1
|
Lavado-Benito C, Murillo J, Martínez-Gil M, Ramos C, Rodríguez-Moreno L. GacA reduces virulence and increases competitiveness in planta in the tumorigenic olive pathogen Pseudomonas savastanoi pv. savastanoi. FRONTIERS IN PLANT SCIENCE 2024; 15:1347982. [PMID: 38375080 PMCID: PMC10875052 DOI: 10.3389/fpls.2024.1347982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024]
Abstract
GacS/GacA is a widely distributed two-component system playing an essential role as a key global regulator, although its characterization in phytopathogenic bacteria has been deeply biased, being intensively studied in pathogens of herbaceous plants but barely investigated in pathogens of woody hosts. P. savastanoi pv. savastanoi (Psv) is characterized by inducing tumours in the stem and branches of olive trees. In this work, the model strain Psv NCPPB 3335 and a mutant derivative with a complete deletion of gene gacA were subjected to RNA-Seq analyses in a minimum medium and a medium mimicking in planta conditions, accompanied by RT-qPCR analyses of selected genes and phenotypic assays. These experiments indicated that GacA participates in the regulation of at least 2152 genes in strain NCPPB 3335, representing 37.9 % of the annotated CDSs. GacA also controls the expression of diverse rsm genes, and modulates diverse phenotypes, including motility and resistance to oxidative stresses. As occurs with other P. syringae pathovars of herbaceous plants, GacA regulates the expression of the type III secretion system and cognate effectors. In addition, GacA also regulates the expression of WHOP genes, specifically encoded in P. syringe strains isolated from woody hosts, and genes for the biosynthesis of phytohormones. A gacA mutant of NCPPB 3335 showed increased virulence, producing large immature tumours with high bacterial populations, but showed a significantly reduced competitiveness in planta. Our results further extend the role of the global regulator GacA in the virulence and fitness of a P. syringae pathogen of woody hosts.
Collapse
Affiliation(s)
- Carla Lavado-Benito
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Marta Martínez-Gil
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
2
|
Pintado A, Domínguez-Cerván H, Pastor V, Vincent M, Lee SG, Flors V, Ramos C. Allelic variation in the indoleacetic acid-lysine synthase gene of the bacterial pathogen Pseudomonas savastanoi and its role in auxin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1176705. [PMID: 37346122 PMCID: PMC10280071 DOI: 10.3389/fpls.2023.1176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Indole-3-acetic acid (IAA) production is a pathogenicity/virulence factor in the Pseudomonas syringae complex, including Pseudomonas savastanoi. P. savastanoi pathovars (pvs.) genomes contain the iaaL gene, encoding an enzyme that catalyzes the biosynthesis of the less biologically active compound 3-indole-acetyl-ϵ-L-lysine (IAA-Lys). Previous studies have reported the identification of IAA-Lys in culture filtrates of P. savastanoi strains isolated from oleander (pv. nerii), but the conversion of IAA into a conjugate was not detectable in olive strains (pv. savastanoi). In this paper, we show the distribution of iaaL alleles in all available P. savastanoi genomes of strains isolated from woody hosts. Most strains encode two different paralogs, except for those isolated from broom (pv. retacarpa), which contain a single allele. In addition to the three previously reported iaaL alleles (iaaL Psv, iaaL Psn and iaaL Pto), we identified iaaL Psf, an exclusive allele of strains isolated from ash (pv. fraxini). We also found that the production of IAA-Lys in P. savastanoi pv. savastanoi and pv. nerii depends on a functional iaaL Psn allele, whereas in pv. fraxini depends on iaaL Psf. The production of IAA-Lys was detected in cultures of an olive strain heterologously expressing IaaLPsn-1, IaaLPsf-1 and IaaLPsf-3, but not when expressing IaaLPsv-1. In addition, Arabidopsis seedlings treated with the strains overproducing the conjugate, and thus reducing the free IAA content, alleviated the root elongation inhibitory effect of IAA. IAA-Lys synthase activity assays with purified allozymes confirmed the functionality and specificity of lysine as a substrate of IaaLPsn-1 and IaaLPsf-3, with IaaLPsf-3 showing the highest catalytic efficiency for both substrates. The IAA-Lys synthase activity of IaaLPsn-1 was abolished by the insertion of two additional tyrosine residues encoded in the inactive allozyme IaaLPsv-1. These results highlight the relevance of allelic variation in a phytohormone-related gene for the modulation of auxin production in a bacterial phytopathogen.
Collapse
Affiliation(s)
- Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Hilario Domínguez-Cerván
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Marissa Vincent
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
3
|
Caballo-Ponce E, Pintado A, Moreno-Pérez A, Murillo J, Smalla K, Ramos C. Pseudomonas savastanoi pv. mandevillae pv. nov., a Clonal Pathogen Causing an Emerging, Devastating Disease of the Ornamental Plant Mandevilla spp. PHYTOPATHOLOGY 2021; 111:1277-1288. [PMID: 33428471 DOI: 10.1094/phyto-11-20-0526-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Commercial production of the ornamental plant dipladenia (Mandevilla spp.) is threatened by dipladenia leaf and stem spot disease, caused by the bacterium Pseudomonas savastanoi. P. savastanoi includes four pathovars of woody hosts differentiated by a characteristic host range in olive, oleander, ash, and broom plants. However, isolates from dipladenia have not been ascribed to any particular lineage or P. savastanoi pathovar. Here we report that isolates from dipladenia represent a distinct, clonal lineage. First, dipladenia isolates display very similar plasmid profiles, including a plasmid encoding the iaaM gene for biosynthesis of indole-3-acetic acid. Second, multilocus sequence analysis and core genome single-nucleotide polymorphisms phylogenies showed a monophyletic origin for dipladenia isolates, which cluster with isolates from oleander (pathovar nerii) in a distinct clade well separated from other P. savastanoi strains. Metabolic profiling and cross-pathogenicity tests in olive, oleander, ash, broom, and dipladenia clearly distinguished dipladenia isolates from the four P. savastanoi pathovars. Comparative genomics of the draft genome sequence of the dipladenia strain Ph3 with the other four pathovars showed that Ph3 encodes very few strain-specific genes and a similar set of virulence genes to pv. nerii, including its repertoire of type III secretion system effectors. However, hierarchical clustering based on the catalog of effectors and their allelic variants clearly separated Ph3 from pv. nerii strains. Based on their distinctive pathogenicity profile, we propose a de novo pathovar for P. savastanoi isolates from dipladenia, P. savastanoi pv. mandevillae pv. nov., for which strain Ph3 (CFBP 8832PT) has been designated as the pathotype strain.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, E-31192 Mutilva Baja, Spain
| | - Kornelia Smalla
- Julius Kühn-Institute Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, D-38104 Braunschweig, Germany
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| |
Collapse
|
4
|
Moreno-Pérez A, Ramos C, Rodríguez-Moreno L. HrpL Regulon of Bacterial Pathogen of Woody Host Pseudomonas savastanoi pv. savastanoi NCPPB 3335. Microorganisms 2021; 9:microorganisms9071447. [PMID: 34361883 PMCID: PMC8303149 DOI: 10.3390/microorganisms9071447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Pseudomonas savastanoi species comprises a group of phytopathogenic bacteria that cause symptoms of disease in woody hosts. This is mediated by the rapid activation of a pool of virulence factors that suppress host defences and hijack the host’s metabolism to the pathogen’s benefit. The hrpL gene encodes an essential transcriptional regulator of virulence functions, including the type III secretion system (T3SS), in pathogenic bacteria. Here, we analyzed the contribution of HrpL to the virulence of four pathovars (pv.) of P. savastanoi isolated from different woody hosts (oleander, ash, broom, and dipladenia) and characterized the HrpL regulon of P. savastanoi pv. savastanoi NCPPB 3335 using two approaches: whole transcriptome sequencing (RNA-seq) and the bioinformatic prediction of candidate genes containing an hrp-box. Pathogenicity tests carried out for the P. savastanoi pvs. showed that HrpL was essential for symptom development in both non-host and host plants. The RNA-seq analysis of the HrpL regulon in P. savastanoi revealed a total of 53 deregulated genes, 49 of which were downregulated in the ΔhrpL mutant. Bioinformatic prediction resulted in the identification of 50 putative genes containing an hrp-box, 16 of which were shared with genes previously identified by RNA-seq. Although most of the genes regulated by HrpL belonged to the T3SS, we also identified some genes regulated by HrpL that could encode potential virulence factors in P. savastanoi.
Collapse
Affiliation(s)
- Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
- Correspondence: (C.R.); (L.R.-M.); Tel.: +34-952-132-146 (C.R.); +34-952-132-131 (L.R.-M.)
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
- Correspondence: (C.R.); (L.R.-M.); Tel.: +34-952-132-146 (C.R.); +34-952-132-131 (L.R.-M.)
| |
Collapse
|
5
|
The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms 2021; 9:microorganisms9071388. [PMID: 34202389 PMCID: PMC8304167 DOI: 10.3390/microorganisms9071388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizobacterium Pseudomonas alcaligenes AVO110 exhibits antagonism toward the phytopathogenic fungus Rosellinia necatrix. This strain efficiently colonizes R. necatrix hyphae and is able to feed on their exudates. Here, we report the complete genome sequence of P. alcaligenes AVO110. The phylogeny of all available P. alcaligenes genomes separates environmental isolates, including AVO110, from those obtained from infected human blood and oyster tissues, which cluster together with Pseudomonas otitidis. Core and pan-genome analyses showed that P. alcaligenes strains encode highly heterogenic gene pools, with the AVO110 genome encoding the largest and most exclusive variable region (~1.6 Mb, 1795 genes). The AVO110 singletons include a wide repertoire of genes related to biofilm formation, several of which are transcriptionally modulated by R. necatrix exudates. One of these genes (cmpA) encodes a GGDEF/EAL domain protein specific to Pseudomonas spp. strains isolated primarily from the rhizosphere of diverse plants, but also from soil and water samples. We also show that CmpA has a role in biofilm formation and that the integrity of its EAL domain is involved in this function. This study contributes to a better understanding of the niche-specific adaptations and lifestyles of P. alcaligenes, including the mycophagous behavior of strain AVO110.
Collapse
|
6
|
Añorga M, Pintado A, Ramos C, De Diego N, Ugena L, Novák O, Murillo J. Genes ptz and idi, Coding for Cytokinin Biosynthesis Enzymes, Are Essential for Tumorigenesis and In Planta Growth by P. syringae pv. savastanoi NCPPB 3335. FRONTIERS IN PLANT SCIENCE 2020; 11:1294. [PMID: 32973852 PMCID: PMC7472798 DOI: 10.3389/fpls.2020.01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. savastanoi elicits aerial tumors on olive plants and is also able to synthesize large amounts of auxins and cytokinins. The auxin indoleacetic acid was shown to be required for tumorigenesis, but there is only correlational evidence suggesting a role for cytokinins. The model strain NCPPB 3335 contains two plasmid-borne genes coding for cytokinin biosynthesis enzymes: ptz, for an isopentenyl transferase and idi, for an isopentenyl-diphosphate delta-isomerase. Phylogenetic analyses showed that carriage of ptz and idi is not strictly associated with tumorigenic bacteria, that both genes were linked when first acquired by P. syringae, and that a different allele of ptz has been independently acquired by P. syringae pv. savastanoi and closely related bacteria. We generated mutant derivatives of NCPPB 3335 cured of virulence plasmids or with site-specific deletions of genes ptz and/or idi and evaluated their virulence in lignified and micropropagated olive plants. Strains lacking ptz, idi, or both produced tumors with average volumes up to 29 times smaller and reached populations up to two orders of magnitude lower than those induced by strain NCPPB 3335; these phenotypes reverted by complementation with the cloned genes. Trans-zeatin was the most abundant cytokinin in culture filtrates of NCPPB 3335. Deletion of gene ptz abolished biosynthesis of trans-zeatin and dihydrozeatin, whereas a reduced but significant amount of isopentenyladenine was still detected in the medium, suggesting the existence of other genes contributing to cytokinin biosynthesis in P. syringae. Conversely, extracts from strains lacking gene idi contained significantly higher amounts of trans-zeatin than extracts from the wild-type strain but similar amounts of the other cytokinins. This suggests that Idi might promote tumorigenesis by ensuring the biosynthesis of the most active cytokinin forms, their correct balance in planta, or by regulating the expression of other virulence genes. Therefore, gene ptz, but not gene idi, is essential for the biosynthesis of high amounts of cytokinins in culture; however, both ptz and idi are individually essential for the adequate development of tumors on olive plants by Psv NCPPB 3335.
Collapse
Affiliation(s)
- Maite Añorga
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
| |
Collapse
|
7
|
Moreno-Pérez A, Pintado A, Murillo J, Caballo-Ponce E, Tegli S, Moretti C, Rodríguez-Palenzuela P, Ramos C. Host Range Determinants of Pseudomonas savastanoi Pathovars of Woody Hosts Revealed by Comparative Genomics and Cross-Pathogenicity Tests. FRONTIERS IN PLANT SCIENCE 2020; 11:973. [PMID: 32714356 PMCID: PMC7343908 DOI: 10.3389/fpls.2020.00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 05/02/2023]
Abstract
The study of host range determinants within the Pseudomonas syringae complex is gaining renewed attention due to its widespread distribution in non-agricultural environments, evidence of large variability in intra-pathovar host range, and the emergence of new epidemic diseases. This requires the establishment of appropriate model pathosystems facilitating integration of phenotypic, genomic and evolutionary data. Pseudomonas savastanoi pv. savastanoi is a model pathogen of the olive tree, and here we report a closed genome of strain NCPPB 3335, plus draft genome sequences of three strains isolated from oleander (pv. nerii), ash (pv. fraxini) and broom plants (pv. retacarpa). We then conducted a comparative genomic analysis of these four new genomes plus 16 publicly available genomes, representing 20 strains of these four P. savastanoi pathovars of woody hosts. Despite overlapping host ranges, cross-pathogenicity tests using four plant hosts clearly separated these pathovars and lead to pathovar reassignment of two strains. Critically, these functional assays were pivotal to reconcile phylogeny with host range and to define pathovar-specific genes repertoires. We report a pan-genome of 7,953 ortholog gene families and a total of 45 type III secretion system effector genes, including 24 core genes, four genes exclusive of pv. retacarpa and several genes encoding pathovar-specific truncations. Noticeably, the four pathovars corresponded with well-defined genetic lineages, with core genome phylogeny and hierarchical clustering of effector genes closely correlating with pathogenic specialization. Knot-inducing pathovars encode genes absent in the canker-inducing pv. fraxini, such as those related to indole acetic acid, cytokinins, rhizobitoxine, and a bacteriophytochrome. Other pathovar-exclusive genes encode type I, type II, type IV, and type VI secretion system proteins, the phytotoxine phevamine A, a siderophore, c-di-GMP-related proteins, methyl chemotaxis proteins, and a broad collection of transcriptional regulators and transporters of eight different superfamilies. Our combination of pathogenicity analyses and genomics tools allowed us to correctly assign strains to pathovars and to propose a repertoire of host range-related genes in the P. syringae complex.
Collapse
Affiliation(s)
- Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| | - Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Stefania Tegli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali (DAGRI), Laboratorio di Patologia Vegetale Molecolare, University of Florence, Firenze, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| |
Collapse
|
8
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
9
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
10
|
Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, Pizarro-Tobías P, Valverde-Corredor A, Niqui JL, Triviño JC, Roca A, Mercado-Blanco J. Indigenous Pseudomonas spp. Strains from the Olive ( Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes. Front Microbiol 2018. [PMID: 29527195 PMCID: PMC5829093 DOI: 10.3389/fmicb.2018.00277] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive rhizobacteria was assessed, providing valuable information for the future development of formulations based on these strains. A set of actions, from rhizosphere isolation to genome analysis, is proposed and discussed for selecting indigenous rhizobacteria as effective BCAs.
Collapse
Affiliation(s)
| | | | - David Ruano-Rosa
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | - Paloma Pizarro-Tobías
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | | | - José L Niqui
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Juan C Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Valencia, Spain
| | - Amalia Roca
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
11
|
Caballo-Ponce E, van Dillewijn P, Wittich RM, Ramos C. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:113-126. [PMID: 28027024 DOI: 10.1094/mpmi-11-16-0233-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to as WHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335_3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| | - Pieter van Dillewijn
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Regina Michaela Wittich
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Cayo Ramos
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| |
Collapse
|
12
|
Aragon IM, Pérez-Mendoza D, Moscoso JA, Faure E, Guery B, Gallegos MT, Filloux A, Ramos C. Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol 2015; 17:4332-51. [PMID: 25809128 DOI: 10.1111/1462-2920.12856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
The second messenger cyclic di-GMP (c-di-GMP) controls the transition between different lifestyles in bacterial pathogens. Here, we report the identification of DgcP (diguanylate cyclase conserved in Pseudomonads), whose activity in the olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDEF domain. Furthermore, deletion of the dgcP gene revealed that DgcP negatively regulates motility and positively controls biofilm formation in both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseudomonas aeruginosa. Overexpression of the dgcP gene in P. aeruginosa PAK led to increased exopolysaccharide production and upregulation of the type VI secretion system; in turn, it repressed the type III secretion system, which is a hallmark of chronic infections and persistence for P. aeruginosa. Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced their virulence in olive plants and in a mouse acute lung injury model respectively. Our results show that diguanylate cyclase DgcP is a conserved Pseudomonas protein with a role in virulence, and confirm the existence of common c-di-GMP signalling pathways that are capable of regulating plant and human Pseudomonas spp. infections.
Collapse
Affiliation(s)
- Isabel M Aragon
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Facultad de Ciencias, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Área de Genética, Campus de Teatinos, Málaga, E-29010, Spain
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Joana A Moscoso
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Emmanuel Faure
- Pseudomonas aeruginosa host-pathogen translational research group, Lille School of Medicine, UDSL, Lille North of France University, Lille, France
| | - Benoit Guery
- Pseudomonas aeruginosa host-pathogen translational research group, Lille School of Medicine, UDSL, Lille North of France University, Lille, France
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Facultad de Ciencias, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Área de Genética, Campus de Teatinos, Málaga, E-29010, Spain
| |
Collapse
|
13
|
Aragón IM, Pérez-Mendoza D, Gallegos MT, Ramos C. The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. MOLECULAR PLANT PATHOLOGY 2015; 16:604-15. [PMID: 25385023 PMCID: PMC6638514 DOI: 10.1111/mpp.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In a recent screen for novel virulence factors involved in the interaction between Pseudomonas savastanoi pv. savastanoi and the olive tree, a mutant was selected that contained a transposon insertion in a putative cyclic diguanylate (c-di-GMP) phosphodiesterase-encoding gene. This gene displayed high similarity to bifA of Pseudomonas aeruginosa and Pseudomonas putida. Here, we examined the role of BifA in free-living and virulence-related phenotypes of two bacterial plant pathogens in the Pseudomonas syringae complex, the tumour-inducing pathogen of woody hosts, P. savastanoi pv. savastanoi NCPPB 3335, and the pathogen of tomato and Arabidopsis, P. syringae pv. tomato DC3000. We showed that deletion of the bifA gene resulted in decreased swimming motility of both bacteria and inhibited swarming motility of DC3000. In contrast, overexpression of BifA in P. savastanoi pv. savastanoi had a positive impact on swimming motility and negatively affected biofilm formation. Deletion of bifA in NCPPB 3335 and DC3000 resulted in reduced fitness and virulence of the microbes in olive (NCPPB 3335) and tomato (DC3000) plants. In addition, real-time monitoring of olive plants infected with green fluorescent protein (GFP)-tagged P. savastanoi cells displayed an altered spatial distribution of mutant ΔbifA cells inside olive knots compared with the wild-type strain. All free-living phenotypes that were altered in both ΔbifA mutants, as well as the virulence of the NCPPB 3335 ΔbifA mutant in olive plants, were fully rescued by complementation with P. aeruginosa BifA, whose phosphodiesterase activity has been demonstrated. Thus, these results suggest that P. syringae and P. savastanoi BifA are also active phosphodiesterases. This first demonstration of the involvement of a putative phosphodiesterase in the virulence of the P. syringae complex provides confirmation of the role of c-di-GMP signalling in the virulence of this group of plant pathogens.
Collapse
Affiliation(s)
- Isabel M Aragón
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, E-29010, Málaga, Spain
| | - Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, E-29010, Málaga, Spain
| |
Collapse
|
14
|
Cinelli T, Moscetti I, Marchi G. PsasM2I, a type II restriction-modification system in Pseudomonas savastanoi pv. savastanoi: differential distribution of carrier strains in the environment and the evolutionary history of homologous RM systems in the Pseudomonas syringae complex. MICROBIAL ECOLOGY 2014; 68:842-858. [PMID: 25008981 DOI: 10.1007/s00248-014-0451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
A type II restriction-modification system was found in a native plasmid of Pseudomonas savastanoi pv. savastanoi MLLI2. Functional analysis of the methyltransferase showed that the enzyme acts by protecting the DNA sequence CTGCAG from cleavage. Restriction endonuclease expression in recombinant Escherichia coli cells resulted in mutations in the REase sequence or transposition of insertion sequence 1A in the coding sequence, preventing lethal gene expression. Population screening detected homologous RM systems in other P. savastanoi strains and in the Pseudomonas syringae complex. An epidemiological survey carried out by sampling olive and oleander knots in two Italian regions showed an uneven diffusion of carrier strains, whose presence could be related to a selective advantage in maintaining the RM system in particular environments or subpopulations. Moreover, carrier strains can coexist in the same orchards, plants, and knot tissues with non-carriers, revealing unexpected genetic variability on a very small spatial scale. Phylogenetic analysis of the RM system and housekeeping gene sequences in the P. syringae complex demonstrated the ancient acquisition of the RM systems. However, the evolutionary history of the gene complex also showed the involvement of horizontal gene transfer between related strains and recombination events.
Collapse
Affiliation(s)
- Tamara Cinelli
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144, Firenze, Italy,
| | | | | |
Collapse
|
15
|
Matas IM, Castañeda-Ojeda MP, Aragón IM, Antúnez-Lamas M, Murillo J, Rodríguez-Palenzuela P, López-Solanilla E, Ramos C. Translocation and functional analysis of Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system effectors reveals two novel effector families of the Pseudomonas syringae complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:424-36. [PMID: 24329173 DOI: 10.1094/mpmi-07-13-0206-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.
Collapse
|
16
|
Aragón IM, Pérez-Martínez I, Moreno-Pérez A, Cerezo M, Ramos C. New insights into the role of indole-3-acetic acid in the virulence ofPseudomonas savastanoipv.savastanoi. FEMS Microbiol Lett 2014; 356:184-92. [DOI: 10.1111/1574-6968.12413] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Isabel M. Aragón
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Isabel Pérez-Martínez
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Alba Moreno-Pérez
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| | - Miguel Cerezo
- Plant Physiology Section; Departamento CAMN; Metabolic Integration & Cell Signalling Group; Universitat Jaume I; Castellón de La Plana Spain
| | - Cayo Ramos
- Área de Genética; Facultad de Ciencias; Instituto de Hortofruticultura Subtropical y Mediterrnea “La Mayora”; Universidad de Málaga-CSIC (IHSM-UMA-CSIC); Málaga Spain
| |
Collapse
|
17
|
Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA, Romero-Jiménez L, Ramos C, Gallegos MT, Sanjuán J. Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One 2014; 9:e91645. [PMID: 24626229 PMCID: PMC3953490 DOI: 10.1371/journal.pone.0091645] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
Despite a recent burst of research, knowledge on c-di-GMP signaling pathways remains largely fragmentary and molecular mechanisms of regulation and even c-di-GMP targets are yet unknown for most bacteria. Besides genomics or bioinformatics, accompanying alternative approaches are necessary to reveal c-di-GMP regulation in bacteria with complex lifestyles. We have approached this study by artificially altering the c-di-GMP economy of diverse pathogenic and mutualistic plant-interacting bacteria and examining the effects on the interaction with their respective host plants. Phytopathogenic Pseudomonas and symbiotic Rhizobium strains with enhanced levels of intracellular c-di-GMP displayed common free-living responses: reduction of motility, increased production of extracellular polysaccharides and enhanced biofilm formation. Regarding the interaction with the host plants, P. savastanoi pv. savastanoi cells containing high c-di-GMP levels formed larger knots on olive plants which, however, displayed reduced necrosis. In contrast, development of disease symptoms in P. syringae-tomato or P. syringae-bean interactions did not seem significantly affected by high c-di-GMP. On the other hand, increasing c-di-GMP levels in symbiotic R. etli and R. leguminosarum strains favoured the early stages of the interaction since enhanced adhesion to plant roots, but decreased symbiotic efficiency as plant growth and nitrogen contents were reduced. Our results remark the importance of c-di-GMP economy for plant-interacting bacteria and show the usefulness of our approach to reveal particular stages during plant-bacteria associations which are sensitive to changes in c-di-GMP levels.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Isabel M. Aragón
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Málaga, Spain
| | - Harold A. Prada-Ramírez
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Lorena Romero-Jiménez
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Málaga, Spain
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan Sanjuán
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
- * E-mail:
| |
Collapse
|
18
|
Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A. A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. PHYTOPATHOLOGY 2013; 103:1115-1129. [PMID: 24102210 DOI: 10.1094/phyto-04-13-0093-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas syringae pv. syringae, the causal agent of bacterial apical necrosis (BAN) in mango crops, has been isolated in different mango-producing areas worldwide. An extensive collection of 87 P. syringae pv. syringae strains isolated from mango trees affected by BAN from different countries, but mainly from Southern Spain, were initially examined by repetitive sequence-based polymerase chain reaction (rep-PCR) to analyze the genetic diversity with an epidemiological aim. rep-PCR was powerful in assessing intrapathovar distribution and also allowing clustering of the P. syringae pv. syringae strains isolated from mango, depending on the isolation area. A clear pattern of clustering was observed for all the P. syringae pv. syringae strains isolated from mango distinct from strains from other hosts, including strains for the same geographical regions as the mango isolates. For this reason, a representative group of 51 P. syringae pv. syringae strains isolated from mango and other hosts, as well as some P. syringae strains from other pathovars, were further characterized to determine their possible genetic, phenotypic, and phylogenetic relationships. Similar to the rep-PCR results, the randomly amplified polymorphic DNA PCR (RAPD-PCR) and catabolic diversity analysis using the Biolog GN2 profile grouped 90% of the mango isolates together in a unique cluster. Interestingly, the majority of P. syringae pv. syringae strains isolated from mango produced mangotoxin. The analysis of the phylogenetic distribution using the multilocus sequence typing analysis strongly supports the existence of a differentiated phylotype of the pathovar syringae mainly associated with the mango host and characterized by the mangotoxin production.
Collapse
|
19
|
Maldonado-González MM, Prieto P, Ramos C, Mercado-Blanco J. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots. Microb Biotechnol 2013; 6:275-87. [PMID: 23425069 PMCID: PMC3815922 DOI: 10.1111/1751-7915.12036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/30/2022] Open
Abstract
Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue.
Collapse
Affiliation(s)
- M Mercedes Maldonado-González
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Pilar Prieto
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de MálagaCampus de Teatinos s/n, E-29071, Málaga, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC)Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| |
Collapse
|
20
|
Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A, Cazorla FM, Murillo J. The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution. Appl Environ Microbiol 2013; 79:756-67. [PMID: 23144138 PMCID: PMC3568555 DOI: 10.1128/aem.03007-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex.
Collapse
Affiliation(s)
- Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSMUMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, Málaga, Spain
| | - Leire Bardaji
- Laboratorio de Patología Vegetal, ETS Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Juan C. Codina
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
21
|
Matas IM, Lambertsen L, Rodríguez-Moreno L, Ramos C. Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. THE NEW PHYTOLOGIST 2012; 196:1182-1196. [PMID: 23088618 DOI: 10.1111/j.1469-8137.2012.04357.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
Comparative genomics and functional analysis of Pseudomonas syringae and related pathogens have mainly focused on diseases of herbaceous plants; however, there is a general lack of knowledge about the virulence and pathogenicity determinants required for infection of woody plants. Here, we applied signature-tagged mutagenesis (STM) to Pseudomonas savastanoi pv. savastanoi during colonization of olive (Olea europaea) knots, with the goal of identifying the range of genes linked to growth and symptom production in its plant host. A total of 58 different genes were identified, and most mutations resulted in hypovirulence in woody olive plants. Sequence analysis of STM mutations allowed us to identify metabolic pathways required for full fitness of P. savastanoi in olive and revealed novel mechanisms involved in the virulence of this pathogen, some of which are essential for full colonization of olive knots by the pathogen and for the lysis of host cells. This first application of STM to a P. syringae-like pathogen provides confirmation of functional capabilities long believed to play a role in the survival and virulence of this group of pathogens but not adequately tested before, and unravels novel factors not correlated previously with the virulence of other plant or animal bacterial pathogens.
Collapse
Affiliation(s)
- Isabel M Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Lotte Lambertsen
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Luis Rodríguez-Moreno
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| |
Collapse
|
22
|
Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J. Pseudomonas savastanoi pv. savastanoi: some like it knot. MOLECULAR PLANT PATHOLOGY 2012; 13:998-1009. [PMID: 22805238 PMCID: PMC6638699 DOI: 10.1111/j.1364-3703.2012.00816.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UNLABELLED Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot. SYNONYMS Pseudomonas syringae pv. savastanoi. TAXONOMY Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Family Pseudomonadaceae; Genus Pseudomonas; included in genomospecies 2 together with at least P. amygdali, P. ficuserectae, P. meliae and 16 other pathovars from the P. syringae complex (aesculi, ciccaronei, dendropanacis, eriobotryae, glycinea, hibisci, mellea, mori, myricae, phaseolicola, photiniae, sesami, tabaci, ulmi and certain strains of lachrymans and morsprunorum); when a formal proposal is made for the unification of these bacteria, the species name P. amygdali would take priority over P. savastanoi. MICROBIOLOGICAL PROPERTIES Gram-negative rods, 0.4-0.8 × 1.0-3.0 μm, aerobic. Motile by one to four polar flagella, rather slow growing, optimal temperatures for growth of 25-30 °C; oxidase negative, arginine dihydrolase negative; elicits the hypersensitive response on tobacco; most isolates are fluorescent and levan negative, although some isolates are nonfluorescent and levan positive. HOST RANGE P. savastanoi pv. savastanoi causes tumours in cultivated and wild olive and ash (Fraxinus excelsior). Although strains from olive have been reported to infect oleander (Nerium oleander), this is generally not the case; however, strains of P. savastanoi pv. nerii can infect olive. Pathovars fraxini and nerii are differentiated from pathovar savastanoi mostly in their host range, and were not formally recognized until 1996. Literature before about 1996 generally names strains of the three pathovars as P. syringae ssp. savastanoi or P. savastanoi ssp. savastanoi, contributing to confusion on the host range and biological properties. DISEASE SYMPTOMS Symptoms of infected trees include hyperplastic growths (tumorous galls or knots) on the stems and branches of the host plant and, occasionally, on leaves and fruits. EPIDEMIOLOGY The pathogen can survive and multiply on aerial plant surfaces, as well as in knots, from where it can be dispersed by rain, wind, insects and human activities, entering the plant through wounds. Populations are very unevenly distributed in the plant, and suffer drastic fluctuations throughout the year, with maximum numbers of bacteria occurring during rainy and warm months. Populations of P. savastanoi pv. savastanoi are normally associated with nonpathogenic bacteria, both epiphytically and endophytically, and have been demonstrated to form mutualistic consortia with Erwinia toletana and Pantoea agglomerans, which could result in increased bacterial populations and disease symptoms. DISEASE CONTROL Based on preventive measures, mostly sanitary and cultural practices. Integrated control programmes benefit from regular applications of copper formulations, which should be maintained for at least a few years for maximum benefit. Olive cultivars vary in their susceptibility to olive knot, but there are no known cultivars with full resistance to the pathogen. USEFUL WEBSITES http://www.pseudomonas-syringae.org/; http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; ASAP access to the P. savastanoi pv. savastanoi NCPPB 3335 genome sequence https://asap.ahabs.wisc.edu/asap/logon.php.
Collapse
Affiliation(s)
- Cayo Ramos
- Área de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | | | | | | | | |
Collapse
|
23
|
Bardaji L, Pérez-Martínez I, Rodríguez-Moreno L, Rodríguez-Palenzuela P, Sundin GW, Ramos C, Murillo J. Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS One 2011; 6:e25705. [PMID: 22022435 PMCID: PMC3191145 DOI: 10.1371/journal.pone.0025705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 is a model for the study of the molecular basis of disease production and tumor formation in woody hosts, and its draft genome sequence has been recently obtained. Here we closed the sequence of the plasmid complement of this strain, composed of three circular molecules of 78,357 nt (pPsv48A), 45,220 nt (pPsv48B), and 42,103 nt (pPsv48C), all belonging to the pPT23A-like family of plasmids widely distributed in the P. syringae complex. A total of 152 coding sequences were predicted in the plasmid complement, of which 38 are hypothetical proteins and seven correspond to putative virulence genes. Plasmid pPsv48A contains an incomplete Type IVB secretion system, the type III secretion system (T3SS) effector gene hopAF1, gene ptz, involved in cytokinin biosynthesis, and three copies of a gene highly conserved in plant-associated proteobacteria, which is preceded by a hrp box motif. A complete Type IVA secretion system, a well conserved origin of transfer (oriT), and a homolog of the T3SS effector gene hopAO1 are present in pPsv48B, while pPsv48C contains a gene with significant homology to isopentenyl-diphosphate delta-isomerase, type 1. Several potential mobile elements were found on the three plasmids, including three types of MITE, a derivative of IS801, and a new transposon effector, ISPsy30. Although the replication regions of these three plasmids are phylogenetically closely related, their structure is diverse, suggesting that the plasmid architecture results from an active exchange of sequences. Artificial inoculations of olive plants with mutants cured of plasmids pPsv48A and pPsv48B showed that pPsv48A is necessary for full virulence and for the development of mature xylem vessels within the knots; we were unable to obtain mutants cured of pPsv48C, which contains five putative toxin-antitoxin genes.
Collapse
Affiliation(s)
- Leire Bardaji
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Isabel Pérez-Martínez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - George W. Sundin
- Department of Plant Pathology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
24
|
Pérez-Martínez I, Rodríguez-Moreno L, Lambertsen L, Matas IM, Murillo J, Tegli S, Jiménez AJ, Ramos C. Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). Appl Environ Microbiol 2010; 76:3611-9. [PMID: 20363790 PMCID: PMC2876471 DOI: 10.1128/aem.00133-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/26/2010] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas savastanoi pv. savastanoi strain NCPPB 3335 is a model bacterial pathogen for studying the molecular basis of disease production in woody hosts. We report the sequencing of the hrpS-to-hrpZ region of NCPPB 3335, which has allowed us to determine the phylogenetic position of this pathogen with respect to previously sequenced Pseudomonas syringae hrp clusters. In addition, we constructed a mutant of NCPPB 3335, termed T3, which carries a deletion from the 3' end of the hrpS gene to the 5' end of the hrpZ operon. Despite its inability to multiply in olive tissues and to induce tumor formation in woody olive plants, P. savastanoi pv. savastanoi T3 can induce knot formation on young micropropagated olive plants. However, the necrosis and formation of internal open cavities previously reported in knots induced by the wild-type strain were not observed in those induced by P. savastanoi pv. savastanoi T3. Tagging of P. savastanoi pv. savastanoi T3 with green fluorescent protein (GFP) allowed real-time monitoring of its behavior on olive plants. In olive plant tissues, the wild-type strain formed aggregates that colonized the intercellular spaces and internal cavities of the hypertrophic knots, while the mutant T3 strain showed a disorganized distribution within the parenchyma of the knot. Ultrastructural analysis of knot sections revealed the release of extensive outer membrane vesicles from the bacterial cell surface of the P. savastanoi pv. savastanoi T3 mutant, while the wild-type strain exhibited very few vesicles. This phenomenon has not been described before for any other bacterial phytopathogen during host infection.
Collapse
Affiliation(s)
- Isabel Pérez-Martínez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Luis Rodríguez-Moreno
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Lotte Lambertsen
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Isabel M. Matas
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Jesús Murillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Stefania Tegli
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Antonio J. Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Cayo Ramos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada JM, Biehl BS, Perna NT, Glasner JD, Cabot EL, Neeno-Eckwall E, Ramos C. Annotation and overview of thePseudomonas savastanoipv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 2010; 12:1604-20. [DOI: 10.1111/j.1462-2920.2010.02207.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Rodríguez-Moreno L, Jiménez AJ, Ramos C. Endopathogenic lifestyle of Pseudomonas savastanoi pv. savastanoi in olive knots. Microb Biotechnol 2009; 2:476-88. [PMID: 21255279 PMCID: PMC3815908 DOI: 10.1111/j.1751-7915.2009.00101.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The endophytic phase of Pseudomonas savastanoi pv. savastanoi in olive stems and the structural and ultrastructural histogenesis of olive knots have been studied. Construction of a stable plasmid vector expressing the green fluorescent protein, in combination with the use of in vitro olive plants, allowed real‐time monitoring of P. savastanoi pv. savastanoi infection. The infection process was also examined by bright field and epifluorescence microscopy as well as by scanning and transmission electron microscopy. Hypertrophy of the stem tissue was concomitant with the formation of bacterial aggregates, microcolonies and multilayer biofilms, over the cell surfaces and the interior of plasmolysed cells facing the air‐tissue interface of internal opened fissures, and was followed by invasion of the outer layers of the hypertrophied tissue. Pathogenic invasion of the internal lumen of newly formed xylem vessels, which were connected with the stem vascular system, was also observed in late stages of infection. Ultrastructural analysis of knot sections showed the release of outer membrane vesicles from the pathogen surface, a phenomenon not described before for bacterial phytopathogens during host infection. This is the first real‐time monitoring of P. savastanoi disease development and the first illustrated description of the ultrastructure of P. savastanoi‐induced knots.
Collapse
Affiliation(s)
- Luis Rodríguez-Moreno
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | | | | |
Collapse
|
27
|
Krid S, Rhouma A, Quesada JM, Penyalver R, Gargouri A. Delineation of Pseudomonas savastanoi pv. savastanoi strains isolated in Tunisia by random-amplified polymorphic DNA analysis. J Appl Microbiol 2009; 106:886-94. [PMID: 19191961 DOI: 10.1111/j.1365-2672.2008.04058.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the genetic diversity of Pseudomonas savastanoi pv. savastanoi strains and to look whether these strains were distributed to geographical location. METHODS AND RESULTS Random amplification of polymorphic DNA (RAPD) was used to discriminate between 58 Tunisian strains and 21 strains from various other countries of P. savastanoi pv. savastanoi, the causal agent of olive knot disease. Isolates were separated into three groups by cluster analysis and principal coordinate analysis of RAPD fingerprint data obtained with three primers (OPR-12, OPX-7 and OPX-14). Group 1 contained isolates from the southeast of Tunisia and European strains. Group 2 comprised strains isolated from the north of Tunisia exclusively while group 3 encompassed the majority of isolates obtained from five orchards located in the centre of Tunisia. CONCLUSIONS The results indicated that isolates of P. savastanoi pv. savastanoi were genetically distinct according to geographic regions. RAPD grouped isolates derived from the same orchard as identical. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first application of RAPD in the delineation of P. savastanoi pv. savastanoi strains.
Collapse
Affiliation(s)
- S Krid
- Unité de Recherche Protection des Plantes Cultivées et Environnement, Institut de l'Olivier, Cité Mahrajène BP208 Tunis, Tunisia
| | | | | | | | | |
Collapse
|
28
|
Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. Appl Environ Microbiol 2008; 75:1030-5. [PMID: 19098222 DOI: 10.1128/aem.01572-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, Pseudomonas savastanoi pv. savastanoi isolates were demonstrated to contain two iaaL paralogs, which are both chromosomally located in most strains. Comparative analysis of iaaL nucleotide sequences amplified from these two paralogs revealed that one paralog, iaaL(Psn), is 100% identical to iaaL from P. savastanoi pv. nerii, while the other paralog, iaaL(Psv), exhibited 93% identity to iaaL from Pseudomonas syringae pv. tomato (iaaL(Pto)). A 3-nucleotide motif (TAC) comprised of 3 to 15 repeats, which remained stable after propagation of the strains in olive plants, was found in iaaL(Psv). Based on the observed nucleotide sequence variations, a restriction fragment length polymorphism assay was developed that allowed differentiation among iaaL(Psn), iaaL(Psv), and iaaL(Pto)(.) In addition, reverse transcriptase PCR on total RNA from P. savastanoi pv. savastanoi strains demonstrated that both iaaL(Psv) and iaaL(Psn) containing 14 or fewer TAC repeats are transcribed. Capillary electrophoresis analysis of PCR-amplified DNA fragments containing the TAC repeats from iaaL(Psv) allowed the differentiation of P. savastanoi pv. savastanoi isolates.
Collapse
|
29
|
Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C. Two similar enhanced root-colonizingPseudomonasstrains differ largely in their colonization strategies of avocado roots andRosellinia necatrixhyphae. Environ Microbiol 2008; 10:3295-304. [DOI: 10.1111/j.1462-2920.2008.01721.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Rodríguez-Moreno L, Barceló-Muñoz A, Ramos C. In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants. PHYTOPATHOLOGY 2008; 98:815-22. [PMID: 18943258 DOI: 10.1094/phyto-98-7-0815] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study assessed the use of in vitro olive plants to evaluate the virulence of Pseudomonas savastanoi pv. savastanoi strains isolated from olive and P. savastanoi pv. nerii strains isolated from oleander knots. First, different olive isolates were inoculated into stem wounds and differences in knot formation and weight of overgrowths were observed for the selected strains. Tissue proliferation was clearly visible in all inoculated plants 30 days after inoculation. Virulence of P. savastanoi pv. nerii mutants with defects in regard to biosynthesis of indole-3-acetic acid and/or cytokinins was tested using this system. In agreement with data previously reported, all mutant strains multiplied in olive but induced attenuated symptoms. To analyze the virulence of P. savastanoi pv. savastanoi affected in their ability to grow in olive tissue, a trpE tryptophan auxotroph mutant was generated using a collection of signature tagged mutagenesis transposons. Virulence of this mutant was clearly reduced as evidenced by swelling of the olive tissue that evolved into attenuated knots. Furthermore, mixed infections with its parental strain revealed that the wild-type strain completely out-competed the trpE mutant. Results shown here demonstrate the usefulness of in vitro olive plants for the analysis of P. savastanoi pvs. savastanoi and nerii virulence. In addition, this system offers the possibility of quantifying virulence differences as weight of overgrowths. Moreover, we established the basis for the use of mixed infections in combination with signature tagged mutagenesis for high-throughput functional genomic analysis of this bacterial pathogen.
Collapse
Affiliation(s)
- Luis Rodríguez-Moreno
- Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | | | | |
Collapse
|
31
|
Quesada JM, Pérez-Martínez I, Ramos C, López MM, Penyalver R. IS53: an insertion element for molecular typing of Pseudomonas savastanoi pv. savastanoi. Res Microbiol 2008; 159:207-15. [PMID: 18359611 DOI: 10.1016/j.resmic.2007.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/11/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
A worldwide collection of Pseudomonas savastanoi pv. savastanoi strains from olive knots was examined for the distribution, variation in position and copy numbers of the IS53 insertion element. Southern hybridization analysis of plasmid DNA from six olive strains using IS53 and repA probes revealed that this insertion element was present in the chromosomal replicon and not in a plasmid, as had been originally described in an oleander strain. Southern hybridization analysis also revealed that IS53 was present in multiple copies in all analyzed strains. Copy numbers of IS53 elements ranged from 4 up to 10. Although all strains displayed a remarkably high degree of restriction fragment length polymorphism, we demonstrated that transposition of this element is extremely rare in bacteria grown in vitro for up to 390 generations. The genetic diversity of 62 olive strains based on 47 different IS53 RFLP fingerprints and UPGMA analysis enabled all strains to be clustered into eight groups with 60% similarity. IS53 typing can be considered a suitable marker for epidemiological and ecological studies, given its widespread distribution on P. savastanoi pv. savastanoi olive populations, its high stability and the high degree of polymorphism generated.
Collapse
Affiliation(s)
- Jose M Quesada
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia, Spain
| | | | | | | | | |
Collapse
|
32
|
Pérez-Martínez I, Zhao Y, Murillo J, Sundin GW, Ramos C. Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. J Bacteriol 2008; 190:625-35. [PMID: 17993520 PMCID: PMC2223701 DOI: 10.1128/jb.01067-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/31/2007] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas savastanoi pv. savastanoi strains harbor native plasmids belonging to the pPT23A plasmid family (PFPs) which are detected in all pathovars of the related species Pseudomonas syringae examined and contribute to the ecological and pathogenic fitness of their host. However, there is a general lack of information about the gene content of P. savastanoi pv. savastanoi plasmids and their role in the interaction of this pathogen with olive plants. We designed a DNA macroarray containing 135 plasmid-borne P. syringae genes to conduct a global genetic analysis of 32 plasmids obtained from 10 P. savastanoi pv. savastanoi strains. Hybridization results revealed that the number of PFPs per strain varied from one to four. Additionally, most strains contained at least one plasmid (designated non-PFP) that did not hybridize to the repA gene of pPT23A. Only three PFPs contained genes involved in the biosynthesis of the virulence factor indole-3-acetic acid (iaaM, iaaH, and iaaL). In contrast, ptz, a gene involved in the biosynthesis of cytokinins, was found in five PFPs and one non-PFP. Genes encoding a type IV secretion system (T4SS), type IVA, were found in both PFPs and non-PFPs; however, type IVB genes were found only on PFPs. Nine plasmids encoded both T4SSs, whereas seven other plasmids carried none of these genes. Most PFPs and non-PFPs hybridized to at least one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors and one or more insertion sequence transposase genes. These results indicate that non-PFPs may contribute to the virulence and fitness of the P. savastanoi pv. savastanoi host. The overall gene content of P. savastanoi pv. savastanoi plasmids, with their repeated information, mosaic arrangement, and insertion sequences, suggests a possible role in adaptation to a changing environment.
Collapse
Affiliation(s)
- Isabel Pérez-Martínez
- Area de Genética, Universidad de Málaga, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|