1
|
Sharma S, Pandey G. Understanding the impact of triazoles on female fertility and embryo development: Mechanisms and implications. Toxicol Rep 2025; 14:101948. [PMID: 39996041 PMCID: PMC11848504 DOI: 10.1016/j.toxrep.2025.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Triazoles are among the most widely used fungicides that were launched in 1980s and are one of the most important pesticide groups used in agriculture as plant growth regulators and stress protectors. Triazoles are also frequently used in the pharmaceutical industry to treat fungal and bacterial infections as well as to treat and prevent some forms of pneumonia. Humans are normally exposed to triazoles through food, water, and medications, which raises concerns about their potential adverse effects on health. Therefore, this review was planned to examine the impact of triazole fungicides on female fertility, as well as their teratogenic and embryotoxic effects. Various search engines such as PubMed, Google Scholar, Elsevier, IEEE were used to search the relevant articles published between 2006 and 2024 using the following keywords: "azoles," "female infertility," "reproductive toxicity," "teratogenicity," "triazoles," and "embryo toxicity." The findings suggest that triazoles might negatively affect female fertility and embryonic development through multiple mechanisms including inhibition or interference with key enzymes such as CYP17A1 and CYP19A1 (aromatase) involved in steroid hormone synthesis, endocrine disruption, oxidative stress, disruption of signaling pathways, and apoptosis. This review consolidates current knowledge on the teratogenic and embryotoxic properties of triazole fungicides, providing a comprehensive understanding of their health implications and addressing critical research gaps.
Collapse
Affiliation(s)
- Sonal Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan 302020, India
| | - Geeta Pandey
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan 302020, India
| |
Collapse
|
2
|
Xie G, Zhou Y, Wang L, Wang Y, Zeng H, Wang J, Li X. Association between Phthalate exposure and Reproductive Health in Patients Undergoing Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis. Reprod Toxicol 2025:108948. [PMID: 40414322 DOI: 10.1016/j.reprotox.2025.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/08/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
This systematic review and meta-analysis synthesizes current literature examining the relationship between phthalate exposure and reproductive health in patients undergoing assisted reproductive treatment (ART). We conducted a comprehensive search across multiple databases, including PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), China Science and Technology Journal Database (VIP), and Wanfang databases. From 16 relevant publications identified, five studies were included in the systematic review and 11 in the meta-analysis. Our findings indicate that most of the 18 phthalate metabolites analyzed demonstrated negative associations with reproductive health outcomes in ART patients. High molecular weight phthalates, particularly mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), were most frequently linked to adverse outcomes, followed by metabolites such as mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP). Both high and low molecular weight phthalates, including monoethyl phthalate (MEP) and MiBP, were correlated with negative reproductive outcomes. However, no significant associations were observed between mono-2-ethyl-5-hydroxyhexyl terephthalate (MEHHTP) or mono-3-hydroxybutyl phthalate (MHBP) and reproductive health parameters. Our analysis suggests that phthalate exposure may adversely affect fertility, hormone levels, and gamete quality, while also being associated with pregnancy complications and oxidative stress. These findings underscore the need for further large-scale studies to confirm these relationships and their clinical implications.
Collapse
Affiliation(s)
- Guangmei Xie
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China.
| | - Yongjia Zhou
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Li Wang
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China
| | - Yan Wang
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China
| | - Haijing Zeng
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China
| | - Jialing Wang
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China
| | - Xinyan Li
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Province, 730050, China
| |
Collapse
|
3
|
Montévil M, Schaeberle C, Boberg J, Christiansen S, Soto AM. Quantitative analysis of endocrine disruption by ketoconazole and diethylstilbestrol in rat mammary gland development. Reprod Toxicol 2025; 135:108929. [PMID: 40294661 DOI: 10.1016/j.reprotox.2025.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Endocrine disruptors alter mammary gland development, impair the ability to nourish offspring, and increase the cancer risk in animal models. Epidemiological studies reveal trends towards early mammary development, nursing problems, and breast cancer in younger women. Morphological changes in mouse postnatal mammary gland development are considered sensitive markers of endocrine disruption. While the mouse mammary gland is easily amenable to morphometric measurements from the fetal stage to full maturity, the rat mammary gland grows more conspicuously into the third dimension, hindering conventional morphometric analysis. However, since rats are more commonly used in international toxicological reproductive studies, it would be beneficial to include mammary gland whole-mount analysis in these studies. Using our quantitative software to perform computer-driven analysis of the rat mammary epithelium we examined the effects of gestational and postnatal exposure to ketoconazole, an antifungal medication that affects steroidogenesis, and to the estrogen diethylstilbestrol in the mammary glands of 6- and 22-day-old females. Both treatments produced effects at both ages; the epithelium was smaller and less complex in exposed animals compared to controls. Global analysis with the permutation test showed that morphological evaluation of the PND22 mammary gland is sensitive to endocrine disruption and possibly non-monotonic. In addition to revealing that ketoconazole altered the mammary gland structure, these results suggest that for future toxicology studies, day 22 (at weaning) is more suitable than day 6 because it showed significant measurements and trends. If the collection of mammary glands is added to existing international test methods, PND22 could be a relevant time point.
Collapse
Affiliation(s)
- Maël Montévil
- Centre Cavaillès, République des Savoirs UAR 3608, École Normale Supérieure and CNRS, France
| | | | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Ana M Soto
- Centre Cavaillès, République des Savoirs UAR 3608, École Normale Supérieure and CNRS, France; Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
4
|
Vazakidou P, Bouftas N, Heinzelmann M, Johansson HKL, Svingen T, Leonards PEG, van Duursen MBM. Minor changes to circulating steroid hormones in female rats after perinatal exposure to diethylstilbestrol or ketoconazole. Reprod Toxicol 2024; 130:108726. [PMID: 39326550 DOI: 10.1016/j.reprotox.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Current chemical test strategies lack sensitive markers for detecting female reproductive toxicity caused by endocrine disrupting chemicals (EDCs). In search of a potentially sensitive readout, the steroidogenic disrupting effects of the well-known EDCs ketoconazole (KTZ) and diethylstilbestrol (DES) were investigated in vitro and on circulating steroid hormones in perinatally exposed female Sprague-Dawley rats. Twenty-one steroid hormones were analysed using LC-MS/MS in plasma from female rat offspring at postnatal day (PD) 6, 14, 22, 42 and 90. Most circulating steroid hormone levels increased with age except for estrone (E1), estradiol (E2) and backdoor pathway androsterone (ANDROST), which decreased after PD 22. Perinatal exposure to DES did not affect circulating steroid hormone levels at any dose or age compared to controls. KTZ exposure resulted in dose-dependent increase of corticosterone (CORTICO) at PD 6 and PD 14, with statistical significance only at PD 14. In the in vitro gold standard H295R steroidogenesis assay, twenty-one steroid hormones were measured instead of only T and E2. DES had subtle effects on steroidogenesis, whereas KTZ decreased most steroid hormones, but increased CORTICO, progesterone (P4), estriol (E3) initially (around 0.1-1 µM) before decreasing. Our data suggests that circulating steroidomic profiling may not be a sensitive readout for EDC-induced female reproductive toxicity. Further studies are needed to associate H295R assay steroidomic profiles with in vivo profiles, especially in target tissues such as adrenals or gonads. Expanding the H295R steroidogenic assay to include a comprehensive steroidomic profile may enhance its regulatory applicability.
Collapse
Affiliation(s)
- Paraskevi Vazakidou
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Nora Bouftas
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Manuel Heinzelmann
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Hanna K L Johansson
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Pim E G Leonards
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Majorie B M van Duursen
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
5
|
Bobic L, Harbolic A, Warner GR. Reproductive & developmental toxicity of quaternary ammonium compounds†. Biol Reprod 2024; 111:742-756. [PMID: 38959857 PMCID: PMC11473915 DOI: 10.1093/biolre/ioae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Quaternary ammonium compounds are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, quaternary ammonium compounds have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. Quaternary ammonium compounds are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of quaternary ammonium compounds in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday quaternary ammonium compound exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of quaternary ammonium compounds on reproduction are largely limited to high-dose studies, which may not be predictive of low-dose, daily exposure, especially as quaternary ammonium compounds may be endocrine-disrupting chemicals. This review analyzes recent studies on quaternary ammonium compound effects on reproductive health, identifies knowledge gaps, and recommends future directions in quaternary ammonium compound-related research. Summary Sentence Quaternary ammonium compounds, a class of disinfecting compounds that have skyrocketed in usage during the COVID-19 pandemic, are emerging as reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Leyla Bobic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Allison Harbolic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
6
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
7
|
Evangelista S, Vazakidou P, Koekkoek J, Heinzelmann MT, Lichtensteiger W, Schlumpf M, Tresguerres JAF, Linillos-Pradillo B, van Duursen MBM, Lamoree MH, Leonards PEG. High throughput LC-MS/MS method for steroid hormone analysis in rat liver and plasma - unraveling methodological challenges. Talanta 2024; 266:124981. [PMID: 37516072 DOI: 10.1016/j.talanta.2023.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Comprehensive reference data for steroid hormones are lacking in rat models, particularly for early developmental stages and unconventional matrices as the liver. Therefore, we developed and validated an enzymatic, solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify a panel of 23 steroid hormones in liver and plasma from adult and neonatal rats. Our approach tackles methodological challenges, focusing on undesired byproducts associated with specific enzymatic treatment, and enables a thorough assessment of potential interferences in complex matrices by utilizing unstripped plasma and liver. We propose an optimized enzymatic hydrolysis protocol using a recombinant β-glucuronidase/sulfatase mix (BGS mix) to efficiently deconjugate steroid phase II conjugates. The streamlined sample preparation and high-throughput solid phase extraction in a 96-well plate significantly accelerate sample processing for complex matrices and alarge number of samples. We were able to achieve the necessary sensitivity for accurately measuring the target analytes, particularly estrogens, in small sample sizes of 5-20 mg of liver tissue and 100 μL of plasma. Through the analysis of liver and plasma samples from adult and neonatal rats, including both sexes, our study showed a novel set of steroid hormone reference intervals. This study provides a reliable diagnostic tool for the quantification of steroids in rat models and gives insight in liver and plasma-related steroid hormone dynamics at early developmental stages. In addition, the method covers several pathway intermediates and extend the list of steroid hormones to be investigated.
Collapse
Affiliation(s)
- Sara Evangelista
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paraskevi Vazakidou
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jesus A F Tresguerres
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Linillos-Pradillo
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
8
|
Boberg J, Li T, Christiansen S, Draskau MK, Damdimopoulou P, Svingen T, Johansson HKL. Comparison of female rat reproductive effects of pubertal versus adult exposure to known endocrine disruptors. Front Endocrinol (Lausanne) 2023; 14:1126485. [PMID: 37854179 PMCID: PMC10579898 DOI: 10.3389/fendo.2023.1126485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
A prevailing challenge when testing chemicals for their potential to cause female reproductive toxicity is the lack of appropriate toxicological test methods. We hypothesized that starting a 28-day in vivo toxicity study already at weaning, instead of in adulthood, would increase the sensitivity to detect endocrine disruptors due to the possibility of including assessment of pubertal onset. We compared the sensitivity of two rat studies using pubertal or adult exposure. We exposed the rats to two well-known human endocrine disruptors, the estrogen diethylstilbestrol (DES; 0.003, 0.012, 0.048 mg/kg bw/day) and the steroid synthesis inhibitor ketoconazole (KTZ; 3, 12, 48 mg/kg bw/day). Specifically, we addressed the impact on established endocrine-sensitive endpoints including day of vaginal opening (VO), estrous cyclicity, weights of reproductive organs and ovarian histology. After 28 days of exposure, starting either at weaning or at 9 weeks of age, DES exposure altered estrous cyclicity, reduced ovary weight as well as number of antral follicles and corpora lutea. By starting exposure at weaning, we could detect advanced day of VO in DES-exposed animals despite a lower body weight. Some endpoints were affected mainly with adult exposure, as DES increased liver weights in adulthood only. For KTZ, no effects were seen on time of VO, but adrenal and liver weights were increased in both exposure scenarios, and adult KTZ exposure also stimulated ovarian follicle growth. At first glance, this would indicate that a pubertal exposure scenario would be preferrable as timing of VO may serve as sensitive indicator of endocrine disruption by estrogenic mode of action. However, a higher sensitivity for other endocrine targets may be seen starting exposure in adulthood. Overall, starting a 28-day study at weaning with inclusion of VO assessment would mainly be recommended for substances showing estrogenic potential e.g., in vitro, whereas for other substances an adult exposure scenario may be recommended.
Collapse
Affiliation(s)
- Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tianyi Li
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Monica K. Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
9
|
Li T, Boberg J, Johansson HKL, Di Nisio V, Christiansen S, Svingen T, Damdimopoulou P. Quantitative analysis of ovarian surface photographs as a tool for assessment of chemical effects on folliculogenesis and ovulation in rats. Reprod Toxicol 2023; 119:108416. [PMID: 37268149 DOI: 10.1016/j.reprotox.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Female reproductive toxicity assessments rely on histological evaluation of ovaries by hematoxylin & eosin (H&E)-stained cross-sections. This is time-consuming, labor-intensive and costly, thus alternative methods for ovarian toxicity assessment could be valuable. Here, we report on an improved method based on quantification of antral follicles (AF) and corpora lutea (CL) using ovarian surface photographs, called 'surface photo counting' (SPC). To validate a potential utility for the method to detect effects on folliculogenesis in toxicity studies, we investigated ovaries from rats exposed to two well-known endocrine disrupting chemicals (EDCs), diethylstilbestrol (DES) and ketoconazole (KTZ). Animals were exposed to DES (0.003, 0.012, 0.048 mg/kg body weight (bw)/day) or KTZ (3, 12, 48 mg/kg bw/day) during puberty or adulthood. At the end of the exposure, ovaries were photographed under stereomicroscope and subsequently processed for histological assessments to allow for direct comparison between the two methods by quantifying AF and CL. There was a significant correlation between the SPC and histology methods, albeit CL counts correlated better than AF counts, potentially due to their larger size. Effects of DES and KTZ were found by both methods, suggesting applicability of the SPC method to chemical hazard and risk assessment. Based on our study, we propose that SPC can be employed as a fast and cheap tool for assessment of ovarian toxicity in in vivo studies to prioritize chemical exposure groups for further histological assessment.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, SE-14186 Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, SE-14186 Stockholm, Sweden.
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Hanna K L Johansson
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, SE-14186 Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, SE-14186 Stockholm, Sweden
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, SE-14186 Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, SE-14186 Stockholm, Sweden
| |
Collapse
|
10
|
Tarvainen I, Soto DA, Laws MJ, Björvang RD, Damdimopoulos A, Roos K, Li T, Kramer S, Li Z, Lavogina D, Visser N, Kallak TK, Lager S, Gidlöf S, Edlund E, Papaikonomou K, Öberg M, Olovsson M, Salumets A, Velthut-Meikas A, Flaws JA, Damdimopoulou P. Identification of phthalate mixture exposure targets in the human and mouse ovary in vitro. Reprod Toxicol 2023; 119:108393. [PMID: 37160244 DOI: 10.1016/j.reprotox.2023.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard characterization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.
Collapse
Affiliation(s)
- Ilari Tarvainen
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Delia A Soto
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, United States
| | - Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Tianyi Li
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Stav Kramer
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, United States
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Theodora K Kallak
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Erik Edlund
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Kiriaki Papaikonomou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Competence Centre on Health Technologies, Tartu, Estonia; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, United States
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Wiklund L, Caccia S, Pípal M, Nymark P, Beronius A. Development of a data-driven approach to Adverse Outcome Pathway network generation: a case study on the EATS-modalities. FRONTIERS IN TOXICOLOGY 2023; 5:1183824. [PMID: 37229356 PMCID: PMC10203404 DOI: 10.3389/ftox.2023.1183824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Adverse Outcome Pathways (AOPs) summarize mechanistic understanding of toxicological effects and have, for example, been highlighted as a promising tool to integrate data from novel in vitro and in silico methods into chemical risk assessments. Networks based on AOPs are considered the functional implementation of AOPs, as they are more representative of complex biology. At the same time, there are currently no harmonized approaches to generate AOP networks (AOPNs). Systematic strategies to identify relevant AOPs, and methods to extract and visualize data from the AOP-Wiki, are needed. The aim of this work was to develop a structured search strategy to identify relevant AOPs in the AOP-Wiki, and an automated data-driven workflow to generate AOPNs. The approach was applied on a case study to generate an AOPN focused on the Estrogen, Androgen, Thyroid, and Steroidogenesis (EATS) modalities. A search strategy was developed a priori with search terms based on effect parameters in the ECHA/EFSA Guidance Document on Identification of Endocrine Disruptors. Furthermore, manual curation of the data was performed by screening the contents of each pathway in the AOP-Wiki, excluding irrelevant AOPs. Data were downloaded from the Wiki, and a computational workflow was utilized to automatically process, filter, and format the data for visualization. This study presents an approach to structured searches of AOPs in the AOP-Wiki coupled to an automated data-driven workflow for generating AOPNs. In addition, the case study presented here provides a map of the contents of the AOP-Wiki related to the EATS-modalities, and a basis for further research, for example, on integrating mechanistic data from novel methods and exploring mechanism-based approaches to identify endocrine disruptors (EDs). The computational approach is freely available as an R-script, and currently allows for the (re)-generation and filtering of new AOP networks based on data from the AOP-Wiki and a list of relevant AOPs used for filtering.
Collapse
Affiliation(s)
- Linus Wiklund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Caccia
- Università degli Studi di Milano, Milano, Italy
| | - Marek Pípal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Li T, Vazakidou P, Leonards PEG, Damdimopoulos A, Panagiotou EM, Arnelo C, Jansson K, Pettersson K, Papaikonomou K, van Duursen M, Damdimopoulou P. Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology 2023; 485:153425. [PMID: 36621641 DOI: 10.1016/j.tox.2023.153425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are raising concerns about adverse effects on fertility in women. However, there is a lack of information regarding mechanisms and effects in humans. Our study aims to identify mechanisms of endocrine disruption using two EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ)1. Human ovarian cortical tissue obtained from Caesarean section patients was exposed to 10-9 M - 10-5 M KTZ and 10-10 M - 10-6 M DES in vitro for 6 days. Follicle survival and growth were studied via histology analysis and liquid-chromatography-mass spectrometry-based steroid quantification. RNA-sequencing was performed on COV434, KGN, and primary ovarian cells that were exposed for 24 h. Significantly lower unilaminar follicle densities were observed in DES 10-10 M group, whereas low KTZ exposure reduced secondary follicle density. KTZ 10-5 M reduced levels of pregnenolone and progesterone. RNA-sequencing revealed that 445 and 233 differentially expressed genes (false discovery rate < 0.1) altogether in DES and KTZ exposed groups. Gene set variation analysis showed that both chemicals modulated pathways that are important for folliculogenesis and steroidogenesis. We selected stearoyl-CoA desaturase (SCD) and 7-dehydrocholesterol reductase (DHCR7) for further validation. Up-regulation of both genes in response to KTZ was confirmed by qPCR and in situ RNA hybridization. Further validation with immunofluorescence focused on the expression of SCD in growing follicles in exposed ovarian tissue. In conclusion, SCD may serve as a potential novel human-relevant biomarker of EDC exposure and effects on ovaries.
Collapse
Affiliation(s)
- Tianyi Li
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Paraskevi Vazakidou
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, 14186 Stockholm, Sweden.
| | - Eleftheria Maria Panagiotou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Catarina Arnelo
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Kerstin Jansson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Karin Pettersson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Kiriaki Papaikonomou
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Majorie van Duursen
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| |
Collapse
|
13
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
14
|
Kugathas I, Johansson HKL, Chan Sock Peng E, Toupin M, Evrard B, Darde TA, Boberg J, Draskau MK, Rolland AD, Mazaud-Guittot S, Chalmel F, Svingen T. Transcriptional profiling of the developing rat ovary following intrauterine exposure to the endocrine disruptors diethylstilbestrol and ketoconazole. Arch Toxicol 2023; 97:849-863. [PMID: 36653537 PMCID: PMC9968686 DOI: 10.1007/s00204-023-03442-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.
Collapse
Affiliation(s)
- Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Hanna K. L. Johansson
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Edith Chan Sock Peng
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Maryne Toupin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | | | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Monica K. Draskau
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Antoine D. Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, 35000, Rennes, France.
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Aldawood N, Jalouli M, Alrezaki A, Nahdi S, Alamri A, Alanazi M, Manoharadas S, Alwasel S, Harrath AH. Fetal programming: in utero exposure to acrylamide leads to intergenerational disrupted ovarian function and accelerated ovarian aging. Aging (Albany NY) 2022; 14:6887-6904. [PMID: 36069806 PMCID: PMC9512500 DOI: 10.18632/aging.204269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022]
Abstract
In this study we investigated the effects of multigenerational exposures to acrylamide (ACR) on ovarian function. Fifty-day-old Wistar albino female rats were divided into the control and ACR-treated groups (2.5, 10, and 20 mg/kg/day) from day 6 of pregnancy until delivery. The obtained females of the first (AF1) and second generation (AF2) were euthanized at 4 weeks of age, and plasma and ovary samples were collected. We found that in utero multigenerational exposure to ACR reduced fertility and ovarian function in AF1 through inducing histopathological changes as evidenced by the appearance of cysts and degenerating follicles, oocyte vacuolization, and pyknosis in granulosa cells. TMR red positive cells confirmed by TUNEL assay were mostly detected in the stroma of the treated groups. Estradiol and IGF-1 concentrations significantly decreased as a result of decreased CYP19 gene and its protein expression. However, ACR exposure in AF2 led to early ovarian aging as evidenced by high estradiol and progesterone levels among all treated groups compared to control group, corresponding to the upregulation of the CYP19 gene and protein expression. The apoptotic cells of the stroma were greatly detected compared to that in the control group, whereas no significant difference was reported in ESR1 and ESR2 gene expression. This study confirms the developmental adverse effects of ACR on ovarian function and fertility in at least two consecutive generations. It emphasizes the need for more effective strategies during pregnancy, such as eating healthy foods and avoiding consumption of ACR-rich products, including fried foods and coffee.
Collapse
Affiliation(s)
- Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulkarem Alrezaki
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saber Nahdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Draskau MK, Svingen T. Azole Fungicides and Their Endocrine Disrupting Properties: Perspectives on Sex Hormone-Dependent Reproductive Development. FRONTIERS IN TOXICOLOGY 2022; 4:883254. [PMID: 35573275 PMCID: PMC9097791 DOI: 10.3389/ftox.2022.883254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Azoles are antifungal agents used in both agriculture and medicine. They typically target the CYP51 enzyme in fungi and, by so doing, disrupt cell membrane integrity. However, azoles can also target various CYP enzymes in mammals, including humans, which can disrupt hormone synthesis and signaling. For instance, several azoles can inhibit enzymes of the steroidogenic pathway and disrupt steroid hormone biosynthesis. This is of particular concern during pregnancy, since sex hormones are integral to reproductive development. In other words, exposure to azole fungicides during fetal life can potentially lead to reproductive disease in the offspring. In addition, some azoles can act as androgen receptor antagonists, which can further add to the disrupting potential following exposure. When used as pharmaceuticals, systemic concentrations of the azole compounds can become significant as combatting fungal infections can be very challenging and require prolonged exposure to high doses. Although most medicinal azoles are tightly regulated and used as prescription drugs after consultations with medical professionals, some are sold as over-the-counter drugs. In this review, we discuss various azole fungicides known to disrupt steroid sex hormone biosynthesis or action with a focus on what potential consequences exposure during pregnancy can have on the life-long reproductive health of the offspring.
Collapse
|
17
|
Wu J, Ahmad W, Ouyang Q, Zhang J, Zhang M, Chen Q. Regenerative Flexible Upconversion-Luminescence Biosensor for Visual Detection of Diethylstilbestrol Based on Smartphone Imaging. Anal Chem 2021; 93:15667-15676. [PMID: 34787394 DOI: 10.1021/acs.analchem.1c03325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diethylstilbestrol (DES), an endocrine disrupting chemical, has been linked to serious health problems in humans. In this work, a regenerative flexible upconversion-fluorescence biosensor was designed for the detection of DES in foodstuffs and environmental samples. Herein, amino-functionalized upconversion nanoparticles (UCNPs) were synthesized and immobilized on the surface of a flexible polydimethylsiloxane substrate, which was further modified with complementary DNA and dabcyl-labeled DES aptamer. The fluorescence resonance energy transfer (FRET) system was established for DES detection between dabcyl and UCNPs as the acceptor and donor pairs, respectively, which resulted in the quenching of the upconversion luminescence intensity. In the presence of a target, the FRET system was destroyed and upconversion fluorescence was restored due to the stronger affinity of the aptamer toward DES. The designed biosensor was also implemented in a dual-mode signal readout based on images from a smartphone and spectra from a spectrometer. Under the optimized experimental conditions, good linear relationships were achieved based on imaging (y = 53.055x + 36.175, R2 = 0.9851) and spectral data (y = 1.1582x + 1.9561, R2 = 0.9897). The designed biosensor revealed great practicability with a spiked recovery rate of 77.91-97.95% for DES detection in real environment and foodstuff samples. Furthermore, the proposed biosensor was regenerated seven times with an accuracy threshold of 80% demonstrating its durability and reusability. Thus, this biosensor is expected to be applied to point-of-care and on-site detection based on the developed portable smartphone device and android application.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jingui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
18
|
Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, Svingen T. On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. FRONTIERS IN TOXICOLOGY 2021; 3:730752. [PMID: 35295101 PMCID: PMC8915873 DOI: 10.3389/ftox.2021.730752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.
Collapse
|