1
|
Mareček F, Terrapon N, Janeček Š. Two newly established and mutually related subfamilies GH13_48 and GH13_49 of the α-amylase family GH13. Appl Microbiol Biotechnol 2024; 108:415. [PMID: 38990377 PMCID: PMC11239784 DOI: 10.1007/s00253-024-13251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Currently, the main α-amylase family GH13 has been divided into 47 subfamilies in CAZy, with new subfamilies regularly emerging. The present in silico study was performed to highlight the groups, represented by the maltogenic amylase from Thermotoga neapolitana and the α-amylase from Haloarcula japonica, which are worth of creating their own new GH13 subfamilies. This enlarges functional annotation and thus allows more precise prediction of the function of putative proteins. Interestingly, those two share certain sequence features, e.g. the highly conserved cysteine in the second conserved sequence region (CSR-II) directly preceding the catalytic nucleophile, or the well-preserved GQ character of the end of CSR-VII. On the other hand, the two groups bear also specific and highly conserved positions that distinguish them not only from each other but also from representatives of remaining GH13 subfamilies established so far. For the T. neapolitana maltogenic amylase group, it is the stretch of residues at the end of CSR-V highly conserved as L-[DN]. The H. japonica α-amylase group can be characterized by a highly conserved [WY]-[GA] sequence at the end of CSR-II. Other specific sequence features include an almost fully conserved aspartic acid located directly preceding the general acid/base in CSR-III or well-preserved glutamic acid in CSR-IV. The assumption that these two groups represent two mutually related, but simultaneously independent GH13 subfamilies has been supported by phylogenetic analysis as well as by comparison of tertiary structures. The main α-amylase family GH13 has thus been expanded by two novel subfamilies GH13_48 and GH13_49. KEY POINTS: • In silico analysis of two groups of family GH13 members with characterized representatives • Identification of certain common, but also some specific sequence features in seven CSRs • Creation of two novel subfamilies-GH13_48 and GH13_49 within the CAZy database.
Collapse
Affiliation(s)
- Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, 84551, Bratislava, Slovakia.
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques, UMR CNRS, Aix-Marseille University, USC INRAE, 13288, Marseille, France
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, 84551, Bratislava, Slovakia.
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 91701, Trnava, Slovakia.
| |
Collapse
|
2
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Mishra S, Joghee NN, Jayaraman G. Virgibacillus dokdonensis VITP14 produces α-amylase and protease with broader operational range but with differential thermodynamic stability. Biotechnol Appl Biochem 2020; 69:92-100. [PMID: 33289126 DOI: 10.1002/bab.2084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
Extracellular α-amylase and protease were coproduced from halotolerant Virgibacillus dokdonensis VITP14 with banana peels (2% w/v) as substrate. The pH optima for α-amylase and protease were 6.5 and 7.0 respectively. The temperature optima of α-amylase and protease were 30°C and 50°C respectively. Both the enzymes were active in the presence of various metal ions (1 mM of Ni2+, Ca2+, Ba2+, Sr2+ and Mg2+), detergents (Tween 20, Tween 80, Triton X-100) and other additives (2-mercaptoethanol and urea). Both the enzymes followed Michaelis-Menten type enzyme kinetics with Vmax of 121.40 μmol min-1 ml-1 and 4.17 μmol min-1 ml-1 and Km of 0.59 mg ml-1 and 0.28 mg ml-1 for amylase and protease respectively. Amylase showed higher activation energy for inactivation (75.55 kJ mol-1 compared to 59.70 kJ mol-1 for protease) and higher thermal stability (reflected by longer half-life 53.23 min compared to 0.11 min for protease) at 60°C. The coexistence of amylase and protease could be attributed to the difference in the optimum temperatures of activity and thermal stability of the two enzymes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Satabdi Mishra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Nidhya Nadarajan Joghee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Gurunathan Jayaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
4
|
Tang S, Xu T, Peng J, Zhou K, Zhu Y, Zhou W, Cheng H, Zhou H. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3013-3023. [PMID: 32056215 DOI: 10.1002/jsfa.10332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Mesophilic α-amylases function effectively at low temperatures with high rates of catalysis and require less energy for starch hydrolysis. Bacillus amyloliquefaciens is an essential producer of mesophilic α-amylases. However, because of the existence of the restriction-modification system, introducing exogenous DNAs into wild-type B. amyloliquefaciens is especially tricky. RESULTS α-Amylase producer B. amyloliquefaciens strain Z3 was screened and used as host for endogenous α-amylase gene expression. In vitro methylation was performed in recombinant plasmid pWB980-amyZ3. With the in vitro methylation, the transformation efficiency was increased to 0.96 × 102 colony-forming units μg-1 plasmid DNA. A positive transformant BAZ3-16 with the highest α-amylase secreting capacity was chosen for further experiments. The α-amylase activity of strain BAZ3-16 reached 288.70 ± 16.15 U mL-1 in the flask and 386.03 ± 16.25 U mL-1 in the 5-L stirred-tank fermenter, respectively. The Bacillus amyloliquefaciens Z3 expression system shows excellent genetic stability and high-level extracellular production of the target protein. Moreover, the synergistic interaction of AmyZ3 with amyloglucosidase was determined during the hydrolysis of raw starch. The hydrolysis degree reached 92.34 ± 3.41% for 100 g L-1 raw corn starch and 81.30 ± 2.92% for 100 g L-1 raw cassava starch after 24 h, respectively. CONCLUSION Methylation of the plasmid DNA removes a substantial barrier for transformation of B. amyloliquefaciens strain Z3. Furthermore, the exceptional ability to hydrolyze starch makes α-amylase AmyZ3 and strain BAZ3-16 valuable in the starch industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shizhe Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Tingliang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jing Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Kaiyan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yuling Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wenbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
5
|
Oh HN, Park D, Seong HJ, Kim D, Sul WJ. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol 2019; 57:865-873. [PMID: 31571125 DOI: 10.1007/s12275-019-9217-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
Abstract
Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil's metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.
Collapse
Affiliation(s)
- Han Na Oh
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Doyoung Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dockyu Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
6
|
Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila , reveals high thermostability and an unusual form of dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
8
|
Huang G, Guo Y, Li L, Fan S, Yu Z, Yu D. Genomic structure of the α-amylase gene in the pearl oyster Pinctada fucata and its expression in response to salinity and food concentration. Gene 2016; 587:98-105. [PMID: 27129943 DOI: 10.1016/j.gene.2016.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
Abstract
Amylase is one of the most important digestive enzymes for phytophagous animals. In this study, the cDNA, genomic DNA, and promoter region of the α-amylase gene of the pearl oyster Pinctada fucata were cloned by using reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends, and genome-walking methods. The full-length cDNA sequence was 1704bp long and consisted of a 5'-untranslated region of 17bp, a 3'-untranslated region of 118bp, and a 1569-bp open reading frame encoding a 522-aa polypeptide with a 20-aa signal peptide. Sequence alignment revealed that P. fucata α-amylase (Pfamy) shared the highest identity (91.6%) with Pinctada maxima. The phylogenetic tree showed that it was closely related to P. maxima, based on the amino acid sequences. The genomic DNA was 10850bp and contained nine exons, eight introns, and a promoter region of 3932bp. Several transcriptional factors such as GATA-1, AP-1, and SP1 were predicted in the promoter region. Quantitative RT-PCR assay indicated that the relative expression level of Pfamy was significantly higher in the digestive gland than in other tissues (gonad, gills, muscle, and mantle) (P<0.001). The expression level at salinity 27‰ was significantly higher than that at other salinities (P<0.05). Expression reached a minimum when the algal food concentration was 16×10(4)cells/mL, which was significantly lower than the level observed at 8×10(4)cells/mL and 20×10(4) cells/mL (P<0.05). Our findings provide a genetic basis for further research on Pfamy activity and will facilitate studies on the growth mechanisms and genetic improvement of the pearl oyster P. fucata.
Collapse
Affiliation(s)
- Guiju Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yihui Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ziniu Yu
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Chinese Academy of Sciences, Guangzhou 510300, China
| | - Dahui Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
9
|
Xu Q, Cao Y, Li X, Liu L, Qin S, Wang Y, Cao Y, Xu H, Qiao D. Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1. Protein Expr Purif 2016; 144:62-70. [PMID: 27108054 DOI: 10.1016/j.pep.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022]
Abstract
Intracellular α-amylase was a special glycoside hydrolase in the cytoplasm. We cloned and expressed an intracellular α-amylase, Amy, from Paenibacillus sp. SSG-1. The recombinant enzyme was purified by metal-affinity chromatography, exhibited a molecular mass of 71.7 kDa. Amy exhibited unexpectedly sequence similarity and evolutionary relationships with alpha-glucanotransferase. The docked results of Amy with maltose showed it had similar catalytic residues with α-amylase and glucanotransferase. The substrate specificity experiment showed that Amy could hydrolyze typical substrates into glucose and maltose. It was noteworthy that Amy showed the catalytic capacity of cyclomaltodextrinase and pullulanase. Meanwhile, Amy could transfer sugar molecules and form maltotetraose upon the hydrolysis of substrates. These results indicated that Amy was a novel intracellular α-amylase with distinct catalytic ability characteristics of hydrolyzing glycogen/cyclodextrin/pullulan and transglycosylation. We deduced that Amy may play an important role in utilizing maltooligosaccharides that released from extracellular α-glucan or storage α-glucan (glycogen) in Paenibacillus sp. SSG-1.
Collapse
Affiliation(s)
- Qingrui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Lin Liu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Shishang Qin
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yuhao Wang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
10
|
Zafar A, Aftab MN, ud Din Z, Aftab S, Iqbal I, ul Haq I. Cloning, Purification and Characterization of a Highly Thermostable Amylase Gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol 2015; 178:831-48. [PMID: 26526464 DOI: 10.1007/s12010-015-1912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
A putative α-amylase gene of Thermotoga petrophila was cloned and expressed in Escherichia coli BL21 (DE3) using pET-21a (+), as an expression vector. The growth conditions were optimized for maximal expression of the α-amylase using various parameters, such as pH, temperature, time of induction and addition of an inducer. The optimum temperature and pH for the maximum expression of α-amylase were 22 °C and 7.0 pH units, respectively. Purification of the recombinant enzyme was carried out by heat treatment method, followed by ion exchange chromatography with 34.6-fold purification having specific activity of 126.31 U mg(-1) and a recovery of 56.25%. Molecular weight of the purified α-amylase, 70 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 100 °C temperature and at pH of 7.0. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA indicating that the α-amylase was a metalloenzyme. However, addition of 1% Tween 20, Tween 80 and β-mercaptoethanol constrained the enzyme activity to 87, 96 and 89%, respectively. No considerable effect of organic solvents (ethanol, methanol, isopropanol, acetone and n-butanol) was observed on enzyme activity. With soluble starch as a substrate, the enzyme activity under optimized conditions was 73.8 U mg(-1). The α-amylase enzyme was active to hydrolyse starch forming maltose.
Collapse
Affiliation(s)
- Asma Zafar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zia ud Din
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Saima Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Irfana Iqbal
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Characterization of a thermostable and alkali-stable α-amylase from deep-sea bacterium Flammeovirga pacifica. Int J Biol Macromol 2015. [PMID: 26210035 DOI: 10.1016/j.ijbiomac.2015.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thermostable α-amylase (designated as Amy16) has been previously identified in Flammeovirga pacifica isolated from deep-sea sediments. The DNA sequence of Amy16 exhibited no significant similarity with those of any known protein, including the glycoside hydrolases. Amino acid sequence analysis revealed that Amy16 belonged to GH13 family and possessed a conserved DXEXD motif, which was essential for its hydrolysis activities. The recombinant Amy16 purified with Ni(+) affinity column after its heterologous expression in Escherichia coli cells was most active at 50 °C and retained more than 81% of its initial activity after incubation at 60 °C for 20 min. The optimal pH for Amy16 was determined to be 6.5, and a good tolerance to alkaline environment was observed. Low concentration of Mg(2+), Sr(2+), Na(+) and K(+) slightly increased the activity of Amy16. Results of thin layer chromatography experiments revealed that Amy16 was able to hydrolyse starch into maltose in a time-dependent manner, suggesting that Amy16 is a liquid-type endoenzyme with starch hydrolysis activities. Therefore, our study presented thermostable and alkali-stable Amy16, which may be suitable for use as an additive in detergents.
Collapse
|
12
|
Chen J, Chen X, Dai J, Xie G, Yan L, Lu L, Chen J. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Int J Biol Macromol 2015; 80:200-7. [PMID: 26092061 DOI: 10.1016/j.ijbiomac.2015.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
A Bacillus strain with high productivity of α-amylase isolated from a starch farm was identified as Bacillus amyloliquefaciens. The α-amylase encoding gene amy1 was cloned into pMD18-T vector and amplified in E. coli DH5α. Shuttle vector pP43MNX was reconstructed to obtain vector pP43X for heterologous expression of the α-amylase in B. subtilis WB800. Recombinant enzyme was sufficiently purified by precipitation, gel filtration and anion exchange with a specific activity of 5566 U/mg. The α-amylase sequence contains an open reading frame of 1545 bp, which encodes a protein of 514 amino acid residues with a predicted molecular mass of 58.4 kDa. The enzyme exhibited maximal activity at pH 6.0 and 60 °C. Catalytic efficiency of the recombinant α-amylase was inhibited by Hg(2+), Pb(2+) and Cu(2+), but stimulated by Li(+), Mn(2+) and Ca(2+). The purified enzyme showed decreased activity toward detergents (SDS, Tween 20 and Triton X-100). Compared with production by the wild strain, there was a 1.48-fold increase in the productivity of α-amylase in recombinant B. subtilis WB800.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xianghua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun Dai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guangrong Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luying Yan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lina Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
An CL, Kim MK, Kang TH, Kim J, Kim H, Yun HD. Cloning and biochemical analysis of β-glucoside utilization (bgl) operon without phosphotransferase system in Pectobacterium carotovorum subsp. carotovorum LY34. Microbiol Res 2012; 167:461-9. [DOI: 10.1016/j.micres.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/06/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
|
14
|
Petrus AK, Swithers KS, Ranjit C, Wu S, Brewer HM, Gogarten JP, Pasa-Tolic L, Noll KM. Genes for the major structural components of Thermotogales species' togas revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs. PLoS One 2012; 7:e40236. [PMID: 22768259 PMCID: PMC3387000 DOI: 10.1371/journal.pone.0040236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/03/2012] [Indexed: 11/20/2022] Open
Abstract
The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα) and the porin OmpB (or Ompβ). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.
Collapse
Affiliation(s)
- Amanda K. Petrus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kristen S. Swithers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chaman Ranjit
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richmond, Washington, United States of America
| | - Heather M. Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richmond, Washington, United States of America
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richmond, Washington, United States of America
| | - Kenneth M. Noll
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
15
|
Choi KH, Hwang S, Lee HS, Cha J. Identification of an extracellular thermostable glycosyl hydrolase family 13 α-amylase from Thermotoga neapolitana. J Microbiol 2011; 49:628-34. [PMID: 21887647 DOI: 10.1007/s12275-011-0432-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/09/2011] [Indexed: 10/17/2022]
Abstract
We cloned the gene for an extracellular α-amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6.5 and temperature 75°C and the enzyme was highly thermostable. AmyE hydrolyzed the typical substrates for α-amylase, including soluble starch, amylopectin, and maltooli-gosaccharides. The hydrolytic pattern of AmyE was similar to that of a typical α-amylase; however, unlike most of the calcium (Ca(2+))-dependent α-amylases, the activity of AmyE was unaffected by Ca(2+). The specific activities of AmyE towards various substrates indicated that the enzyme preferred maltooligosaccharides which have more than four glucose residues. AmyE could not hydrolyze maltose and maltotriose. When maltoheptaose was incubated with AmyE at the various time courses, the products consisting of maltose through maltopentaose was evenly formed indicating that the enzyme acts in an endo-fashion. The specific activity of AmyE (7.4 U/mg at 75° C, pH 6.5, with starch as the substrate) was extremely lower than that of other extracellular α-amylases, which indicates that AmyE may cooperate with other highly active extracellular α-amylases for the breakdown of the starch or α-glucans into maltose and maltotriose before transport into the cell in the members of Thermotoga sp.
Collapse
Affiliation(s)
- Kyoung-Hwa Choi
- Department of Microbiology, College of Natural Sciences, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Identification and characterization of a novel thermostable gh-57 gene from metagenomic fosmid library of the Juan de Fuca Ridge hydrothemal vent. Appl Biochem Biotechnol 2011; 164:1323-38. [PMID: 21455739 DOI: 10.1007/s12010-011-9215-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
A novel glycoside hydrolases family 57 gene (gh-57) was found from a metagenomic fosmid library constructed from a black smoker chimney sample 4143-1 from the Mothra hydrothermal vent at the Juan de Fuca Ridge. Sequence and homology analysis using BLAST revealed that it had high similarity to gh-57 family. Conserved domain research revealed that the novel gh-57 contained a Glyco-hydro-57 domain and five conserved regions, including two putative catalytic residues Glu¹⁵⁴ and Asp²⁶³. The three-dimensional features of the protein and its homologue from Pyrococcus horikoshii OT3 known as α-amylase were generated by homology modeling. The gh-57 gene was cloned, expressed, and purified in Escherichia coli using pQE system. Enzyme activity revealed that the recombinant protein could hydrolyze soluble starch and demonstrated amylase activity. It showed an optimal pH of 7.5, an optimal temperature of 90 °C, and its thermostability at 90 °C could remain over 50% enzyme activity for 4 h. The enzyme activity could be increased by DTT and Mg²⁺ while an inhibitory effect was observed with EDTA, ATP, and Ca²⁺. These results showed that the gh-57 gene was a novel thermostable amylase from oceanic microorganisms.
Collapse
|
17
|
A novel thermostable, acidophilic alpha-amylase from a new thermophilic "Bacillus sp. Ferdowsicous" isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Int J Biol Macromol 2010; 46:289-97. [PMID: 20109486 DOI: 10.1016/j.ijbiomac.2010.01.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 11/24/2022]
Abstract
This paper describes the purification and characterization of a novel acidophile alpha-amylase from newly isolated Bacillus sp. Ferdowsicous. The enzyme displayed a molecular weight of 53 kDa and it was stable over a range of pH from 3.5 to 7 with an optimum around 4.5. The optimum temperature for activity was found to be around 70 degrees C and the enzyme remained active to more than 75% up to 75 degrees C for 45 min. The enzyme activity was decreased by Zn(2+)and EDTA but inhibited by Hg(2+), whereas the activity was increased by approximately 15% by Ba(2+) and Fe(2+). Na(+), Mg(2+), K(+), Ca(2+), PMSF, Triton X-100 and beta-mercaptoethanol had any considerable effect on its activity. The enzyme activity on the amylose as substrate was 1.98 times greater than amylopectin. Partial N-terminal sequencing demonstrated no significant similarity with other known alpha-amylases, indicating that the presented enzyme was new. Considering its promising properties, this enzyme can find potential applications in the food industry as well as in laundry detergents.
Collapse
|
18
|
Park KM, Jun SY, Choi KH, Park KH, Park CS, Cha J. Characterization of an exo-acting intracellular alpha-amylase from the hyperthermophilic bacterium Thermotoga neapolitana. Appl Microbiol Biotechnol 2009; 86:555-66. [PMID: 19834705 DOI: 10.1007/s00253-009-2284-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
We cloned and expressed the gene for an intracellular alpha-amylase, designated AmyB, from the hyperthermophilic bacterium Thermotoga neapolitana in Escherichia coli. The putative intracellular amylolytic enzyme contained four regions that are highly conserved among glycoside hydrolase family (GH) 13 alpha-amylases. AmyB exhibited maximum activity at pH 6.5 and 75 degrees C, and its thermostability was slightly enhanced by Ca2+. However, Ca2+ was not required for the activity of AmyB as EDTA had no effect on enzyme activity. AmyB hydrolyzed the typical substrates for alpha-amylase, including soluble starch, amylose, amylopectin, and glycogen, to liberate maltose and minor amount of glucose. The hydrolytic pattern of AmyB is most similar to those of maltogenic amylases (EC 3.2.1.133) among GH 13 alpha-amylases; however, it can be distinguished by its inability to hydrolyze pullulan and beta-cyclodextrin. AmyB enzymatic activity was negligible when acarbose, a maltotetraose analog in which a maltose residue at the nonreducing end was replaced by acarviosine, was present, indicating that AmyB cleaves maltose units from the nonreducing end of maltooligosaccharides. These results indicate that AmyB is a new type exo-acting intracellular alpha-amylase possessing distinct characteristics that distinguish it from typical alpha-amylase and cyclodextrin-/pullulan-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Kyung-Min Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Nikapitiya C, Oh C, Whang I, Kim CG, Lee YH, Kim SJ, Lee J. Molecular characterization, gene expression analysis and biochemical properties of α-amylase from the disk abalone, Haliotis discus discus. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:271-81. [DOI: 10.1016/j.cbpb.2008.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
|
20
|
Role of the phenylalanine 260 residue in defining product profile and alcoholytic activity of the α-amylase AmyA from Thermotoga maritima. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
VanFossen AL, Lewis DL, Nichols JD, Kelly RM. Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes. Ann N Y Acad Sci 2008; 1125:322-37. [DOI: 10.1196/annals.1419.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Cho KM, Kim EJ, Math RK, Asraful Islam SM, Hong SJ, Kim JO, Shin KJ, Lee YH, Kim H, Yun HD. Cloning of Isoamylase Gene of Pectobacterium carotovorum subsp. carotovorum LY34 and Identification of Essential Residues of Enzyme. ACTA ACUST UNITED AC 2007. [DOI: 10.5352/jls.2007.17.9.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hong SY, Cho KM, Kim YH, Hong SJ, Cho SJ, Cho YU, Kim H, Yun HD. Cloning and Identification of Essential Residues for Thermostable β-glucosidase (BgIB) from Thermotoga maritima. ACTA ACUST UNITED AC 2006. [DOI: 10.5352/jls.2006.16.7.1148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Ballschmiter M, Fütterer O, Liebl W. Identification and characterization of a novel intracellular alkaline alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 2006; 72:2206-11. [PMID: 16517673 PMCID: PMC1393205 DOI: 10.1128/aem.72.3.2206-2211.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene for a novel alpha-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 alpha-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an alpha-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90 degrees C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.
Collapse
Affiliation(s)
- Meike Ballschmiter
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
26
|
|
27
|
Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM. An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2005; 187:7267-82. [PMID: 16237010 PMCID: PMC1272978 DOI: 10.1128/jb.187.21.7267-7282.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comprehensive analysis of genome-wide expression patterns during growth of the hyperthermophilic bacterium Thermotoga maritima on 14 monosaccharide and polysaccharide substrates was undertaken with the goal of proposing carbohydrate specificities for transport systems and putative transcriptional regulators. Saccharide-induced regulons were predicted through the complementary use of comparative genomics, mixed-model analysis of genome-wide microarray expression data, and examination of upstream sequence patterns. The results indicate that T. maritima relies extensively on ABC transporters for carbohydrate uptake, many of which are likely controlled by local regulators responsive to either the transport substrate or a key metabolic degradation product. Roles in uptake of specific carbohydrates were suggested for members of the expanded Opp/Dpp family of ABC transporters. In this family, phylogenetic relationships among transport systems revealed patterns of possible duplication and divergence as a strategy for the evolution of new uptake capabilities. The presence of GC-rich hairpin sequences between substrate-binding proteins and other components of Opp/Dpp family transporters offers a possible explanation for differential regulation of transporter subunit genes. Numerous improvements to T. maritima genome annotations were proposed, including the identification of ABC transport systems originally annotated as oligopeptide transporters as candidate transporters for rhamnose, xylose, beta-xylan, and beta-glucans and identification of genes likely to encode proteins missing from current annotations of the pentose phosphate pathway. Beyond the information obtained for T. maritima, the present study illustrates how expression-based strategies can be used for improving genome annotation in other microorganisms, especially those for which genetic systems are unavailable.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
An CL, Lim WJ, Hong SY, Shin EC, Kim MK, Lee JR, Park SR, Woo JG, Lim YP, Yun HD. Structural and biochemical analysis of the asc operon encoding 6-phospho-beta-glucosidase in Pectobacterium carotovorum subsp. carotovorum LY34. Res Microbiol 2004; 156:145-53. [PMID: 15748978 DOI: 10.1016/j.resmic.2004.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
An asc operon of Pectobacterium carotovorum subsp. carotovorum LY34 (Pcc LY34) was isolated from a genomic library in a screen for beta-glucosidase activities. Sequence analysis of the 5618-bp cloned DNA fragment (accession number AY622309) showed three open reading frames (ascG, ascF, and ascB) that are predicted to encode 375, 486, and 476 amino acid proteins, respectively. The AscG ORF shared a high similarity with the Escherichia coli AscG repressor. The AscF ORF shared 81% identity with the E. coli AscF PTS enzyme II(asc), while the AscB ORF was highly similar to 6-phospho-beta-glucosidases and is a member of the glycosyl hydrolase family 1. The purified AscB enzyme hydrolyzed salicin, arbutin, pNPG, and MUG. It exhibited maximal activity at pH 7.0 and 40 degrees C, and its activity was enhanced in the presence of Mg(2+) and Ca(2+). The molecular weight of the enzyme was estimated to be 53 000 Da by SDS-PAGE. Two conserved glutamate residues (Glu(182) and Glu(374)) were shown to be important for AscB activity.
Collapse
Affiliation(s)
- Chang Long An
- Division of Applied Life Science, Gyeongsang National University, Chinju 660-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|