1
|
Salem M, Khadivi F, Javanbakht P, Mojaverrostami S, Abbasi M, Feizollahi N, Abbasi Y, Heidarian E, Rezaei Yazdi F. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther 2023; 14:262. [PMID: 37735437 PMCID: PMC10512562 DOI: 10.1186/s13287-023-03466-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
The loss of germ cells and spermatogenic failure in non-obstructive azoospermia are believed to be the main causes of male infertility. Laboratory studies have used in vitro testicular models and different 3-dimensional (3D) culture systems for preservation, proliferation and differentiation of spermatogonial stem cells (SSCs) in recent decades. The establishment of testis-like structures would facilitate the study of drug and toxicity screening, pathological mechanisms and in vitro differentiation of SSCs which resulted in possible treatment of male infertility. The different culture systems using cellular aggregation with self-assembling capability, the use of different natural and synthetic biomaterials and various methods for scaffold fabrication provided a suitable 3D niche for testicular cells development. Recently, 3D culture models have noticeably used in research for their architectural and functional similarities to native microenvironment. In this review article, we briefly investigated the recent 3D culture systems that provided a suitable platform for male fertility preservation through organ culture of testis fragments, proliferation and differentiation of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farnaz Khadivi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Baert Y, Ruetschle I, Cools W, Oehme A, Lorenz A, Marx U, Goossens E, Maschmeyer I. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model. Hum Reprod 2021; 35:1029-1044. [PMID: 32390056 DOI: 10.1093/humrep/deaa057] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Is it possible to co-culture and functionally link human liver and testis equivalents in the combined medium circuit of a multi-organ chip? SUMMARY ANSWER Multi-organ-chip co-cultures of human liver and testis equivalents were maintained at a steady-state for at least 1 week and the co-cultures reproduced specific natural and drug-induced liver-testis systemic interactions. WHAT IS KNOWN ALREADY Current benchtop reprotoxicity models typically do not include hepatic metabolism and interactions of the liver-testis axis. However, these are important to study the biotransformation of substances. STUDY DESIGN, SIZE, DURATION Testicular organoids derived from primary adult testicular cells and liver spheroids consisting of cultured HepaRG cells and hepatic stellate cells were loaded into separate culture compartments of each multi-organ-chip circuit for co-culture in liver spheroid-specific medium, testicular organoid-specific medium or a combined medium over a week. Additional multi-organ-chips (single) and well plates (static) were loaded only with testicular organoids or liver spheroids for comparison. Subsequently, the selected type of medium was supplemented with cyclophosphamide, an alkylating anti-neoplastic prodrug that has demonstrated germ cell toxicity after its bioactivation in the liver, and added to chip-based co-cultures to replicate a human liver-testis systemic interaction in vitro. Single chip-based testicular organoids were used as a control. Experiments were performed with three biological replicates unless otherwise stated. PARTICIPANTS/MATERIALS, SETTING, METHODS The metabolic activity was determined as glucose consumption and lactate production. The cell viability was measured as lactate dehydrogenase activity in the medium. Additionally, immunohistochemical and real-time quantitative PCR end-point analyses were performed for apoptosis, proliferation and cell-specific phenotypical and functional markers. The functionality of Sertoli and Leydig cells in testicular spheroids was specifically evaluated by measuring daily inhibin B and testosterone release, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Co-culture in multi-organ chips with liver spheroid-specific medium better supported the metabolic activity of the cultured tissues compared to other media tested. The liver spheroids did not show significantly different behaviour during co-culture compared to that in single culture on multi-organ-chips. The testicular organoids also developed accordingly and produced higher inhibin B but lower testosterone levels than the static culture in plates with testicular organoid-specific medium. By comparison, testosterone secretion by testicular organoids cultured individually on multi-organ-chips reached a similar level as the static culture at Day 7. This suggests that the liver spheroids have metabolised the steroids in the co-cultures, a naturally occurring phenomenon. The addition of cyclophosphamide led to upregulation of specific cytochromes in liver spheroids and loss of germ cells in testicular organoids in the multi-organ-chip co-cultures but not in single-testis culture. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of biological replicates included in this study was relatively small due to the limited availability of individual donor testes and the labour-intensive nature of multi-organ-chip co-cultures. Moreover, testicular organoids and liver spheroids are miniaturised organ equivalents that capture key features, but are still simplified versions of the native tissues. Also, it should be noted that only the prodrug cyclophosphamide was administered. The final concentration of the active metabolite was not measured. WIDER IMPLICATIONS OF THE FINDINGS This co-culture model responds to the request of setting up a specific tool that enables the testing of candidate reprotoxic substances with the possibility of human biotransformation. It further allows the inclusion of other human tissue equivalents for chemical risk assessment on the systemic level. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by research grants from the Scientific Research Foundation Flanders (FWO), Universitair Ziekenhuis Brussel (scientific fund Willy Gepts) and the Vrije Universiteit Brussel. Y.B. is a postdoctoral fellow of the FWO. U.M. is founder, shareholder and CEO of TissUse GmbH, Berlin, Germany, a company commercializing the Multi-Organ-Chip platform systems used in the study. The other authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Y Baert
- Biology of the Testis (BITE) Research Group, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - I Ruetschle
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| | - W Cools
- Interfaculty Center Data Processing and Statistics (ICDS), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - A Oehme
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| | - A Lorenz
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| | - U Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| | - E Goossens
- Biology of the Testis (BITE) Research Group, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - I Maschmeyer
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
3
|
Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Mol Hum Reprod 2021; 26:179-192. [PMID: 31977028 DOI: 10.1093/molehr/gaaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.
Collapse
Affiliation(s)
- Swati Sharma
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Bastien Venzac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Thomas Burgers
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Sakib S, Voigt A, Goldsmith T, Dobrinski I. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz011. [PMID: 31463083 PMCID: PMC6705190 DOI: 10.1093/eep/dvz011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 05/05/2023]
Abstract
Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.
Collapse
Affiliation(s)
- Sadman Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Anna Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Taylor Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
- Correspondence address. Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Room 404, Heritage Medical Research Building, 3300 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada. Tel: 4032106523; Fax: 4032108821; E-mail:
| |
Collapse
|
5
|
Baert Y, Rombaut C, Goossens E. Scaffold-Based and Scaffold-Free Testicular Organoids from Primary Human Testicular Cells. Methods Mol Biol 2019; 1576:283-290. [PMID: 28674937 DOI: 10.1007/7651_2017_48] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organoid systems take advantage of the self-organizing capabilities of cells to create diverse multi-cellular tissue surrogates that constitute a powerful novel class of biological models. Clearly, the formation of a testicular organoid (TO) in which human spermatogenesis can proceed from a single-cell suspension would exert a tremendous impact on research and development, clinical treatment of infertility, and screening of potential drugs and toxic agents. Recently, we showed that primary adult and pubertal human testicular cells auto-assembled in TOs either with or without the support of a natural testis scaffold. These mini-tissues harboured both the spermatogonial stem cells and their important niche cells, which retained certain specific functions during long-term culture. As such, human TOs might advance the development of a system allowing human in vitro spermatogenesis. Here we describe the methodology to make scaffold-based and scaffold-free TOs.
Collapse
Affiliation(s)
- Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
| | - Charlotte Rombaut
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
6
|
Yin L, Wei H, Liang S, Yu X. From the Cover: An Animal-Free In Vitro Three-Dimensional Testicular Cell Coculture Model for Evaluating Male Reproductive Toxicants. Toxicol Sci 2017; 159:307-326. [PMID: 28962518 PMCID: PMC6074874 DOI: 10.1093/toxsci/kfx139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary testicular cell coculture model has been used to evaluate testicular abnormalities during development, and was able to identify the testicular toxicity of phthalates. However, the primary testicular cell coculture model has disadvantages in employing animals for the isolation of testicular cells, and the complicated isolation procedure leads to inconsistent results. We developed an invitro testicular coculture model from rodent testicular cell lines, including spermatogonial cells, Sertoli cells, and Leydig cells with specified cell density and extracellular matrix (ECM) composition. Using comparative high-content analysis of F-actin cytoskeletal structure between the coculture and single cell culture models, we demonstrated a 3D structure of the coculture, which created an invivo-like niche, and maintained and supported germ cells within a 3D environment. We validated this model by discriminating between reproductive toxicants and nontoxicants among 32 compounds in comparison to the single cell culture models. Furthermore, we conducted a comparison between the invitro (IC50) and invivo reproductive toxicity testing (lowest observed adverse effect level on reproductive system). We found the invitro coculture model could classify the tested compounds into 4 clusters, and identify the most toxic reproductive substances, with high concordance, sensitivity, and specificity of 84%, 86.21%, and 100%, respectively. We observed a strong correlation of IC50 between the invitro coculture model and the invivo testing results. Our results suggest that this novel invitro coculture model may be useful for screening testicular toxicants and prioritize chemicals for further assessment in the future.
Collapse
Affiliation(s)
- Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, Georgia
- ReproTox Biotech LLC, Athens 30602, Georgia
| | - Hongye Wei
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, Georgia
| | - Shenxuan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, Georgia
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, Georgia
| |
Collapse
|
7
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Baert Y, De Kock J, Alves-Lopes JP, Söder O, Stukenborg JB, Goossens E. Primary Human Testicular Cells Self-Organize into Organoids with Testicular Properties. Stem Cell Reports 2017; 8:30-38. [PMID: 28017656 PMCID: PMC5233407 DOI: 10.1016/j.stemcr.2016.11.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
So far, successful de novo formation of testicular tissue followed by complete spermatogenesis in vitro has been achieved only in rodents. Our findings reveal that primary human testicular cells are able to self-organize into human testicular organoids (TOs), i.e., multi-cellular tissue surrogates, either with or without support of a biological scaffold. Despite lacking testis-specific topography, these mini-tissues harbored spermatogonia and their important niche cells, which retained specific functionalities during long-term culture. These observations indicate the posibility of in vitro re-engineering of a human testicular microenvironment from primary cells. Human TOs might help in the development of a biomimetic testicular model that would exert a tremendous impact on research and development, clinical treatment of infertility, and screening in connection with drug discovery and toxicology.
Collapse
Affiliation(s)
- Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - João P Alves-Lopes
- Pediatric Endocrinology Unit; Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden
| | - Olle Söder
- Pediatric Endocrinology Unit; Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit; Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
9
|
Zeller P, Legendre A, Jacques S, Fleury MJ, Gilard F, Tcherkez G, Leclerc E. Hepatocytes cocultured with Sertoli cells in bioreactor favors Sertoli barrier tightness in rat. J Appl Toxicol 2016; 37:287-295. [DOI: 10.1002/jat.3360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023]
Affiliation(s)
- P. Zeller
- Biomécanique et Bioingénierie, Centre de recherche Royallieu; Sorbonne universités, Université de Technologie de Compiègne, CNRS, UMR 7338; Compiègne cedex France
- INSERM U1193, Physiopathogénèse et Traitement des Maladies du Foie; Hôpital Paul Brousse, bâtiment Lavoisier; Villejuif Cedex France
| | - A. Legendre
- Biomécanique et Bioingénierie, Centre de recherche Royallieu; Sorbonne universités, Université de Technologie de Compiègne, CNRS, UMR 7338; Compiègne cedex France
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PRP-HOM, SRBE, LRTOX; Fontenay-aux-Roses Cedex France
| | - S. Jacques
- INSERM U1016, Plate-forme génomique; institut Cochin, 22 rue Méchain; Paris France
| | - M. J. Fleury
- Biomécanique et Bioingénierie, Centre de recherche Royallieu; Sorbonne universités, Université de Technologie de Compiègne, CNRS, UMR 7338; Compiègne cedex France
| | - F. Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA; Saclay Plant Sciences; Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité; France
| | - G. Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment; Australian National University; Canberra ACT Australia
| | - E. Leclerc
- Biomécanique et Bioingénierie, Centre de recherche Royallieu; Sorbonne universités, Université de Technologie de Compiègne, CNRS, UMR 7338; Compiègne cedex France
- CNRS-LIMMS-UMI 2820; Institute of Industrial Science, University of Tokyo; Meguro ku Japan
| |
Collapse
|
10
|
Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015; 329:10-20. [DOI: 10.1016/j.tox.2015.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
|