coumaric acid protection against bisphenol A-induced hepatotoxicity in in vivo and in silico models. Sci Rep 2025; 15:11023. [PMID: 40164713 PMCID: PMC11958805 DOI: 10.1038/s41598-025-87099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Bisphenol A (BPA), commonly found in plastic containers and epoxy resins used for food products, presents substantial health risks, particularly in relation to hepatic toxicity. This study investigates BPA-induced liver damage and explores the mechanistic dose-dependent protective effects of P-coumaric acid (PCA). 50 male rats were divided into control, BPA-treated, BPA + PCA50, BPA + PCA100, and PCA100 groups. BPA exposure for 14 days induced oxidative stress, evidenced by elevated malondialdehyde levels and decreased activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Higher doses of PCA effectively mitigated these effects by restoring redox balance and enhancing antioxidant enzyme activities. Additionally, BPA disrupted inflammation and apoptosis pathways, inhibiting anti-inflammatory markers and interfering with the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. PCA exhibited dose-dependent protection against these disruptions. Computational analyses revealed that BPA inhibits cyclooxygenase-1 through stable hydrogen bonding with threonine at position 322. PCA's dual protective effect was confirmed by attenuating inflammatory pathways, including TNF-α inhibition and suppression of the Kelch-like ECH-associated protein 1 (KEAP1) and Nrf2 signaling pathway. Histopathological assessments confirmed that PCA alleviated significant hepatic damage induced by BPA. Immunohistochemical and immunofluorescence analyses further supported PCA's protective role against BPA-induced apoptosis and cellular hepatotoxicity. These findings underscore PCA's protective potential against BPA-induced hepatotoxicity and highlight novel mechanistic interactions that warrant further investigation in applied nutritional biochemistry.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Aslıhan Atasever
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Zhang W, Liu J, Wang Y, Wang J, Zhu P, Wang W, Song Z, Li J, Song D, Wang Y, Liu X. Prenatal bisphenol A exposure causes sperm quality and functional defects via Leydig cell impairment and meiosis arrest in mice offspring. Sci Rep 2025; 15:9810. [PMID: 40118943 PMCID: PMC11928659 DOI: 10.1038/s41598-025-93538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
Bisphenol A (BPA), widely used in plastic production, acts as an environmental endocrine disruptor which is harmful to male reproductive health. However, the specific mechanisms through which prenatal BPA exposure disrupts spermatogenesis in offspring, particularly in terms of Leydig cell dysfunction and meiotic progression, remain poorly understood. To address this gap, we constructed a mouse model with BPA lowest Observed Adverse Effect Level (LOAEL: 50 mg/kg bw/day) exposure from embryonic day (ED) 0.5 to 18.5. Our results demonstrated that prenatal BPA exposure significantly decreased serum testosterone levels, testis weight, sperm count, motility parameters, and acrosomal integrity. Furthermore, it arrested the meiotic transition from zygotene to pachytene spermatocytes, leading to reduced sperm fertility characterized by reduced sperm-egg binding capacity and abnormal early embryonic cleavage in the male offspring. Importantly, prenatal BPA exposure significantly reduced the expression of PCNA (a marker of germ cell proliferation), SYCP3 (a meiosis regulator), and Vimentin (a blood-testis barrier component), collectively indicating impaired spermatogenesis in offspring testes. Additionally, prenatal BPA exposure dramatically reduced Leydig cell numbers and increased apoptosis, marked by BAX/BCL2 up-regulation, which mechanistically explains the observed testosterone reduction. In vitro experiments corroborated these effects: BPA exposure concentration-dependently inhibited Leydig cell proliferation, induced G0/G1 phase arrest, and downregulated testosterone synthesis molecules (Hsd3b1, Hsd17b3, Star, Cyp11a1, Cyp17a1). Quantitative proteomics identified 234 differentially expressed proteins (97 downregulated, 137 upregulated) in BPA-exposed Leydig cells. Bioinformatics analysis revealed that down-regulated proteins were mainly related to steroid hormone receptor activity, estrogen response element binding, and centrosome duplication processes, while the up-regulated proteins were mainly involved in oxygen binding and ROS metabolic process. Conclusively, prenatal BPA exposure impaired offspring male fertility via multi-faceted mechanisms: sperm quality defects, steroidogenic disruption, and meiotic arrest. This study advances the understanding of BPA transgenerational reproductive toxicity and underscores the need to mitigate prenatal exposure risks.
Collapse
Affiliation(s)
- Wendi Zhang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Juan Liu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Yanhua Wang
- Department of Medical Records Room, Weifang People's Hospital, Weifang, 261000, China
| | - Jiahui Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Peng Zhu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Wenting Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Zhan Song
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Jun Li
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Dan Song
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Yanwei Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| | - Xin Liu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China.
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| |
Collapse
|
6
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2025; 242:461-480. [PMID: 39441400 PMCID: PMC11861243 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
7
|
İnkaya E, Tokgöz E, Barlas N. In Vivo Investigation of the Effects of Nonylphenol on the Pituitary-Adrenal Axis and Pineal Gland in Male Rats. Basic Clin Pharmacol Toxicol 2025; 136:e70003. [PMID: 39887640 PMCID: PMC11783352 DOI: 10.1111/bcpt.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
The pineal gland secretes melatonin, which regulates various physiological processes; damage to this gland disrupts these functions. This study aimed to investigate the effect of nonylphenol on the pineal gland and the pituitary-adrenal axis, which is associated with this system. The study was initiated using Wistar albino male rats on their postnatal 21st day, a critical developmental stage for endocrine regulation. Nonylphenol was administered via oral gavage at doses of 5, 25 and 125 mg/kg/day, while bisphenol-A was given at 50 mg/kg/day as a positive control. At the end of the treatment period, liver, kidney, pituitary, pineal and adrenal tissues were examined histopathologically. Hormone levels were analysed in serum samples. Significant changes in adrenocorticotropic hormone, melatonin and aldosterone levels were detected in hormone analyses. In contrast, no differences in corticosterone and glucose levels were detected. Histopathological findings showed structural changes in tissues. The effects of nonylphenol on the pituitary-adrenal axis and melatonin vary depending on the experimental protocols employed. However, it is clear that nonylphenol and bisphenol A have negative effects on the pituitary-adrenal axis, pineal gland, liver and kidney. In conclusion, future research should focus on elucidating the molecular mechanisms underlying these effects and developing environmentally friendly strategies to eliminate nonylphenol and bisphenol-A contamination.
Collapse
Affiliation(s)
- E. N. İnkaya
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - E. Tokgöz
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - N. Barlas
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| |
Collapse
|
8
|
Kaimal A, Hooversmith JM, Al Mansi MH, Cherry AD, Garrity JT, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal bisphenol A and/or diethylhexyl phthalate exposure followed by adult estradiol treatment affects behavior and brain monoamines in female rat offspring. Front Endocrinol (Lausanne) 2025; 15:1479838. [PMID: 39839474 PMCID: PMC11747983 DOI: 10.3389/fendo.2024.1479838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Significance Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk. This study examines the cumulative effects of prenatal EDC exposure combined with chronic low-dose 17β-estradiol (E2) treatment in adulthood on neurobehavioral outcomes. Methods Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 μg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 μg/kg BW/day), high-dose (HD) DEHP (7.5 mg/kg BW/day), or a combination of the two (BPA+DEHP) from gestational days 6-21. At 3 months of age, female offspring were implanted with slow-release E2 pellets or were sham-implanted. Following a 90-day treatment period, behavioral testing was conducted, and serum hormones and brain monoamine levels were analyzed. Results Chronic E2 treatment in controls increased anxiety and reduced active coping behaviors. In DEHP- and BPA+DEHP-exposed offspring, E2 treatment reversed some of these effects. Dose-dependent alterations in circulating hormone levels and brain monoamines were observed. Dysregulation of the stress axis was particularly notable with the higher dose of DEHP. Conclusions Overall, prenatal EDC exposure altered behavior, hormones, and brain monoamines, with adult E2 treatment further exacerbating some of these effects in female offspring.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States
| | - Jessica M. Hooversmith
- Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States
| | - Maryam H. Al Mansi
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ariana D. Cherry
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jillian T. Garrity
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Philip V. Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States
| | - Puliyur S. MohanKumar
- Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sheba M. J. MohanKumar
- Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Delaroche L, Besnard L, Cassuto NG, Bristeau S, Togola A. Assessment of bisphenol accumulation from disposable devices used sequentially in IVF routine procedures. Reprod Biomed Online 2025; 50:104431. [PMID: 39602996 DOI: 10.1016/j.rbmo.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 11/29/2024]
Abstract
RESEARCH QUESTION Are bisphenols released from disposable devices used in assisted reproductive technology (ART) procedures, and do they accumulate when several disposable devices are used sequentially under routine conditions? DESIGN A comprehensive assessment of 19 individual disposable devices (31 assessments) and nine combinations of disposable devices replicating the main steps in an ART procedure was undertaken. The extraction of bisphenols followed routine-use conditions (temperature and duration). The concentrations of 10 bisphenols were determined using online solid-phase extraction/liquid chromatography/mass spectrometry methodology. RESULTS Bisphenol S (BPS) was quantified consistently from 100-mm culture dishes (32 ± 20 pg) and from high security sperm straws (3 ± 1 pg). Also, BPS and bisphenol A (BPA) were quantified consistently from spermicide-free condoms (95 ± 78 and 83 ± 49 pg, respectively). No other bisphenols were detected in disposable devices when tested individually. When disposable devices were used in combination, both BPA and BPS were detected consistently in combinations of 13 disposable devices mimicking sperm collection in a condom and its preparation (46 ± 16 and 43 ± 32 pg, respectively). BPS was quantified consistently in combinations of 14 disposable devices mimicking sperm collection, its preparation and freezing (10 ± 4 pg), and in combinations of 17 disposable devices mimicking oocyte retrieval (37 ± 22 pg). CONCLUSIONS BPA and BPS are released in small quantities from some disposable devices used in routine conditions during ART procedures, but do not appear to accumulate when these disposable devices are used in combination.
Collapse
Affiliation(s)
- Lucie Delaroche
- Ramsay Santé, Hôpital Privé de Parly 2, Institut Fertilité Maternité Parly 2, Le Chesnay-Rocquencourt, France; Biogroup, Centre de Biologie Médicale, Hôpital Privé de Parly 2, Le Chesnay-Rocquencourt, France.
| | - Lucile Besnard
- Ramsay Santé, Hôpital Privé de Parly 2, Institut Fertilité Maternité Parly 2, Le Chesnay-Rocquencourt, France
| | | | | | | |
Collapse
|
10
|
Calivarathan L, Mathur PP. Effect of Endocrine Disruptors on Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:115-125. [PMID: 40301255 DOI: 10.1007/978-3-031-82990-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Several classes of exogenous chemicals interfere with the endocrine system and disrupt the normal functioning of hormones, leading to a wide range of adverse health effects. The male reproductive system is particularly vulnerable to endocrine disruption, as it involves complex interactions between endocrine, paracrine, and autocrine signals that regulate spermatogenesis and steroidogenesis within the testes. Exposure to endocrine disruptors (EDs) has been associated with reduced semen quality, including decreased sperm concentration, motility, and morphology. Some endocrine disruptors have also been linked to alterations in testosterone levels, which impact overall male reproductive health. Bisphenol A, phthalates, dioxins, polychlorinated biphenyls, organophosphate pesticides, and phytoestrogens are well-known endocrine disruptors that interfere with male reproductive functions. Furthermore, these substances have been associated with an increased risk of reproductive disorders such as cryptorchidism, hypospadias, and testicular cancer. Due to the presence of endocrine-disrupting chemicals in numerous consumer goods and personal care products, people encounter these harmful substances through ingestion, absorption, inhalation, and skin contact. However, the duration of exposure to a particular endocrine disruptor or exposure during a particular stage of development is the determining factor for testicular function. This chapter provides a comprehensive overview of the effects of endocrine disruptors on testicular function, from molecular mechanisms to clinical outcomes.
Collapse
Affiliation(s)
- Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, India
| | | |
Collapse
|
11
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2025; 45:4-22. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
12
|
Santana-Mayor Á, D’Orazio G, Rodríguez-Delgado MÁ, Socas-Rodríguez B. Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples. Foods 2024; 14:28. [PMID: 39796318 PMCID: PMC11720319 DOI: 10.3390/foods14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4-tert-butylphenol, 4-sec-butylphenol, 4-tert-amylphenol, 4-n-hexylphenol, 4-tert-octylphenol, 4-n-heptylphenol, 4-n-octylphenol, and 4-n-nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system. Different parameters affecting the compatibility of the non-ionic eutectic solvents with water-polar organic solvent mixtures and chromatographic and detection systems were optimized, including injection/dilution solvent, injection mode, mobile phase composition, and step gradient. With the same purpose, two stationary phases were tested, including XBridge® C18 and a mixed-phase Cogent C30-XBridge® C18. Finally, the greenness and blueness of the methodology were assessed to evaluate the environmental profile and usability of the procedure.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Rome, Italy;
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
| |
Collapse
|
13
|
Pyszka I, Jędrzejewska B. Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6003. [PMID: 39685438 DOI: 10.3390/ma17236003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| |
Collapse
|
14
|
Cao Y, Sheriff TS. Ultrasound-assisted bisphenol AF degradation using in situ generated hydrogen peroxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123267. [PMID: 39531761 DOI: 10.1016/j.jenvman.2024.123267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol AF (BPAF) is degraded through the ultrasound-assisted in situ generation and activation of hydrogen peroxide (H2O2) by the copper(II) catalysed oxidation of hydroxylamine (NH2OH) with dioxygen (O2). Compared to added H2O2, in situ generated H2O2 significantly improves the degradation of BPAF from 46.7% to 94.8% in ∼15 min. The reaction follows a pseudo-first-order kinetic model. This study examines the influence of solution pH, anions, humic acid, and different concentrations of the reactants on BPAF degradation. Mass spectrometry was used to identify the BPAF degradation products, and a degradation pathway is proposed. This work advances the understanding of in situ hydrogen peroxide generation and activation in advanced oxidation (Fenton-like) processes (AOPs).
Collapse
Affiliation(s)
- Ye Cao
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Tippu S Sheriff
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
15
|
López-Vázquez J, Miró M, Quintana JB, Cela R, Ferriol P, Rodil R. Bioaccessibility of plastic-related compounds from polymeric particles in marine settings: Are microplastics the principal vector of phthalate ester congeners and bisphenol A towards marine vertebrates? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176308. [PMID: 39284443 DOI: 10.1016/j.scitotenv.2024.176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Marine vertebrates are known to ingest significant amounts of microplastics (MPs). Once ingested, MPs might cause gastrointestinal injuries and serve as a path of harmful plastic components, such as phthalate esters (PAEs) and bisphenol A (BPA) in the food chain. However, there is a lack of standardized in-vitro methods capable of simulating fish uptake of chemicals from MPs in the environment as potential vectors of such contaminants. In this work, leaching and in-vitro oral bioaccessibility testing of PAEs and BPA from MPs were conducted batchwise using artificial seawater and gut fluids mimicking gastric, intestinal, and gastrointestinal compartments of marine vertebrates at physiological temperature. The environmental and physiologically relevant extraction tests were applied to medium-density polyethylene (PE) and polyvinyl chloride (PVC) certified reference materials containing eight PAEs of varying hydrophobicity, namely, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate, benzylbutyl phthalate, diethylhexyl phthalate, di-n-octyl phthalate, diisononyl phthalate and diisodecyl phthalate, and BPA (only in PE) as MP surrogates with realistic analyte concentrations of additives for primary MPs. The analysis of the leachates/gut fluid extracts was performed via dilute-and-shoot by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Only the most hydrophilic compounds, i.e. DMP, DEP and BPA, were found to get released significantly in saline waters, and exhibited the highest oral bioaccessibility rates (34-83 %). Based on our results, a dual-compartment physiologically relevant gastrointestinal test is recommended for appropriate estimation of fish bioaccessibility. The fish daily intakes of DMP, DEP and BPA from MPs, and seawater ingestion as well were estimated using several contamination scenarios (10th percentile as the low level, 50th percentile as the medium level and 90th percentile as the high level) based on probabilistic distributions and cumulative probability curves of measured environmental concentrations of (i) MPs in seawater throughout the world, (ii) DMP, DEP and BPA in beached MPs and those sampled in the open ocean (including both incurred and adsorbed contaminants), and (iii) DMP, DEP and BPA in seawater as reported in recent literature. Under a medium-level concentration scenario (50th percentile) in marine settings, and taking the gastrointestinal bioaccessibility factor into account, the daily intake of DMP, DEP and BPA from MPs accounted for a mere 0.02 % of the waterborne contribution. Hence, the ingestion of MPs should not be considered the primary route of fish exposure to BPA and the most polar PAEs in marine environments. However, more studies on the local and the global scales for mass concentrations of MPs and additives in marine settings are needed for further confirmation of our findings.
Collapse
Affiliation(s)
- Javier López-Vázquez
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain.
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rafael Cela
- Mestrelab Research Center (CIM), Av. Barcelona 7, E-15706 Santiago de Compostela, Spain
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain.
| |
Collapse
|
16
|
Das S, Mukherjee U, Biswas S, Banerjee S, Karmakar S, Maitra S. Unravelling bisphenol A-induced hepatotoxicity: Insights into oxidative stress, inflammation, and energy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124922. [PMID: 39260547 DOI: 10.1016/j.envpol.2024.124922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/08/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bisphenol A (BPA), a prevalent plastic monomer and endocrine disruptor, negatively impacts metabolic functions. This study examines the chronic effects of eco-relevant BPA concentrations on hepatotoxicity, focusing on redox balance, inflammatory response, cellular energy sensors, and metabolic homeostasis in male Swiss albino mice. Chronic BPA exposure resulted in reactive oxygen species (ROS) accumulation, altered hepatic antioxidant defense, lipid peroxidation, and NOX4 expression, leading to reduced cell viability. Additionally, BPA exposure significantly upregulated hepatic pro-inflammatory cytokine genes (Tnf-α, Il-1β, Il-6), NOS2, and arginase II, correlating with increased TLR4 expression, NF-κB phosphorylation, and a dose-dependent decrease in IκBα levels. BPA-induced NF-κB nuclear localization and inflammasome activation (NLRP3, cleaved caspase-1, IL-1β) established an inflammatory milieu. Perturbations in hepatic AMPKα phosphorylation, SIRT1, and PGC-1α, along with elevated p38 MAPK phosphorylation and ERα expression, indicated BPA-induced energy dysregulation. Furthermore, increased PLA2G4A, COX1, COX2, and PTGES2 expression in BPA-treated liver correlated with hyperlipidemia, hepatic FASN expression, steatosis, and visceral adiposity, likely due to disrupted energy sensors, oxidative stress, and inflammasome activation. Elevated liver enzymes (ALP, AST, ALT) and apoptotic markers indicated liver damage. Notably, N-acetylcysteine (NAC) priming reversed BPA-induced hepatocellular ROS accumulation, NF-κB-inflammasome activation, and intracellular lipid accumulation, while upregulating cellular energy sensors and attenuating ERα expression, suggesting NAC's protective effects against BPA-induced hepatotoxicity. Pharmacological inhibition of the NF-κB/NLRP3 cascade in BAY11-7082 pretreated, or NLRP3 immunodepleted hepatocytes reversed BPA's negative impact on SIRT1/p-AMPKα/PGC-1α and intracellular lipid accumulation, providing mechanistic insights into BPA-induced metabolic disruption.
Collapse
Affiliation(s)
- Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sambuddha Banerjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
17
|
Machla F, Monou PK, Bekiari C, Andreadis D, Kofidou E, Panteris E, Katsamenis OL, Kokoti M, Koidis P, About I, Fatouros D, Bakopoulou A. Tissue-Engineered Oral Epithelium for Dental Material Testing: Toward In Vitro Biomimetic Models. Tissue Eng Part C Methods 2024. [PMID: 39302070 DOI: 10.1089/ten.tec.2024.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Tissue-engineered oral epithelium (ΤΕΟΕ) was developed after comparing various culture conditions, including submerged (SUB) and air-liquid interface (ALI) human cell expansion options. Barrier formation was evaluated via transepithelial electrical resistance (TEER) and calcein permeation via spectrofluorometry. TEOE was further assessed for long-term viability via live/dead staining and development of intercellular connections via transmission electron microscopy. Tissue architecture was evaluated via histochemistry and the expression of pancytokeratin (pCK) via immunohistochemistry. The effect of two commonly used dental resinous monomers on TEOE was evaluated for alterations in cell viability and barrier permeability. ALI/keratinocyte growth factor-supplemented (ALI-KGS) culture conditions led to the formation of an 8-20-layer thick, intercellularly connected epithelial barrier. TEER values of ALI-KGS-developed TEOE decreased compared with all other tested conditions, and the established epithelium intensively expressed pCK. Exposure to dental monomers affected the integrity and architecture of TEOE and induced cellular vacuolation, implicating hydropic degeneration. Despite structural modifications, the permeability of TEOE was not substantially affected after exposure to the monomers. In conclusion, the biological properties of the TEOE mimicking the physiological functional conditions and its value as biocompatibility assessment tool for dental materials were characterized.
Collapse
Affiliation(s)
- Foteini Machla
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Chrysanthi Bekiari
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kofidou
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Maria Kokoti
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Koidis
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Imad About
- Centre National de la Recherche Scientifique, Institute of Movement Sciences, Aix Marseille University, Marseille, France
| | - Dimitrios Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
19
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
20
|
Yadav SK, Kumar A, Yadav BG, Bijalwan V, Yadav S, Patil GP, Sarkar K, Palkhade R, Das S, Singh DP. Sub-acute bisphenol A exposure induces proteomic alterations and impairs male reproductive health in mice. J Biochem Mol Toxicol 2024; 38:e23862. [PMID: 39318032 DOI: 10.1002/jbt.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Bisphenol A (BPA) is one of the most prevalent endocrine disrupting chemicals (EDCs) and there is widespread concern about the adverse effects of EDCs on human health. However, the exact mechanism of these toxicities has still not been fully deciphered. Additionally, studies have reported the toxicological effects at far low doses to the generally considered no-observed-adverse-effect level (NOAEL) dose. The present study investigates the effects of a sub-acute (28 days) exposure to BPA (10, 50 and 100 mg/kg/day) in adult male mice on various hormones levels, sperm motility, sperm count, functional integrity of sperm plasma membrane, testicular histological changes, oxidative stress markers and DNA damage. The key proteome signatures were quantified by LC-MS/MS analysis using Orbitrap Fusion Lumos Tribrid Mass Spectrometer equipped with nano-LC Easy-nLC 1200. Data suggest that the BPA exposure in all doses (below/above NOAEL dose) have greatly impacted the hormone levels, sperm parameters (sperm count, motility and membrane integrity) and testicular histology. Mass spectrometry-based proteomics data suggested for 1352 differentially expressed proteins (DEPs; 368 upregulated, 984 downregulated) affecting biological process, cellular component, and molecular functions. Specifically searched male reproductive function related proteins suggested a complex network where 46 potential proteins regulating spermatogenesis, sperm structure, activity and membrane integrity while tackling oxidative stress responses were downregulated. These potential biomarkers could shed some more light on our current understanding of the reproductive toxicological effects of BPA and may lead to exploration of novel interventions strategies against these targets for male infertility.
Collapse
Affiliation(s)
- Shiv K Yadav
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Arvind Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Bal G Yadav
- Institute of Plant and Microbial Biology, Agricultural Technology Building, Taipei, Taiwan
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Suresh Yadav
- ICMR-National Institute for Implementation Research on Non-Communicable Disease (NIIRNCD), Jodhpur, India
| | - Gajanan P Patil
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, India
| | - Rajendra Palkhade
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, India
| | - Dhirendra P Singh
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| |
Collapse
|
21
|
Shiyao L, Yao K, Jun L, Yichen L, Tingxiao Z, Longtao Y, Hong Z, Kai Z. Unraveling the role of bisphenol A in osteosarcoma biology: insights into prognosis and immune microenvironment modulation. Discov Oncol 2024; 15:404. [PMID: 39230832 PMCID: PMC11374946 DOI: 10.1007/s12672-024-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a common environmental pollutant, and its specific mechanisms in cancer development and its impact on the tumor immune microenvironment are not yet fully understood. METHODS Transcriptome data from osteosarcoma (OS) patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. BPA-related genes were identified through the Comparative Toxicogenomics Database (CTD), yielding 177 genes. Differentially expressed genes were analyzed using the GSE162454 dataset from the Tumor Immune Single Cell Hub 2 (TISCH2). We constructed the prognostic model using univariate Cox regression and LASSO analysis. The model was validated using the GSE16091 dataset. GO, KEGG, and GSEA analyses were performed to investigate the mechanisms of BPA-related genes. RESULTS A total of 15 BPA-related genes were identified as differentially expressed in OS. Univariate Cox regression and LASSO analysis identified four key prognostic genes (FOLR1, MYC, ESRRA, VEGFA). The prognostic model exhibited strong predictive performance with area under the curve (AUC) values of 0.89, 0.6, and 0.79 for predicting 1-, 2-, and 3-year survival, respectively. External validation using the GSE16091 dataset confirmed the model's high accuracy with AUC values exceeding 0.88. Our results indicated that the prognosis of the high-risk population is generally poorer, which may be associated with alterations in the tumor immune microenvironment. In the high-risk group, immune cells showed predominantly low expression levels, while immune checkpoint genes were significantly overexpressed, along with markedly elevated tumor purity. These findings revealed a correlation between upregulation of BPA-related genes and formation of an immunosuppressive microenvironment, leading to unfavorable patient outcomes. CONCLUSION Our study highlighted the significant association of BPA with OS biology, particularly in its potential role in modulating the tumor immune microenvironment. We offered a fresh insight into the influence of BPA on cancer development, thus providing valuable insights for future clinical interventions and treatment strategies.
Collapse
Affiliation(s)
- Liao Shiyao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kang Yao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Yichen
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Longtao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Sports Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhou Hong
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhou Kai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
22
|
Amon M, Kek T, Klun IV. Endocrine disrupting chemicals and obesity prevention: scoping review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:138. [PMID: 39227884 PMCID: PMC11373446 DOI: 10.1186/s41043-024-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of natural hormones in the body. The aim of this review article is to highlight the knowledge about EDCs and obesity. METHODS A scoping review of the electronic literature was performed using PubMed platform for studies on EDCs and obesity published between the years 2013-2023. A total of 10 systematic reviews and meta-analysis studies met our inclusion criteria on more prominent EDCs focusing mainly on bisphenols, including parabens, triclosan, and phthalates, and their association with obesity. DESIGN Scoping review. RESULTS EDCs, mostly bisphenols and phthalates, are related to health effects, while there is less information on the impact of parabens and triclosan. A series of negative physiological effects involving obesogenic, diabetogenic, carcinogenic, and inflammatory mechanisms as well as epigenetic and microbiota modulations was related to a prolonged EDCs exposure. A more profound research of particular pollutants is required to illuminate the accelerating effects of particular EDCs, mixtures or their metabolites on the mechanism of the development of obesity. CONCLUSION Considering the characteristics of EDCs and the heterogeneity of studies, it is necessary to design specific studies of effect tracking and, in particular, education about daily preventive exposure to EDCs for the preservation of long-term public health.
Collapse
Affiliation(s)
- Mojca Amon
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
| | - Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Zhong X, Li J, Xu X. Adolescent exposure to bisphenol-a antagonizes androgen regulation of social behavior in male mice. Neurotoxicol Teratol 2024; 105:107374. [PMID: 39097242 DOI: 10.1016/j.ntt.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Social behavior is sexually dimorphic, which is regulated by gonadal hormones in the brain. Our recent study found that exposure to low doses of bisphenol-A (BPA) during adolescence, permanently alters social behavior in adult male mice, but the underlying mechanisms remain unclear. Using adolescent gonadectomy (GDX) male mice with testosterone propionate (TP, 0.5 mg/kg) supplement (TP-GDX), this study showed that BPA antagonized promoting effects of TP on social interaction, sexual behavior, and aggression in GDX mice. BPA eliminated the reversal effects of TP on GDX-induced decrease in the number of immunoreactive to arginine vasopressin (AVP-ir) neurons in the medial amygdala (MeA) and the levels of AVP receptor 1a (V1aR) in the MeA and the nucleus accumbens (NAc). In addition, BPA removed down-regulation in the levels of dopamine (DA) transporter (DAT) and DA receptor 1 (DR1) in the NAc of TP-GDX mice. BPA exposure reduced testosterone (T) levels in the brain and serum and the expression of androgen receptor (AR) protein in the amygdala and striatum of sham-operated and TP-GDX males. These results suggest that adolescent exposure to BPA inhibits regulation of androgen in AVP and DA systems of the brain regions associated with social behavior, and thus alters social behaviors of adult male mice.
Collapse
Affiliation(s)
- Xiaoyu Zhong
- Life Science College, Key laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Jisui Li
- Life Science College, Key laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Xiaohong Xu
- Life Science College, Key laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China.
| |
Collapse
|
24
|
Yoon DS, Kim JS, Hong MS, Byeon E, Sayed AEDH, Park HG, Lee JS, Lee MC. Effects of bisphenol A on reproduction, oxidative stress, and lipid regulation in the marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2024; 205:116553. [PMID: 38880034 DOI: 10.1016/j.marpolbul.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
This study reports the effects of bisphenol A (BPA) on the rotifer Brachionus plicatilis, focusing on growth performance, reproductive output, oxidative stress responses, and lipid metabolism genes. High BPA levels disrupted peak daily offspring production and led to oxidative stress and increased superoxide dismutase and catalase activity. The research identified distinctive monoacylglycerol O-acyltransferase (MGAT) and diacylglycerol O-acyltransferase (DGAT) genes in B. plicatilis, B. rotundiformis, and B. koreanus, enhancing understanding of lipid metabolism in these species. BPA exposure significantly altered MGAT and DGAT expression, and feeding status affected these regulatory patterns. When food was unavailable, BPA reduced DGAT2 and MGAT2a expression. However, under feeding conditions, DGAT2 and MGAT1 levels increased, indicating that nutritional status and BPA exposure interact to affect gene expression.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ji-Su Kim
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Mi-Song Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
25
|
Coe ST, Chakraborty S, Faheem M, Kupradit K, Bhandari RK. A second hit by PFOS exposure exacerbated developmental defects in medaka embryos with a history of ancestral BPA exposure. CHEMOSPHERE 2024; 362:142796. [PMID: 38972462 PMCID: PMC11309894 DOI: 10.1016/j.chemosphere.2024.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 μg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.
Collapse
Affiliation(s)
- Seraiah T Coe
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA; Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Mehwish Faheem
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Karabuning Kupradit
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA.
| |
Collapse
|
26
|
Pathak RK, Jung DW, Shin SH, Ryu BY, Lee HS, Kim JM. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133935. [PMID: 38442602 DOI: 10.1016/j.jhazmat.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da-Woon Jung
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seung-Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
27
|
El-Beshbishy HA, Waggas DS, Ali RA. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon 2024; 241:107674. [PMID: 38458495 DOI: 10.1016/j.toxicon.2024.107674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.
Collapse
Affiliation(s)
- Hesham A El-Beshbishy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rabab A Ali
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, 35516, Egypt; Medical Laboratory Technology Dept., College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
28
|
Melchiors M, Tran KM, Svingen T, Rosenmai AK. In vitro assessment of potential endocrine disrupting activities of chlorinated paraffins of various chain lengths. Toxicol Appl Pharmacol 2024; 484:116843. [PMID: 38331103 DOI: 10.1016/j.taap.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The production of chlorinated paraffins (CPs) has risen in the past two decades due to their versatile industrial applications. Consequently, CPs are now widely detected in human food sources, the environment, and in human matrices such as serum, the placenta and breast milk. This raises concern about prenatal and postnatal exposure. While some studies suggest that certain short-chained CPs (SCCPs) may have endocrine disrupting properties, knowledge about potential endocrine disrupting potential of medium- (MCCP) and long-chained CPs (LCCPs) remains relativity sparse. Here, we used a panel of in vitro assays to investigate seven pure CPs and two technical mixtures of CPs. These varied in chain length and, chlorination degree. The in vitro panel covered androgen, estrogen, and retinoic acid receptor activities, transthyretin displacement, and steroidogenesis. One of the SCCPs inhibited androgen receptor (AR) activity. All SCCPs induced estrogen receptor (ER) activity. Some SCCPs and MCCPs increased 17β-estradiol levels in the steroidogenesis assay, though not consistently across all substances in these groups. SCCPs exhibited the most pronounced effects in multiple in vitro assays, while the tested LCCPs showed no effects. Based on our results, some CPs can have endocrine disrupting potential in vitro. These findings warrant further examinations to ensure that CPs do not cause issues in intact organisms, including humans.
Collapse
Affiliation(s)
- Mikala Melchiors
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Kieu-Mi Tran
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
29
|
Maitin-Shepard M, Werner EF, Feig LA, Chavarro JE, Mumford SL, Wylie B, Rando OJ, Gaskins AJ, Sakkas D, Arora M, Kudesia R, Lujan ME, Braun J, Mozaffarian D. Food, nutrition, and fertility: from soil to fork. Am J Clin Nutr 2024; 119:578-589. [PMID: 38101699 DOI: 10.1016/j.ajcnut.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Food and nutrition-related factors, including foods and nutrients consumed, dietary patterns, use of dietary supplements, adiposity, and exposure to food-related environmental contaminants, have the potential to impact semen quality and male and female fertility; obstetric, fetal, and birth outcomes; and the health of future generations, but gaps in evidence remain. On 9 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and the school's Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships between food, nutrition, and fertility. Topics addressed included male fertility, female fertility and gestation, and intergenerational effects. This meeting report summarizes the presentations and deliberations from the meeting. Regarding male fertility, a positive association exists with a healthy dietary pattern, with high-quality evidence for semen quality and lower quality evidence for clinical outcomes. Folic acid and zinc supplementation have been found to not impact male fertility. In females, body weight status and other nutrition-related factors are linked to nearly half of all ovulation disorders, a leading cause of female infertility. Females with obesity have worse fertility treatment, pregnancy-related, and birth outcomes. Environmental contaminants found in food, water, or its packaging, including lead, perfluorinated alkyl substances, phthalates, and phenols, adversely impact female reproductive outcomes. Epigenetic research has found that maternal and paternal dietary-related factors can impact outcomes for future generations. Priority evidence gaps identified by meeting participants relate to the effects of nutrition and dietary patterns on fertility, gaps in communication regarding fertility optimization through changes in nutritional and environmental exposures, and interventions impacting germ cell mechanisms through dietary effects. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and fertility.
Collapse
Affiliation(s)
| | - Erika F Werner
- Tufts University School of Medicine, Boston, MA, United States
| | - Larry A Feig
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sunni L Mumford
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Blair Wylie
- Collaborative for Women's Environmental Health, Columbia University, New York, NY, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | | | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Marla E Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Joseph Braun
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Dariush Mozaffarian
- Tufts University School of Medicine, Boston, MA, United States; Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
30
|
Ma M, Guo D, Wang R, Wang P, Su X. Hormone effects of eighteen bisphenol analogues and their effects on cellular homeostasis and the typical signal pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122688. [PMID: 37816402 DOI: 10.1016/j.envpol.2023.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Through the transfer chain of surroundings from feed to the farmed-animals and ultimately the corresponding livestock and poultry products, people are exposed to large amounts of bisphenol analogues (BPs), such as rational emissions from manufacturing plants, feed packaging bags and food packaging contact. Some BPs have been reported to show certain toxicological effects, especially, estrogen and endocrine disrupting effect. With the increasing application of BPs, the problem is becoming more and more serious. We systematically studied the hormonal effects of 18 BPs and their effects on cell homeostasis and classical signaling pathways by using classical E-SCREEN assay, fluorescent probes and western blotting. The results confirmed the estrogen-like effect of 13 BPs and 6 BPs obtained high docking scores (Scores < -9.0) for the three receptors simultaneously with the main interactions of hydrophobic, hydrogen and π-stacking of T-type bonds. BPAP regulates cells via apoptosis and steroid signaling pathway by intracellular ROS and mitochondrial followed the caspase pathway. BPE and BPS were involved in the classical NF-κB and Hippo signaling pathways. All data provides scientific basis for the safety risk assessment of endocrine disrupting and cellular homeostasis evaluation of BPs as chronic environmental pollution.
Collapse
Affiliation(s)
- Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Dongmei Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou Zhejiang, 310021, China
| | - Ruiguo Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Peilong Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China
| | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing, 100081, China; Beijing Jingwa Agricultural Science and Innovation Center, No.1, Yuda Street, Yukou Town, Pinggu District, Beijing, 101206, China.
| |
Collapse
|
31
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
32
|
Shen Y, Li X, Wang H, Wang Y, Tao L, Wang P, Zhang H. Bisphenol A induced neuronal apoptosis and enhanced autophagy in vitro through Nrf2/HO-1 and Akt/mTOR pathways. Toxicology 2023; 500:153678. [PMID: 38006930 DOI: 10.1016/j.tox.2023.153678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Bisphenol A (BPA) was traditionally used in epoxy resins and polycarbonate plastics, but it was found to be harmful to human health due to its endocrine-disrupting effects. It can affect various biological functions of human beings and interfere with brain development. However, the neurotoxic mechanisms of BPA on brain development and associated neurodegeneration remain poorly understood. Here, we reported that BPA (100, 250, 500 μM) inhibited cell viability of neural cells PC12, SH-SY5Y and caused dose-dependent cell death. In addition, BPA exposure increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels, decreased mitochondrial membrane potential, reduced the expression of cytochrome c oxidase IV (COX4), downregulated Bcl-2, and initiated apoptosis. Moreover, BPA treatment resulted in the accumulation of intracellular acidic vacuoles and increased the autophagy marker LC3 II to LC3 I ratio. Furthermore, BPA exposure inhibited Nrf2/ HO-1 and AKT/mTOR pathways and mediated cellular oxidative stress, apoptosis, and excessive autophagy, leading to neuronal degeneration. The interactions between oxidative stress, autophagy, and apoptosis during BPA-induced neurotoxicity remain unclear and require further in vivo confirmation.
Collapse
Affiliation(s)
- Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pingping Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
33
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
34
|
Peter E, J M, George SA. Bisphenol-A release from thermoplastic clear aligner materials: A systematic review. J Orthod 2023; 50:276-286. [PMID: 36922722 DOI: 10.1177/14653125231160570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AIM The aim of the present study was to undertake a systematic review of the available evidence on the release of bisphenol-A (BPA) from thermoplastic materials used in the fabrication of clear aligners (CA). METHODS Electronic databases, such as MEDLINE (via PubMed), Google Scholar, Scopus, Cochrane Library, Web of Science, OpenGrey, and the U.S. National Institute of Heath-Clinical Trials, were searched up to 27 October 2022. In vivo/in vitro studies that assessed the release of BPA from different thermoplastic CA materials, with or without a control group, were selected. The risk of bias (RoB) in the randomised controlled trials (RCT) and in vitro studies was assessed using the Cochrane RoB tool and the guidelines for the reporting of pre-clinical studies, respectively. The quality of evidence was determined using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) Pro tool. RESULTS Six studies were considered for review from a total of 1926 records. This included one RCT and five in vitro studies. Only two studies found leaching of BPA, while four did not report any traces. The RoB was found to be moderate to high. The GRADE evidence level ranged from low to very low. Five of the included studies were conducted in vitro. Significant heterogeneity among the included studies prevented a quantitative synthesis. CONCLUSION In light of the available conflicting evidence, BPA release from CAs can neither be confirmed nor denied. Safety remains questionable until high-quality in vivo trials prove otherwise. REGISTRATION PROSPERO CRD42022310434.
Collapse
Affiliation(s)
- Elbe Peter
- Department of Orthodontics & Dentofacial Orthopedics, Government Dental College, Kottayam, Kerala, India
| | - Monisha J
- Department of Orthodontics & Dentofacial Orthopedics, Annoor Dental College, Kerala, India
| | - Suja Ani George
- Department of Orthodontics & Dentofacial Orthopedics, Government Dental College, Kottayam, Kerala, India
| |
Collapse
|
35
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
36
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Dwinell MR, Lehmler HJ, Raff H, Grobe JL, Kwitek AE. Genetic background in the rat affects endocrine and metabolic outcomes of bisphenol F exposure. Toxicol Sci 2023; 194:84-100. [PMID: 37191987 PMCID: PMC10306406 DOI: 10.1093/toxsci/kfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin 53233, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
37
|
Ning A, Xiao N, Wang H, Guan C, Ma X, Xia H. Oxidative damage contributes to bisphenol S-induced development block at 2-cell stage preimplantation embryos in mice through inhibiting of embryonic genome activation. Sci Rep 2023; 13:9232. [PMID: 37286763 DOI: 10.1038/s41598-023-36441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Although bisphenol S (BPS), as a bisphenol A (BPA) substitute, has been widely used in the commodity, it is embryotoxic in recent experiments. Nowadays, it remains unclear how BPS affects preimplantation embryos. Here, my team investigated the effects of BPS on preimplantation embryos and the possible molecular mechanisms in mice. The results showed that 10-6 mol/L BPS exposure delayed the blastocysts stage, and exposure to 10-4 mol/L BPS induced 2-cell block in mice preimplantation embryos. A significant increase in reactive oxygen species (ROS) level and antioxidant enzyme genes Sod1, Gpx1, Gpx6, and Prdx2 expression were shown, but the level of apoptosis was normal in 2-cell blocked embryos. Further experiments demonstrated that embryonic genome activation (EGA) specific genes Hsp70.1 and Hsc70 were significantly decreased, which implied that ROS and EGA activation have the potential to block 2-cell development. Antioxidant enzymes, including superoxide dismutase (SOD), coenzyme Q10 (CoQ10), and folic acid (FA) were used to further explore the roles of ROS and EGA in 2-cell block. Only 1200 U/mL SOD was found to alleviate the phenomenon of 2-cell block, reduce oxidative damage, and restore the expression of EGA-specific genes Hsp70.1 and Hsc70. Conclusively, this study demonstrates for the first time that BPS can induce 2-cell block, which is mainly mediated by ROS aggregation and results in the failure of EGA activation.
Collapse
Affiliation(s)
- Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nansong Xiao
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
38
|
Torres-Badia M, Martin-Hidalgo D, Serrano R, Garcia-Marin LJ, Bragado MJ. Bisphenol S Reduces Pig Spermatozoa Motility through Different Intracellular Pathways and Mechanisms than Its Analog Bisphenol A. Int J Mol Sci 2023; 24:ijms24119598. [PMID: 37298548 DOI: 10.3390/ijms24119598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Bisphenol A (BPA: 2,3-bis (4-hydroxyphenyl) propane) is an environmental chemical widely used in the manufacturing of epoxy polymers and many thermoplastic consumer products. Serious concerns about its safety led to the development of analogs, such as BPS (4-hydroxyphenyl sulfone). Very limited studies about BPS's impact on reproduction, specifically in spermatozoa, exist in comparison with BPA. Therefore, this work aims to study the in vitro impact of BPS in pig spermatozoa in comparison with BPA, focusing on sperm motility, intracellular signaling pathways and functional sperm parameters. We have used porcine spermatozoa as an optimal and validated in vitro cell model to investigate sperm toxicity. Pig spermatozoa were exposed to 1 and 100 μM BPS or BPA for 3 and 20 h. Both bisphenol S and A (100 μM) significantly reduce pig sperm motility in a time-dependent manner, although BPS exerts a lower and slower effect than BPA. Moreover, BPS (100 μM, 20 h) causes a significant increase in the mitochondrial reactive species, whereas it does not affect sperm viability, mitochondrial membrane potential, cell reactive oxygen species, GSK3α/β phosphorylation or phosphorylation of PKA substrates. However, BPA (100 μM, 20 h) leads to a decrease in sperm viability, mitochondrial membrane potential, GSK3β phosphorylation and PKA phosphorylation, also causing an increase in cell reactive oxygen species and mitochondrial reactive species. These intracellular effects and signaling pathways inhibited might contribute to explaining the BPA-triggered reduction in pig sperm motility. However, the intracellular pathways and mechanisms triggered by BPS are different, and the BPS-caused reduction in motility can be only partially attributed to an increase in mitochondrial oxidant species.
Collapse
Affiliation(s)
- Mercedes Torres-Badia
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
- Research Unit, Complejo Hospitalario Universitario de Cáceres, 10003 Cáceres, Spain
| | - Rebeca Serrano
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - Luis J Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - Maria J Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
39
|
Li C, Qi T, Ma L, Lan YB, Luo J, Chu K, Huang Y, Ruan F, Zhou J. In utero bisphenol A exposure disturbs germ cell cyst breakdown through the PI3k/Akt signaling pathway and BDNF expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115031. [PMID: 37210998 DOI: 10.1016/j.ecoenv.2023.115031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To determine the influence of the environmental endocrine disruptor bisphenol A (BPA) on germ cell cyst breakdown and explore the possible mechanisms regulating this activity. METHODS BPA (2 μg/kg/d or 20 μg/kg/d) or tocopherol-stripped corn oil (vehicle control) was administered to pregnant mice by gavage at gestational day 11, and the offspring (prenatally treated mice) were sacrificed and ovariectomized at postnatal day (PND) 4 and PND22. Ovarian morphology was documented in the first filial (F1) generation female offspring, and the follicles were analyzed and classified morphologically on PND 4. To discover differentially expressed genes and associated target pathways, we used RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Ontology (GO) analysis. The mRNA expression of key steroid hormone synthesis-related genes was evaluated by Q-PCR in forskolin-induced KGN cells. Western blotting (WB) and qRTPCR were used to determine the protein and gene expression levels of brain-derived neurotrophic factor (BDNF). RESULTS BPA, a typical endocrine disrupting chemical (EDC), decreased the expression of the key steroid hormone synthesis-related genes P450scc and aromatase, while the expression of Star increased significantly and caused no significant difference in the expression of Cyp17a1 or HSD3β in forskolin-induced KGN cells. Moreover, we confirmed that in utero exposure to environmentally relevant concentrations of BPA (2 μg/kg/d and 20 μg/kg/d) could significantly disrupt germ cell cyst breakdown, leading to the generation of fewer primordial follicles than in the control group. The factors mediating the inhibitory effects included the PI3K-Akt signaling pathway and a significant downregulation of BDNF. CONCLUSIONS These findings indicate that in utero exposure to BPA at low doses, which are lower than recommended as 'safe' dosages, may influence the formation of primordial follicles by inhibiting the expression of steroid hormone synthesis-related genes and partly by regulating the BDNF-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Tongyun Qi
- Department of Gynecology, The first Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yi Bing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
40
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
41
|
Wang S, Ning H, Wang X, Chen L, Hua L, Ren F, Hu D, Li R, Ma Z, Ge Y, Yin Z. Exposure to bisphenol A induces neurotoxicity associated with synaptic and cytoskeletal dysfunction in neuro-2a cells. Toxicol Ind Health 2023; 39:325-335. [PMID: 37122122 DOI: 10.1177/07482337231172827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bisphenol A (BPA) has been reported to injure the developing and adult brain. However, the underlying mechanism still remains elusive. This study used neuro-2a cells as a cellular model to investigate the neurotoxic effects of BPA. Microtubule-associated protein 2 (MAP2) and tau protein maintain microtubule normal function and promote the normal development of the nervous system. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic plasticity. Cells were exposed to the minimum essential medium (MEM), 0.01% (v/v) DMSO, and 150 μM BPA for 12, 24, or 36 h. Morphological analysis revealed that the cells in the BPA-treated groups shrank and collapsed compared with those in the control groups. CCK-8 and lactate dehydrogenase assay (LDH) assays showed that the mortality of neuro-2a cells increased as the BPA treatment time was prolonged. Ultrastructural analysis further revealed that cells demonstrated nucleolar swelling, dissolution of nuclear and mitochondrial membranes, and partial mitochondrial condensation following exposure to BPA. BPA also decreased the relative protein expression levels of MAP2, tau, and Dbn. Interestingly, the relative protein expression levels of SYP increased. These results indicated that BPA inhibited the proliferation and disrupted cytoskeleton and synaptic integrity of neuro-2a cells.
Collapse
Affiliation(s)
- Siting Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Xinrui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Rongbo Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhisheng Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| |
Collapse
|
42
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
43
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2023; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K Yadav
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Suresh Yadav
- ICMR-National Institute for Implementation Research on Non-Communicable Disease (NIIRNCD), Jodhpur, Rajasthan, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Dhirendra P Singh
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
44
|
Yazdi M, Daryanavard H, Ashtiani AH, Moradinejad M, Rakhshan V. A systematic review of biocompatibility and safety of orthodontic clear aligners and transparent vacuum-formed thermoplastic retainers: Bisphenol-A release, adverse effects, cytotoxicity, and estrogenic effects. Dent Res J (Isfahan) 2023; 20:41. [PMID: 37180685 PMCID: PMC10166753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 05/16/2023] Open
Abstract
Background An ever-increasing demand is seen for clear aligners and transparent vacuum-formed retainers. They are esthetic and convenient. However, the biomaterials used in these appliances might pose biological safety and biocompatibility threats in terms of their bisphenol-A (BPA) release, cytotoxicity, adverse effects, and estrogenic effects. Due to the controversial results and the lack of any systematic reviews in this regard, we conducted this systematic review. Materials and Methods Web of Science, PubMed, Cochrane, Scopus, and Google Scholar as well as references of the found articles were searched (independently by 3 researchers) up to December 22, 2021, to find studies relevant to the biocompatibility of clear aligners and thermoplastic retainers. The search keywords were a combination of the following (and more): Essix, vacuum-formed aligner, thermoplastic aligner, clear aligner, Invisalign, vacuum-formed retainer, BPA release, monomer release, cytotoxicity, estrogenicity, biocompatibility, chemical properties, and oral epithelial cell. As eligibility criteria, articles in all languages would be included as long as their text could be translated clearly using online translators or by professional translators; all types of publications (article, book, and thesis) would be included if containing relevant studies and information; they should have been on clear liners or thermoplastic retainers; and they should have been on biocompatibility, safety, cytotoxicity, or estrogenicity of clear aligners or thermoplastic retainers. There were no restrictions on the type of study (randomized clinical trials, experimental in vitro studies). Studies focusing merely on the mechanical properties of clear aligners or thermoplastic retainers (without examining their chemical properties) would be excluded. The risk of bias was assessed. Results The risk of bias was rather low. However, the methodologies of the studies were quite different. Overall, 16 articles (1 randomized clinical trial and 15 in vitro studies) were identified. The data for BPA release were reported in four articles (1 clinical trial and 3 in vitro studies). Quantitatively speaking, the amount of released BPA reported by in vitro studies was very low, if not zero. However, the BPA level was very high in the only randomized clinical trial. Many adverse effects were linked to using clear aligners or transparent retainers, including pain and soft-tissue issues such as burning, tingling, sore tongue, lip swelling, blisters, ulceration, dry mouth, periodontal problems, and even systemic problems such as difficulty in breathing. Besides these biological adverse effects, oral dysfunctions and speech difficulties and tooth damage may be associated with clear aligners and should as well be taken into consideration. Conclusion Given the very high levels of BPA leach observed in the only clinical trial and considering other possible dangers of small traces of BPA (even at low doses) and also given the numerous adverse events linked to clear aligners or transparent retainers, it seems that safety of these appliances might be questionable and more clinical studies of biocompatibility are needed in this regard.
Collapse
Affiliation(s)
- Marzie Yazdi
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hanie Daryanavard
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Hashemi Ashtiani
- Department of Prosthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnaz Moradinejad
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Rakhshan
- Department of Anatomy, Dental School, Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Foutouhi A, Hesser A, de la Fuente A, Bulkeley E, Dini P, Meyers S. Sperm parameters in the Great Dane: Influence of age on semen quality. Theriogenology 2023; 197:267-274. [PMID: 36527863 DOI: 10.1016/j.theriogenology.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Not all sires have sperm suitable for chilled or frozen storage, and success in artificial insemination (AI) varies highly among individual dogs and breeds. Fertilizing potential is further complicated as sperm quality declines with the aging process. Due to the rapidity of aging and senescence in large breed dogs, associated health and fertility changes may be observed over a shorter period, though this period remains undefined for any breed. Working with a population of purebred Great Danes (GD), our aims were (1) to characterize the distribution of a series of sperm parameters, (2) to distinguish sources of variation in sperm quality within this rapidly aging breed, and (3) to identify changes in sperm quality that may accompany aging. Ejaculates collected from young, middle-aged, and senior Great Dane dogs (n = 50) were evaluated for semen volume, total sperm number and viability, and reactive oxygen species (ROS), in addition to sperm morphology and kinematic parameters. Total testicular volume was also determined using ultrasonography. Testicular volume was not a predictor of sperm production in the GD, however, significant differences between coat colors were identified. Age was negatively associated with total motility, progressive motility, and amplitude of lateral head displacement (ALH) (p < .05). We identified significant relationships between GD male age and TM, PM, and immotility with -9.9%, -9.0%, and +8.3% change per year of age, respectively, which support the anecdotal reports of decline of the fertility with the advance of age in this breed. Sperm of younger GD dogs aged 12 ≤ x < 24 months had significantly higher TM, PM, ALH, and nonlinear motility (p < .05) than older dogs (x ≥ 48 months). High ROS levels were positively associated with TM and PM, average pathway distance (DAP) and straight line distance (DSL), average pathway velocity (VAP), straight line velocity (VSL), and the presence of hairpin tails (p < .05). While age and ROS have significant influences on sperm parameters in the GD, the influence of selection for breed specific phenotypes could help explain the functional significance of the diversity among GD males.
Collapse
Affiliation(s)
- Azarene Foutouhi
- Departments of Anatomy, Physiology, and Cell Biology, Davis, 95616, USA
| | | | | | - Evelyn Bulkeley
- Departments of Anatomy, Physiology, and Cell Biology, Davis, 95616, USA
| | - Pouya Dini
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 95616, USA
| | - Stuart Meyers
- Departments of Anatomy, Physiology, and Cell Biology, Davis, 95616, USA.
| |
Collapse
|
46
|
Impacts of bisphenol A on growth and reproductive traits of submerged macrophyte Vallisneria natans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46383-46393. [PMID: 36719573 DOI: 10.1007/s11356-023-25521-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Bisphenol A (BPA) is considered a contaminant of emerging concern and interferes with the normal activities of living organisms. The toxicity of BPA is evident in animals and terrestrial plants. However, the response of aquatic plants to low BPA concentrations is still unclear. In the present study, effects of varying BPA loadings (targeting at 0.01, 0.1, and 1 mg/L) on the growth and reproductive traits of the dioecious annual submerged macrophyte Vallisneria natans were assessed through a 5-month experiment. The results showed that BPA inhibited the elongation of V. natans leaves but resulted in an increase in leaf number and ramet number under the highest BPA loading treatment (targeting at 1 mg/L). In addition, detectable biochemical changes in the total carbon and soluble sugar contents were found, which both were significantly higher at the highest BPA loading treatment. However, the total biomass did not alter significantly after the BPA treatments, indicating that BPA did not induce direct toxic effects on the growth of V. natans. At the highest BPA loading treatment, female individuals of V. natans allocated less number for ramet than male ones, showing a clear sexual dimorphism. No significant differences between the five treatments were found for the flower or fruit traits, while the germination rate was significantly inhibited for the seeds collected from the highest BPA loading treatment. In conclusion, V. natans tolerated low concentrations of BPA by making a trade-off between ramet (leaf) number and leaf elongation, as well as modulating the total carbon and soluble sugar contents. However, serious consequence of decline in seed viability implied that the impact of BPA on plant reproduction were usually underestimated.
Collapse
|
47
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
48
|
Moradinejad M, Yazdi M, Daryanavard H, Ashtiani A, Rakhshan V. A systematic review of biocompatibility and safety of orthodontic clear aligners and transparent vacuum-formed thermoplastic retainers: Bisphenol-A release, adverse effects, cytotoxicity, and estrogenic effects. Dent Res J (Isfahan) 2023. [DOI: 10.4103/1735-3327.372658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
49
|
Long-term potentiation and depression regulatory microRNAs were highlighted in Bisphenol A induced learning and memory impairment by microRNA sequencing and bioinformatics analysis. PLoS One 2023; 18:e0279029. [PMID: 36656826 PMCID: PMC9851566 DOI: 10.1371/journal.pone.0279029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCβ4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.
Collapse
|
50
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|