1
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Qiu L, Zhang W, Gong A, Li J. Isolation and identification of a 2,3,7,8-Tetrachlorodibenzo-P-dioxin degrading strain and its biochemical degradation pathway. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:541-551. [PMID: 34150257 PMCID: PMC8172717 DOI: 10.1007/s40201-021-00626-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to find a high-efficiency degradation strain which can biodegrade the 2,3,7,8-Tetrachlorodibenzo-P-dioxin (2,3,7,8-TCDD). In this paper, a new fungus strain was isolated from activated sludge of Dagu Drainage River in Tianjin which was able to degrade 2,3,7,8-TCDD in the medium. Based on its morphology and phylogenetic analysis of its 18S rDNA sequence, the strain was identified as Penicillium sp. QI-1. Response surface methodology using central composite rotatable design of cultural conditions was successfully employed for optimization resulting in 87.9 % degradation of 2,3,7,8-TCDD (1 µg/mL) within 6 days. The optimum condition for degrading 2,3,7,8-TCDD was at 31℃ and pH 7.4. The biodegradation process was fitted to a first-order kinetic model. The kinetic equation was Ct=0.939e- 0.133t and its half-life was 5.21d. The fungus strain degraded 2,3,7,8-TCDD to form intermediates, they were 4,5-Dichloro-1,2-benzoquinone, 4,5-Dichlorocatechol, 2-Hydrooxy-1,4-benzoquinone, 1,2,4-Trihydroxybenzene and β-ketoadipic acid. A novel degradation pathway for 2,3,7,8-TCDD was proposed based on analysis of these metabolites. The results suggest that Penicillium sp. QI-1 may be an ideal microorganism for biodegradation of the 2,3,7,8-TCDD-contaminated environments.
Collapse
Affiliation(s)
- Lina Qiu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
- Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing, 100083 China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
| | - Jiandi Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
| |
Collapse
|
3
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
4
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Gül S, Gül M, Yigitcan B. Melatonin preserves ovarian tissues of rats exposed to chronic TCDD: An electron microscopic approach to effects of TCDD on ovarian cells. Toxicol Ind Health 2018. [PMID: 29529941 DOI: 10.1177/0748233717754174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) is a toxic agent and has disruptive effects on reproductive tissues in females. TCDD disrupts the hormonal regulation of the body and decreases the production of melatonin. In this study, we investigated the protective effects of melatonin supplements against the toxic effects of TCDD on ovaries of female rats. TCDD caused a significant decrease in the average number of corpora lutea and follicles per tissue section (2.1 ± 0.7; 2.3 ± 0.8, respectively), whereas these numbers were maintained in the melatonin supplemented group (5.0 ± 0.8; 5.1 ± 0.8, respectively) and were similar to the control group (5.3 ± 1.0; 5.9 ± 0.9, respectively). Electron microscopic analysis showed that the disruption of ultrastructure components such as cell membrane and organelles due to TCDD exposure was inhibited by melatonin supplements. This study suggested that melatonin has a protective and a possible ameliorative effect over histopathological damage of rat ovaries exposed to TCDD.
Collapse
Affiliation(s)
- Semir Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Birgül Yigitcan
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
6
|
Ma J, Chen X, Liu Y, Xie Q, Sun Y, Chen J, Leng L, Yan H, Zhao B, Tang N. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs. Toxicol Appl Pharmacol 2015; 289:193-202. [PMID: 26455773 DOI: 10.1016/j.taap.2015.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022]
Abstract
Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue.
Collapse
Affiliation(s)
- Jing Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawen Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jingshan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ling Leng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Huan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
7
|
Buser MC, Pohl HR. Windows of Sensitivity to Toxic Chemicals in the Development of Cleft Palates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:242-57. [PMID: 26503716 PMCID: PMC5642923 DOI: 10.1080/10937404.2015.1068719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cleft lip and cleft palate are among the most common birth defects worldwide. There is a genetic component to the development of these malformations, as well as evidence that environmental exposures and prescription drug use may exacerbate or even produce these manifestations. Thus, it is important to understand the underlying mechanisms and when these exposures affect development of the growing fetus. The purpose of this investigation was to critically review the available literature related to orofacial cleft formation following chemical exposure and identify specific time frames for windows of sensitivity. Further, an aim was to evaluate the potential for predicting effects in humans based on animal studies. Evidence indicates that chemical causes of cleft palate development are due to dose and timing of exposure, susceptibility of the species (i.e., the genetic makeup), and mechanism of action. Several studies demonstrated that dose is a crucial factor; however, some investigators argued that even more important than dose was timing of exposure. Data show that the window of sensitivity to environmental teratogens in the development of cleft palates is quite narrow and follows closely the window of palatogenesis in the fetus of any given species.
Collapse
Affiliation(s)
- M C Buser
- a Agency for Toxic Substances and Disease Registry , U.S. Department of Health and Human Services , Atlanta , Georgia , USA
| | - H R Pohl
- a Agency for Toxic Substances and Disease Registry , U.S. Department of Health and Human Services , Atlanta , Georgia , USA
| |
Collapse
|
8
|
Bai B, Zhang Q, Liu X, Miao C, Shangguan S, Bao Y, Guo J, Wang L, Zhang T, Li H. Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects. PLoS One 2014; 9:e113308. [PMID: 25423083 PMCID: PMC4244157 DOI: 10.1371/journal.pone.0113308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
The methylation status of DNA methylation regions (DMRs) of the imprinted gene IGF2/Igf2 is associated with neural tube defects (NTDs), which are caused by a failure of the neural tube to fold and close and are the second-most common birth defect; however, the characterization of the expression level of IGF2/Igf2 in neural tissue from human fetuses affected with NTDs remains elusive. More importantly, whether abnormal chromatin structure also influences IGF2/Igf2 expression in NTDs is unclear. Here, we investigated the transcriptional activity of IGF2/Igf2 in normal and NTD spinal cord tissues, the methylation status of different DMRs, and the chromatin structure of the promoter. Our data indicated that in NTD samples from both human fetuses and retinoic acid (RA)-treated mouse fetuses, the expression level of IGF2/Igf2 was upregulated 6.41-fold and 1.84-fold, respectively, compared to controls. H19 DMR1, but not IGF2 DMR0, was hypermethylated in human NTD samples. In NTD mice, h19 DMR1 was stable, whereas the chromatin structure around the promoter of Igf2 might be loosened, which was displayed by higher H3K4 acetylation and lower H3K27 trimethylation. Therefore, the data revealed that IGF2/Igf2 expression can be ectopically up-regulated by dual epigenetic factors in NTDs. In detail, the upregulation of IGF2/Igf2 is likely controlled by hypermethylation of H19 DMR1 in human NTDs, however, in acute external RA-induced NTD mice it is potentially determined by more open chromatin structure.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaozhen Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chunyue Miao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- * E-mail:
| |
Collapse
|