1
|
Costas L, Frias-Gomez J, Peinado FM, Molina-Molina JM, Peremiquel-Trillas P, Paytubi S, Crous-Bou M, de Francisco J, Caño V, Benavente Y, Pelegrina B, Martínez JM, Pineda M, Brunet J, Matias-Guiu X, de Sanjosé S, Ponce J, Olea N, Alemany L, Fernández MF. Total Effective Xenoestrogen Burden in Serum Samples and Risk of Endometrial Cancer in the Spanish Screenwide Case-Control Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27012. [PMID: 38415615 PMCID: PMC10901108 DOI: 10.1289/ehp13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Endometrial cancer is a hormone-dependent cancer, and estrogens play a relevant role in its etiology. However, little is known about the effects of environmental pollutants that act as xenoestrogens or that influence estrogenic activity through different pathways. OBJECTIVE We aimed to assess the relationship between the combined estrogenic activity of mixtures of xenoestrogens present in serum samples and the risk of endometrial cancer in the Screenwide case-control study. METHODS The total effective xenoestrogen burden (TEXB) attributable to organohalogenated compounds (TEXB- α ) and to endogenous hormones and more polar xenoestrogens (TEXB- β ) was assessed in serum from 156 patients with endometrial cancer (cases) and 150 controls by combining chemical extraction and separation by high-performance liquid chromatography with the E-SCREEN bioassay for estrogenicity. RESULTS Median TEXB- α and TEXB- β levels for cases (0.30 and 1.25 Eeq pM / mL , respectively) and controls (0.42 and 1.28 Eeq pM / mL , respectively) did not significantly differ (p = 0.653 and 0.933, respectively). An inverted-U risk trend across serum TEXB- α and TEXB- β levels was observed in multivariate adjusted models: Positive associations were observed for the second category of exposure in comparison to the lowest category of exposure [odds ratio ( OR ) = 2.11 (95% CI: 1.13, 3.94) for TEXB- α , and OR = 3.32 (95% CI: 1.62, 6.81) for TEXB- β ], whereas no significant associations were observed between the third category of exposure and the first [OR = 1.22 (95% CI: 0.64, 2.31) for TEXB- α , and OR = 1.58 (95% CI: 0.75, 3.33) for TEXB- β ]. In mutually adjusted models for TEXB- α and TEXB- β levels, the association of TEXB- α with endometrial cancer risk was attenuated [OR = 1.45 (95% CI: 0.61, 3.47) for the second category of exposure], as well as estimates for TEXB- β (OR = 2.68 ; 95% CI: 1.03, 6.99). Most of the individual halogenated contaminants showed no associations with both TEXB and endometrial cancer. CONCLUSIONS We evaluated serum total xenoestrogen burden in relation to endometrial cancer risk and found an inverted-U risk trend across increasing categories of exposure. The use of in vitro bioassays with human samples may lead to a paradigm shift in the way we understand the negative impact of chemical mixtures on human health effects. These results are relevant from a public health perspective and for decision-makers in charge of controlling the production and distribution of chemicals with xenoestrogenic activity. https://doi.org/10.1289/EHP13202.
Collapse
Affiliation(s)
- Laura Costas
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jon Frias-Gomez
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Francisco M. Peinado
- Centre of Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Hospital Universitario San Cecilio, Granada, Spain
| | | | - Paula Peremiquel-Trillas
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Sonia Paytubi
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marta Crous-Bou
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Javier de Francisco
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Anesthesiology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Victor Caño
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Anesthesiology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Beatriz Pelegrina
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - José Manuel Martínez
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Gynecology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marta Pineda
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Hereditary Cancer group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer (CIBERONC), Carlos III Institute of Health, Madrid, Spain
| | - Joan Brunet
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Hereditary Cancer group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer (CIBERONC), Carlos III Institute of Health, Madrid, Spain
| | - Xavier Matias-Guiu
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer (CIBERONC), Carlos III Institute of Health, Madrid, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Silvia de Sanjosé
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Jordi Ponce
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Gynecology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Nicolás Olea
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centre of Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Hospital Universitario San Cecilio, Granada, Spain
| | - Laia Alemany
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mariana F. Fernández
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centre of Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
2
|
Gea M, Toso A, Schilirò T. Estrogenic activity of biological samples as a biomarker. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140050. [PMID: 32927569 DOI: 10.1016/j.scitotenv.2020.140050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Biological assays can evaluate the cumulative effect of a mixture, considering synergistic/antagonistic interactions and effects of unknown/unconsidered compounds. Therefore, their application could increase in the next years also to analyse biological samples. The aim of this review is to discuss the methodological approach and the application of estrogenic activity assays in human biological samples. 75 research articles were analysed and divided according to whether they used these assays: i) to quantify the level of estrogens and/or as a biomarker of estrogenic status ii) as a biomarker of exposure to endocrine disrupting chemicals (EDCs). For the first purpose, some authors extracted biological samples while others tested them directly without any treatment. The study of these methodologies outlined that the methodology applied influenced the specificity of analysis. The estrogenic activity biomarker was used to analyse physiological variations of estrogens, pediatric diseases, hormone-dependent diseases and estrogen suppression/enhancement after pharmaceutical treatments. For the second purpose, some authors extracted samples while others tested them directly, some authors divided endogenous estrogens from xenoestrogens while others tested samples without separation. The analysis of these methodologies outlined some limitations related to the efficiency of extraction and the incorrect separation of some compounds. The studies which applied this EDC biomarker showed that it was correlated with some EDCs, it varied according to the exposure of the population and it allowed the identification of some relationships between EDC exposure and breast cancer, type 1 diabetes and adverse health effects on children. In conclusion, the estrogenic activity of biological samples can be a useful tool: to quantify low levels of 17β-estradiol, to assess the combined effect of endogenous estrogens and xenoestrogens, to estimate the estrogenic status providing considerable insight into physiological or pathological conditions, to evaluate EDC presence implementing the existing knowledge about EDC exposure and adverse health effects.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Anna Toso
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| |
Collapse
|
3
|
Kassotis CD, Stapleton HM. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne) 2019; 10:39. [PMID: 30792693 PMCID: PMC6374316 DOI: 10.3389/fendo.2019.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity and metabolic disorders are of great societal concern and generate substantial human health care costs globally. Interventions have resulted in only minimal impacts on disrupting this worsening health trend, increasing attention on putative environmental contributors. Exposure to numerous environmental contaminants have, over decades, been demonstrated to result in increased metabolic dysfunction and/or weight gain in cell and animal models, and in some cases, even in humans. There are numerous mechanisms through which environmental contaminants may contribute to metabolic dysfunction, though certain mechanisms, such as activation of the peroxisome proliferator activated receptor gamma or the retinoid x receptor, have received considerably more attention than less-studied mechanisms such as antagonism of the thyroid receptor, androgen receptor, or mitochondrial toxicity. As such, research on putative metabolic disruptors is growing rapidly, as is our understanding of molecular mechanisms underlying these effects. Concurrent with these advances, new research has evaluated current models of adipogenesis, and new models have been proposed. Only in the last several years have studies really begun to address complex mixtures of contaminants and how these mixtures may disrupt metabolic health in environmentally relevant exposure scenarios. Several studies have begun to assess environmental mixtures from various environments and study the mechanisms underlying their putative metabolic dysfunction; these studies hold real promise in highlighting crucial mechanisms driving observed organismal effects. In addition, high-throughput toxicity databases (ToxCast, etc.) may provide future benefits in prioritizing chemicals for in vivo testing, particularly once the causative molecular mechanisms promoting dysfunction are better understood and expert critiques are used to hone the databases. In this review, we will review the available literature linking metabolic disruption to endocrine-mediated molecular mechanisms, discuss the novel application of environmental mixtures and implications for in vivo metabolic health, and discuss the putative utility of applying high-throughput toxicity databases to answering complex organismal health outcome questions.
Collapse
|
4
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro. Neuroscience 2016; 319:146-54. [PMID: 26820594 DOI: 10.1016/j.neuroscience.2016.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases.
Collapse
|
6
|
Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:589-611. [PMID: 25646754 DOI: 10.1016/j.jhazmat.2014.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a diverse group of "chemicals of emerging concern" which have attracted much interest from the research community since the 1990s. Today there is still no definitive risk assessment tool for EDCs. While some decision making organizations have attempted to design methodology guidelines to evaluate the potential risk from this broadly defined group of constituents, risk assessors still face many uncertainties and unknowns. Until a risk assessment paradigm is designed specifically for EDCs and is vetted by the field, traditional risk assessment tools may be used with caution to evaluate EDCs. In doing so, each issue of contention should be addressed with transparency in order to leverage available information and technology without sacrificing integrity or accuracy. The challenges that EDCs pose to traditional risk assessment are described in this article to assist in this process.
Collapse
Affiliation(s)
- Vivian Futran Fuhrman
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Alon Tal
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| |
Collapse
|
7
|
Vilahur N, Fernández MF, Bustamante M, Ramos R, Forns J, Ballester F, Murcia M, Riaño I, Ibarluzea J, Olea N, Sunyer J. In utero exposure to mixtures of xenoestrogens and child neuropsychological development. ENVIRONMENTAL RESEARCH 2014; 134:98-104. [PMID: 25086706 DOI: 10.1016/j.envres.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND To date, no epidemiological studies have explored the impact and persistence of in utero exposure to mixtures of xenoestrogens on the developing brain. We aimed to assess whether the cumulative effect of xenoestrogens in the placenta is associated with altered infant neuropsychological functioning at two and at four years of age, and if associations differ among boys and girls. METHODS Cumulative prenatal exposure to xenoestrogens was quantified in the placenta using the biomarker Total Effective Xenoestrogen Burden (TEXB-alpha) in 489 participants from the INMA (Childhood and the Environment) Project. TEXB-alpha was split in tertiles to test its association with the mental and psychomotor scores of the Bayley Scales of Infant Development (BSID) at 1-2 years of age, and with the McCarthy Scales of Children׳s Abilities (MSCA) general cognitive index and motor scale assessed at 4-5 years of age. Interactions with sex were investigated. RESULTS After adjustment for potential confounders, no association was observed between TEXB-alpha and mental scores at 1-2 years of age. We found a significant interactions with sex for the association between TEXB-alpha and infant psychomotor development (interaction p-value=0.029). Boys in the third tertile of exposure scored on average 5.2 points less than those in the first tertile on tests of motor development at 1-2 years of age (p-value=0.052), while no associations were observed in girls. However, this association disappeared in children at 4-5 years of age and no association between TEXB-alpha and children׳s cognition was found. CONCLUSIONS Our results suggest that boys' early motor development might be more vulnerable to prenatal exposure to mixtures of xenoestrogens, but associations do not persist in preschool children.
Collapse
Affiliation(s)
- Nadia Vilahur
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain.
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospital Universitario San Cecilio, Granada, Spain
| | - Mariona Bustamante
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Rosa Ramos
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Joan Forns
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain
| | - Isolina Riaño
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; University of Oviedo, Asturias, Oviedo, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Biodonostia, Health Research Institute, San Sebastián, Spain; Sub-Directorate for Public Health of Gipuzkoa, Department of Health, Government of the Basque Country, San Sebastian, Spain
| | - Nicolás Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Health and Life Sciences, University Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Vilahur N, Molina-Molina JM, Bustamante M, Murcia M, Arrebola JP, Ballester F, Mendez MA, Garcia-Esteban R, Guxens M, Santa Marina L, Tardón A, Sunyer J, Olea N, Fernandez MF. Male specific association between xenoestrogen levels in placenta and birthweight. ENVIRONMENT INTERNATIONAL 2013; 51:174-181. [PMID: 23262415 DOI: 10.1016/j.envint.2012.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Fetal exposure to endocrine disrupting chemicals may increase the risk for adverse health effects at birth or later in life. OBJECTIVES The objective of this study is to analyze the combined effect of xenoestrogens on reproductive and perinatal growth outcomes (child birthweight, early rapid growth and body mass index (BMI) at 14 months) using the biomarker total effective xenoestrogen burden (TEXB). METHODS 490 placentas were randomly collected in the Spanish prospective birth cohort Environment and Childhood (INMA) project. TEXB was used to assess the estrogenicity of placental samples in two fractions: that largely attributable to environmental organohalogenated xenoestrogens (TEXB-alpha), and that mostly due to endogenous estrogens (TEXB-beta), both expressed in estrogen equivalent units (Eeq) per gram of tissue. Linear or logistic regression models were performed adjusting for cohort and confounders. Sex interactions were investigated. RESULTS The median TEXB-alpha level was 0.76 pM Eeq/g (interquartile range (iqr): 1.14). In multivariate models, higher TEXB-alpha levels (third tertile, >1.22 pM Eeq/g; iqr: 1.73) were associated with increased birthweight in boys but not in girls (β=148.2 g, 95% CI: 14.01, 282.53, p(int)=0.057). Additionally, higher TEXB-alpha values in boys were related with a lower risk of early rapid growth (OR=0.37; 95% CI: 0.15, 0.88) and with a non significant association with larger BMI z-scores at 14 months of age (β=0.29; 95% CI: -0.11, 0.69). CONCLUSIONS These findings suggest that prenatal exposure to xenoestrogens may increase birthweight in boys, which might have an impact on child obesity and other later health outcomes.
Collapse
Affiliation(s)
- Nadia Vilahur
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children's exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth outcomes including physical birth defects, low birth weight, and fetal death, although the data are less robust than for cancer and neurodevelopmental effects. Children's exposures to pesticides should be limited as much as possible.
Collapse
|
10
|
Krüger T, Long M, Ghisari M, Bonefeld-Jørgensen EC. The combined effect of persistent organic pollutants in the serum POP mixture in Greenlandic Inuit: xenoestrogenic, xenoandrogenic and dioxin-like transactivities. Biomarkers 2012; 17:692-705. [PMID: 23030067 DOI: 10.3109/1354750x.2012.700950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Greenlandic Inuit have high body burden of persistent organic pollutants (POPs). We analyzed the combined effect of the actual lipophilic serum POP mixture on estrogen-, androgen- and aryl hydrocarbon-receptor functions as effect biomarkers, and the associations between the effect biomarkers and serum POPs, and lifestyle characteristics. The serum POPs were extracted from 232 Inuit from Ittoqqortoormiit, Narsaq and Qeqertarsuaq. The POP-related receptor transactivities correlated negatively to the POP levels and were associated to the lifestyle characteristics. The POP-related receptor transactivities can be used as effect biomarkers. The serum POPs have hormone disruptive potentials.
Collapse
Affiliation(s)
- Tanja Krüger
- Department of Public Health, Centre for Arctic Health & Cellular and Molecular Toxicology, Aarhus University, Aarhus C, Denmark
| | | | | | | |
Collapse
|
11
|
Arrebola J, Fernandez M, Molina-Molina J, Martin-Olmedo P, Expósito J, Olea N. Predictors of the total effective xenoestrogen burden (TEXB) in human adipose tissue. A pilot study. Reprod Toxicol 2012; 33:45-52. [DOI: 10.1016/j.reprotox.2011.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 09/30/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
12
|
Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev 2011; 12:622-36. [PMID: 21457182 DOI: 10.1111/j.1467-789x.2011.00871.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans. The results depended on the type of chemical, exposure level, timing of exposure and gender. Nearly all the studies investigating dichlorodiphenyldichloroethylene (DDE) found that exposure was associated with an increase in body size, whereas the results of the studies investigating polychlorinated biphenyl (PCB) exposure were depending on dose, timing and gender. Hexachlorobenzene, polybrominated biphenyls, beta-hexachlorocyclohexane, oxychlordane and phthalates were likewise generally associated with an increase in body size. Studies investigating polychlorinated dibenzodioxins and polychlorinated dibenzofurans found either associations with weight gain or an increase in waist circumference, or no association. The one study investigating relations with bisphenol A found no association. Studies investigating prenatal exposure indicated that exposure in utero may cause permanent physiological changes predisposing to later weight gain. The study findings suggest that some endocrine disruptors may play a role for the development of the obesity epidemic, in addition to the more commonly perceived putative contributors.
Collapse
Affiliation(s)
- J L Tang-Péronard
- Research Unit for Dietary Studies, Institute of Preventive Medicine, Centre for Health and Society, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
13
|
Estrogens in the daily diet: in vitro analysis indicates that estrogenic activity is omnipresent in foodstuff and infant formula. Food Chem Toxicol 2011; 49:2681-8. [PMID: 21801783 DOI: 10.1016/j.fct.2011.07.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
Abstract
Food is a main source of exposure to endocrine active compounds, many of which have been linked to adverse health effects. Phytoestrogens, especially from soy, are the major dietary source of estrogenicity. However, foodstuff contains a variety of estrogen-like compounds that might not be detected analytically. To assess the total estrogenic activity of foodstuff, we employed the Yeast Estrogen Screen (YES). We analyzed 18 food samples and five milk-based infant formulas. Soy-based products contained potent estrogenicity of 100-1500ng estradiol equivalents per kilogram (EEQ/kg). The estrogenicity in soy-free products was far lower (10-40ng EEQ/kg). We also detected significant estrogenic activity in three infant formulas (14-22ng EEQ/kg). Furthermore, we found soy lecithin to be strongly estrogenic. It might, therefore, be a major contributor to total estrogenicity. We conclude that dietary estrogens are omnipresent and not limited to soy-based food. In an exposure assessment we calculated a total dietary intake of 27.5 and 34.0ng EEQ/d for adults and 1.46ng EEQ/d for infants. While the dietary exposure to estrogenic activity is lower than previously estimated, our results demonstrate that many food types are a source of unidentified estrogen-like compounds still awaiting toxicological evaluation.
Collapse
|
14
|
Freire C, Amaya E, Fernández MF, González-Galarzo MC, Ramos R, Molina-Molina JM, Arrebola JP, Olea N. Relationship between occupational social class and exposure to organochlorine pesticides during pregnancy. CHEMOSPHERE 2011; 83:831-838. [PMID: 21435678 DOI: 10.1016/j.chemosphere.2011.02.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/26/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Little evidence is available on the influence of socioeconomic factors on exposure to persistent organic pollutants, especially during vulnerable periods such as pregnancy and early life. OBJECTIVE To investigate the relationship of maternal social class with placental concentrations of organochlorine pesticides (OCPs) and their combined estrogenic activity measured with a biomarker of exposure. METHODS Exposure to 16 OCPs (DDTs, endosulfans, and seven other compounds) and the total effective xenoestrogenic burden (TEXB) were analyzed in placentas from a mother-child cohort. OCP concentrations were quantified by gas chromatography and mass spectrometry, and TEXB was assessed with the E-Screen bioassay. Social class was classified according to maternal occupation. Multivariate regression analysis was conducted to examine variations in pesticide exposure and TEXB as a function of maternal social class in 257 subjects. RESULTS Placental p,p'-DDT concentrations were higher in social classes III and IV than in classes I-II (the most affluent); concentrations of the sum of DDTs were higher in class IV; and exposure to the sum of endosulfans was greater in class III. HCB concentrations were higher among women in class IV than in classes I-II and among manual (classes III-V) than non-manual workers. However, the trend across social classes was only statistically significant for HCB. Social class significantly explained 10% of the variability in concentrations of the sum of endosulfans. CONCLUSION There is a need to explore whether more disadvantaged populations suffer higher levels of exposure to pesticides or other environmental chemicals and how different social processes contribute to this exposure.
Collapse
Affiliation(s)
- Carmen Freire
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, CIBER de Epidemiología y Salud Pública (CIBERESP), Av. Madrid s/n, 18071 Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Silins I, Högberg J. Combined toxic exposures and human health: biomarkers of exposure and effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:629-47. [PMID: 21556171 PMCID: PMC3083662 DOI: 10.3390/ijerph8030629] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 01/03/2023]
Abstract
Procedures for risk assessment of chemical mixtures, combined and cumulative exposures are under development, but the scientific database needs considerable expansion. In particular, there is a lack of knowledge on how to monitor effects of complex exposures, and there are few reviews on biomonitoring complex exposures. In this review we summarize articles in which biomonitoring techniques have been developed and used. Most examples describe techniques for biomonitoring effects which may detect early changes induced by many chemical stressors and which have the potential to accelerate data gathering. Some emphasis is put on endocrine disrupters acting via epigenetic mechanisms and on carcinogens. Solid evidence shows that these groups of chemicals can interact and even produce synergistic effects. They may act during sensitive time windows and biomonitoring their effects in epidemiological studies is a challenging task.
Collapse
Affiliation(s)
- Ilona Silins
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Wise A, O'Brien K, Woodruff T. Are oral contraceptives a significant contributor to the estrogenicity of drinking water? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:51-60. [PMID: 20977246 DOI: 10.1021/es1014482] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent observed feminization of aquatic animals has raised concerns about estrogenic compounds in water supplies and the potential for these chemicals to reach drinking water. Public perception frequently attributes this feminization to oral contraceptives (OCs) in wastewater and raises concerns that exposure to OCs in drinking water may contribute to the recent rise in human reproductive problems. This paper reviews the literature regarding various sources of estrogens, in surface, source and drinking water, with an emphasis on the active molecule that comes from OCs. It includes discussion of the various agricultural, industrial, and municipal sources and outlines the contributions of estrogenic chemicals to the estrogenicity of waterways and estimates that the risk of exposure to synthetic estrogens in drinking water on human health is negligible. This paper also provides recommendations for strategies to better understand all the potential sources of estrogenic compounds in the environment and possibilities to reduce the levels of estrogenic chemicals in the water supply.
Collapse
Affiliation(s)
- Amber Wise
- Program on Reproductive Health and the Environment, University of California, San Francisco, 1330 Broadway Street, Suite 1100, Oakland, California 94612, USA
| | | | | |
Collapse
|
17
|
Lopez-Espinosa MJ, Silva E, Granada A, Molina-Molina JM, Fernandez MF, Aguilar-Garduño C, Olea-Serrano F, Kortenkamp A, Olea N. Assessment of the total effective xenoestrogen burden in extracts of human placentas. Biomarkers 2009; 14:271-7. [DOI: 10.1080/13547500902893744] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|