1
|
Kang L, Han Y, Liu C, Liu X, Li X, Li Z, Li X. Sildenafil Attenuates Persistent Pulmonary Hypertension of the Newborn via Inhibiting the Growth and Migration of Pulmonary Artery Smooth Muscle Cells. J Surg Res 2025; 306:249-256. [PMID: 39809035 DOI: 10.1016/j.jss.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Sildenafil, a selective phosphodiesterase 5 inhibitor, modulates vascular dysfunction, with hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration, and invasion closely implicated in vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN). This study aimed to assess sildenafil's protective effects against PPHN and elucidate underlying molecular pathways. METHODS Cell Counting Kit-8, wound healing, and Transwell assays evaluated rat PASMC proliferation, migration, and invasion under hypoxia. A rat PPHN model assessed sildenafil's impact on right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), and vascular remodeling. JAK2/STAT3 signaling was analyzed via Western blotting. RESULTS Sildenafil significantly inhibited hypoxia-induced PASMC proliferation, migration, and invasion. In addition, sildenafil reduced RVSP, RVH, and vascular remodeling in PPHN. Further, sildenafil decreased JAK2 and STAT3 phosphorylation in hypoxia-exposed PASMCs and the PPHN rat model. The JAK2/STAT3 pathway agonist colivelin reversed sildenafil's suppressive effects on PASMC proliferation, migration, invasion, as well as RVSP, RVH, and vascular remodeling in PPHN. CONCLUSIONS Sildenafil protects against PPHN by inhibiting PASMC proliferation, migration, and invasion via suppression of JAK2/STAT3 signaling, indicating its potential as a therapeutic target for PPHN and contributing to a more comprehensive understanding of PPHN pathogenesis.
Collapse
MESH Headings
- Animals
- Sildenafil Citrate/pharmacology
- Sildenafil Citrate/therapeutic use
- Cell Movement/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/cytology
- Pulmonary Artery/pathology
- Rats
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Vascular Remodeling/drug effects
- Phosphodiesterase 5 Inhibitors/pharmacology
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- STAT3 Transcription Factor/metabolism
- Persistent Fetal Circulation Syndrome/drug therapy
- Persistent Fetal Circulation Syndrome/pathology
- Janus Kinase 2/metabolism
- Rats, Sprague-Dawley
- Disease Models, Animal
- Signal Transduction/drug effects
- Cells, Cultured
- Male
- Animals, Newborn
- Humans
Collapse
Affiliation(s)
- Lili Kang
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - Yujie Han
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - Chen Liu
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - Xianghong Liu
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - XiaoMei Li
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - Zilong Li
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China
| | - Xiaoying Li
- Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China.
| |
Collapse
|
2
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 38:295-307. [PMID: 38167268 DOI: 10.1515/dmpt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 0:dmdi-2023-0011. [PMID: 37608528 DOI: 10.1515/dmdi-2023-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Kang L, Liu X, Li Z, Li X, Han Y, Liu C, Zhao C, Li X. Sildenafil Improves Pulmonary Vascular Remodeling in a Rat Model of Persistent Pulmonary Hypertension of the Newborn. J Cardiovasc Pharmacol 2023; 81:232-239. [PMID: 36198097 PMCID: PMC9988230 DOI: 10.1097/fjc.0000000000001373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
ABSTRACT Persistent pulmonary hypertension of the newborn (PPHN) is characterized by pulmonary arterial remodeling mainly because of apoptosis resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Sildenafil is a phosphodiesterase-5 inhibitor. Some reports have shown that sildenafil exerts protective effects against PPHN. However, the function of sildenafil in PPHN and the underlying molecular mechanisms is not clear. Here, we revealed that sildenafil effectively suppressed hypoxia-induced PASMC proliferation and apoptosis inhibition ( P < 0.05). Also, sildenafil obviously reduced ventricular hypertrophy, and inhibited pulmonary vascular remodeling in the PPHN model ( P < 0.05). Moreover, sildenafil treatment significantly attenuated the induction of Notch3 and Hes1 induced by hypoxia treatment ( P < 0.05). Furthermore, overexpression of Notch3 abolished the reduction of PASMC proliferation and promotion of PASMC apoptosis induced by sildenafil under hypoxia ( P < 0.05), whereas knockdown of Notch3 had an opposite effect ( P < 0.05). Together, our study demonstrates that sildenafil shows a potential benefit against the development of PPHN by inhibiting Notch3 signaling, providing a strategy for treating PPHN in the future.
Collapse
Affiliation(s)
- Lili Kang
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Xianghong Liu
- Department of Pediatrics Research Institute, Qilu Children's Hospital of ShanDong University, ShanDong, China; and
| | - Zilong Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - XiaoMei Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Yujie Han
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Chen Liu
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, ShanDong, China.
| | - Xiaoying Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| |
Collapse
|
6
|
Abstract
Acute pulmonary hypertension (aPH) is a complex, physiology-driven disorder that causes critical illness in newborns, the hallmark of which is elevated pressure in the pulmonary vascular bed. Several underlying hemodynamic phenotypes exist, including classic arterial aPH with resistance-driven elevations in pulmonary arterial pressure (PAP), alongside flow-driven aPH from left-to-right shunt lesions, and primary left ventricular dysfunction with pulmonary venous hypertension and elevated left atrial pressure. Targeted neonatal echocardiography (TnECHO) is an important tool for evaluation of hemodynamics in aPH and is highly useful for evaluating modulators of disease and targeting cardiovascular therapy. The diagnostic approach to aPH includes confirmation of elevation of PAP, evaluation of the cause and exclusion of structural cardiac disease, assessment of the response of the myocardium to adverse loading conditions, and appraisal of the adequacy of systemic blood flow. Therapeutic goals include support of right ventricular (RV) function, RV afterload reduction, and selection of cardiotropic agents that support underlying pathophysiology without adverse effects on heart rate or pulmonary vascular resistance in addition to routine supportive intensive care. Training programs for TnECHO exist across multiple jurisdictions and strong correlation with pediatric cardiology assessment has been demonstrated. Future directions include adapting TnECHO training with a greater focus on achieving competency, and further research into the role of the modality in providing individualized cardiovascular care for patients with heterogenous underlying physiology, and its effect on key neonatal outcomes.
Collapse
|
7
|
Rawat M, Lakshminrusimha S, Vento M. Pulmonary hypertension and oxidative stress: Where is the link? Semin Fetal Neonatal Med 2022; 27:101347. [PMID: 35473693 PMCID: PMC11151383 DOI: 10.1016/j.siny.2022.101347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress can be associated with hyperoxia and hypoxia and is characterized by an increase in reactive oxygen (ROS) and nitrogen (RNS) species generated by an underlying disease process or by supplemental oxygen that exceeds the neutralization capacity of the organ system. ROS and RNS acting as free radicals can inactive several enzymes and vasodilators in the nitric oxide pathway promoting pulmonary vasoconstriction resulting in persistent pulmonary hypertension of the newborn (PPHN). Studies in animal models of PPHN have shown high ROS/RNS that is further increased by hyperoxic ventilation. In addition, antioxidant therapy increased PaO2 in these models, but clinical trials are lacking. We recommend targeting preductal SpO2 between 90 and 97%, PaO2 between 55 and 80 mmHg and avoiding FiO2 > 0.6-0.8 if possible during PPHN management. This review highlights the role of oxidative and nitrosative stress markers on PPHN and potential therapeutic interventions that may alleviate the consequences of increased oxidant stress during ventilation with supplemental oxygen.
Collapse
Affiliation(s)
- Munmun Rawat
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | | | - Maximo Vento
- Division of Neonatology, University & Polytechnic Hospital La Fe and Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.
| |
Collapse
|
8
|
Abstract
Inhaled nitric oxide (iNO) therapy had a transformational impact on the management of infants with persistent pulmonary hypertension of the newborn (PPHN). iNO remains the only approved pulmonary vasodilator for PPHN; yet 30% to 40% of patients do not respond or have incomplete response to iNO. Lung recruitment strategies with early surfactant administration and high-frequency ventilation can optimize the response to iNO in the presence of parenchymal lung diseases. Alternate pulmonary vasodilators are used commonly as rescue, life-saving measures, though there is a lack of high-quality evidence supporting their efficacy and safety. This article reviews the available evidence and future directions for research in PPHN.
Collapse
|
9
|
Domingo LT, Ivy DD, Abman SH, Grenolds AM, MacLean JT, Breaux JA, Minford KJ, Frank BS. Novel use of riociguat in infants with severe pulmonary arterial hypertension unable to wean from inhaled nitric oxide. Front Pediatr 2022; 10:1014922. [PMID: 36533232 PMCID: PMC9751701 DOI: 10.3389/fped.2022.1014922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Riociguat, an oral soluble guanylate cyclase stimulator, has been approved for use in adults with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension. However, there is limited data on its therapeutic use in children. CASE PRESENTATION We report the case of two infants with severe suprasystemic pulmonary hypertension who were successfully treated with riociguat after failure to wean off inhaled nitric oxide (iNO) despite combination PAH therapy. Case 1 is a 6-month-old term male with TBX4 deletion who presented with severe hypoxemic respiratory failure and severe PAH immediately after birth. Initial cardiac catheterization showed PVRi 15.5 WU*m2. Marked hypoxemia and PAH persisted despite aggressive therapy with sildenafil, bosentan, intravenous treprostinil, and milrinone. The infant required high doses of inhaled nitric oxide (60 ppm) and manifested significant post-ductal hypoxemia and hemodynamic instability with any attempt at weaning. After discontinuation of sildenafil, initiation, and very slow uptitration of riociguat, the patient was able to maintain hemodynamic stability and wean from nitric oxide over 6 weeks with persistently severe but not worsened pulmonary hypertension. Case 2 is a 4-month-old term male with compound heterozygous SLC25A26 mutation and severe pulmonary hypertension. Initial cardiac catheterization showed PVRi 28.2 WU*m2. After uptitration of sildenafil, bosentan, and IV treprostinil, serial echocardiograms continued to demonstrate near-systemic pulmonary hypertension. He failed multiple attempts to wean off typical doses of iNO (10-20 ppm) over the following weeks with tachypnea, hypoxemia, and worsening pulmonary hypertension on echocardiogram despite continued aggressive combination targeted therapy. After a 24-h sildenafil washout, he was initiated and uptitrated on riociguat with concomitant, successful wean of nitric oxide over one week that was well tolerated. No serious adverse effects in the titration period were observed. CONCLUSION Riociguat may be considered as an adjuvant therapeutic agent in selected children with severe PAH who are poorly responsive to sildenafil therapy and unable to wean from iNO.
Collapse
Affiliation(s)
- L T Domingo
- Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake, UT, United States
| | - D D Ivy
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| | - S H Abman
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| | - A M Grenolds
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| | - J T MacLean
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| | - J A Breaux
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| | - K J Minford
- Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake, UT, United States
| | - B S Frank
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, CO, United States
| |
Collapse
|
10
|
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int J Mol Sci 2021; 22:ijms222212504. [PMID: 34830385 PMCID: PMC8625766 DOI: 10.3390/ijms222212504] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Laura Cannavò
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Serafina Perrone
- Neonatology Unity, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703518
| | - Valeria Viola
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| |
Collapse
|
11
|
Sharma M, Rana U, Joshi C, Michalkiewicz T, Afolayan A, Parchur A, Joshi A, Teng RJ, Konduri GG. Decreased Cyclic Guanosine Monophosphate-Protein Kinase G Signaling Impairs Angiogenesis in a Lamb Model of Persistent Pulmonary Hypertension of the Newborn. Am J Respir Cell Mol Biol 2021; 65:555-567. [PMID: 34185619 PMCID: PMC8641848 DOI: 10.1165/rcmb.2020-0434oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Impaired angiogenesis function in pulmonary artery endothelial cells (PAEC) contributes to persistent pulmonary hypertension of the newborn (PPHN). Decreased nitric oxide (NO) amounts in PPHN lead to impaired mitochondrial biogenesis and angiogenesis in the lung; the mechanisms remain unclear. We hypothesized that decreased cyclic guanosine monophosphate (cGMP)-PKG (protein kinase G) signaling downstream of NO leads to decreased mitochondrial biogenesis and angiogenesis in PPHN. PPHN was induced by ductus arteriosus constriction from 128-136 days' gestation in fetal lambs. Control animals were gestation-matched lambs that did not undergo ductal constriction. PAEC isolated from PPHN lambs were treated with the sGC (soluble guanylate cyclase) activator cinaciguat, the PKG activator 8-bromo-cGMP, or the PDE-V (PDE type V) inhibitor sildenafil. Lysates were immunoblotted for mitochondrial transcription factors and electron transport chain C-I (complex I), C-II, C-III, C-IV, and C-V proteins. The in vitro angiogenesis of PAEC was evaluated by using tube-formation and scratch-recovery assays. cGMP concentrations were measured by using an enzyme immunoassay. Fetal lambs with ductal constriction were given sildenafil or control saline through continuous infusion in utero, and the lung histology, capillary counts, vessel density, and right ventricular pressure were assessed at birth. PPHN PAEC showed decreased mitochondrial transcription factor levels, electron transport chain protein levels, and in vitro tube formation and cell migration; these were restored by cinaciguat, 8-bromo-cGMP, and sildenafil. Cinaciguat and sildenafil increased cGMP concentrations in PPHN PAEC. Radial alveolar and capillary counts and vessel density were lower in PPHN lungs, and the right ventricular pressure and Fulton Index were higher in PPHN lungs; these were improved by in utero sildenafil infusion. cGMP-PKG signaling is a potential therapeutic target to restore decreased mitochondrial biogenesis and angiogenesis in PPHN.
Collapse
Affiliation(s)
- Megha Sharma
- Division of Neonatology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ujala Rana
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| | - Chintamani Joshi
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| | - Teresa Michalkiewicz
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| | - Adeleye Afolayan
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| | - Abdul Parchur
- Center for Imaging, Department of Radiology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Amit Joshi
- Center for Imaging, Department of Radiology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Ru-Jeng Teng
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| | - Girija G. Konduri
- Division Neonatology, Department of Pediatrics, Medical College of Wisconsin and Children’s Research Institute, Children’s Wisconsin, Wauwatosa, Wisconsin; and
| |
Collapse
|
12
|
Singh Y, Lakshminrusimha S. Pathophysiology and Management of Persistent Pulmonary Hypertension of the Newborn. Clin Perinatol 2021; 48:595-618. [PMID: 34353582 PMCID: PMC8351908 DOI: 10.1016/j.clp.2021.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a disorder of circulatory transition resulting in high pulmonary vascular resistance with extrapulmonary right-to-left shunts causing hypoxemia. There has been substantial gain in understanding of pathophysiology of PPHN over the past 2 decades, and biochemical pathways responsible for abnormal vasoconstriction of pulmonary vasculature are now better understood. Easy availability of bedside echocardiography helps in establishing early definitive diagnosis, understanding the pathophysiology and hemodynamic abnormalities, monitoring the disease process, and response to therapeutic intervention. There also has been significant advancement in specific management of PPHN targeted at deranged biochemical pathways and hemodynamic instability.
Collapse
Affiliation(s)
- Yogen Singh
- Department of Pediatrics - Neonatology and Pediatric Cardiology, Cambridge University Hospitals NHS Foundation Trust and University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children's Hospital, UC Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
13
|
Garcia D, Carr JF, Chan F, Peterson AL, Ellis KA, Scaffa A, Ghio AJ, Yao H, Dennery PA. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr Res 2021; 90:58-65. [PMID: 33144707 PMCID: PMC8089115 DOI: 10.1038/s41390-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Prolonged exposure to high oxygen concentrations in premature infants, although lifesaving, can induce lung oxidative stress and increase the risk of developing BPD, a form of chronic lung disease. The lung alveolar epithelium is damaged by sustained hyperoxia, causing oxidative stress and alveolar simplification; however, it is unclear what duration of exposure to hyperoxia negatively impacts cellular function. METHODS Here we investigated the role of a very short exposure to hyperoxia (95% O2, 5% CO2) on mitochondrial function in cultured mouse lung epithelial cells and neonatal mice. RESULTS In epithelial cells, 4 h of hyperoxia reduced oxidative phosphorylation, respiratory complex I and IV activity, utilization of mitochondrial metabolites, and caused mitochondria to form elongated tubular networks. Cells allowed to recover in air for 24 h exhibited a persistent global reduction in fuel utilization. In addition, neonatal mice exposed to hyperoxia for only 12 h demonstrated alveolar simplification at postnatal day 14. CONCLUSION A short exposure to hyperoxia leads to changes in lung cell mitochondrial metabolism and dynamics and has a long-term impact on alveolarization. These findings may help inform our understanding and treatment of chronic lung disease. IMPACT Many studies use long exposures (up to 14 days) to hyperoxia to mimic neonatal chronic lung disease. We show that even a very short exposure to hyperoxia leads to long-term cellular injury in type II-like epithelial cells. This study demonstrates that a short (4 h) period of hyperoxia has long-term residual effects on cellular metabolism. We show that neonatal mice exposed to hyperoxia for a short time (12 h) demonstrate later alveolar simplification. This work suggests that any exposure to clinical hyperoxia leads to persistent lung dysfunction.
Collapse
Affiliation(s)
- David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Felix Chan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Kimberlyn A. Ellis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alejandro Scaffa
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island,Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island,Hasbro Children’s Hospital, Providence, Rhode Island.,Corresponding author information: Phyllis A. Dennery; Hasbro Children’s Hospital, Department of Pediatrics, 593 Eddy St, Providence, RI 02903; ; (401) 444-5648
| |
Collapse
|
14
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
15
|
Poitras EL, Gust SL, Kerr PM, Plane F. Repurposing of the PDE5 Inhibitor Sildenafil for the Treatment of Persistent Pulmonary Hypertension in Neonates. Curr Med Chem 2021; 28:2418-2437. [PMID: 32964819 DOI: 10.2174/0929867327666200923151924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), an important endogenous signaling molecule released from vascular endothelial cells and nerves, activates the enzyme soluble guanylate cyclase to catalyze the production of cyclic guanosine monophosphate (cGMP) from guanosine triphosphate. cGMP, in turn, activates protein kinase G to phosphorylate a range of effector proteins in smooth muscle cells that reduce intracellular Ca2+ levels to inhibit both contractility and proliferation. The enzyme phosphodiesterase type 5 (PDE5) curtails the actions of cGMP by hydrolyzing it into inactive 5'-GMP. Small molecule PDE5 inhibitors (PDE5is), such as sildenafil, prolong the availability of cGMP and therefore, enhance NO-mediated signaling. PDE5is are the first-line treatment for erectile dysfunction but are also now approved for the treatment of pulmonary arterial hypertension (PAH) in adults. Persistent pulmonary hypertension in neonates (PPHN) is currently treated with inhaled NO, but this is an expensive option and around 1/3 of newborns are unresponsive, resulting in the need for alternative approaches. Here the development, chemistry and pharmacology of PDE5is, the use of sildenafil for erectile dysfunction and PAH, are summarized and then current evidence for the utility of further repurposing of sildenafil, as a treatment for PPHN, is critically reviewed.
Collapse
Affiliation(s)
- Erika L Poitras
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Stephen L Gust
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul M Kerr
- Faculty of Nursing, Robbins Health Learning Centre, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Frances Plane
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
16
|
Sheak JR, Yan S, Weise-Cross L, Ahmadian R, Walker BR, Jernigan NL, Resta TC. PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats. Am J Physiol Heart Circ Physiol 2020; 318:H470-H483. [PMID: 31922892 DOI: 10.1152/ajpheart.00629.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCβ and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCβ and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCβ inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCβ-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCβ in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCβ activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCβ and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
17
|
Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142:61-72. [PMID: 30954546 PMCID: PMC6791125 DOI: 10.1016/j.freeradbiomed.2019.03.035] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Thirty years ago, there was an emerging appreciation for the significance of oxidative stress in newborn disease. This prompted a renewed interest in the impact of oxygen therapy for the newborn in the delivery room and beyond, especially in premature infants. Today, the complexity of oxidative stress both in normal regulation and pathology is better understood, especially as it relates to neonatal mitochondrial oxidative stress responses to hyperoxia. Mitochondria are recipients of oxidative damage and have a propensity for oxidative self-injury that has been implicated in the pathogenesis of neonatal lung diseases. Similarly, both intrauterine growth restriction (IUGR) and macrosomia are associated with mitochondrial dysfunction and oxidative stress. Additionally, reoxygenation with 100% O2 in a hypoxic-ischemic newborn lamb model increased the production of pro-inflammatory cytokines in the brain. Moreover, the interplay between inflammation and oxidative stress in the newborn is better understood because of animal studies. Transcriptomic analyses have found a number of genes to be differentially expressed in murine models of bronchopulmonary dysplasia (BPD). Epigenetic changes have also been detected both in animal models of BPD and premature infants exposed to oxygen. Antioxidant therapy to prevent newborn disease has not been very successful; however, new therapeutic principles, like melatonin, are under investigation.
Collapse
Affiliation(s)
- Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Mary E Robbins
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway
| | - Ola D Saugstad
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
18
|
Wedgwood S, Steinhorn RH, Lakshminrusimha S. Optimal oxygenation and role of free radicals in PPHN. Free Radic Biol Med 2019; 142:97-106. [PMID: 30995536 PMCID: PMC6761018 DOI: 10.1016/j.freeradbiomed.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Effective ventilation of the lungs is essential in mediating pulmonary vasodilation at birth to allow effective gas exchange and an increase in systemic oxygenation. Unsuccessful transition prevents the increase in pulmonary blood flow after birth resulting in hypoxemia and persistent pulmonary hypertension of the newborn (PPHN). Management of neonates with PPHN includes ventilation of the lungs with supplemental oxygen to correct hypoxemia. Optimal oxygenation should meet oxygen demand to the tissues and avoid hypoxic pulmonary vasoconstriction (HPV) while preventing oxidative stress. The optimal target for oxygenation in PPHN is not known. Animal models have demonstrated that PaO2<45 mmHg exacerbates HPV. However, there are no practical methods of assessing oxygen levels associated with oxidant stress. Oxidant stress can be due to free radical generation from underlying lung disease or from free radicals generated by supplemental oxygen. Free radicals act on the nitric oxide pathway reducing cGMP and promoting pulmonary vasoconstriction. Antioxidant therapy improves systemic oxygenation in an animal model of PPHN but there are no clinical trials to support such therapy. Targeting preductal SpO2 between 90 and 97% and PaO2 at 50-80 mmHg appears prudent in PPHN but clinical trials to support this practice are lacking. Preterm infants with PPHN present unique challenges due to lack of antioxidant defenses and functional and structural immaturity of the lungs. This review highlights the need for additional studies to mitigate the impact of oxidative stress in the lung and pulmonary vasculature in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Robin H Steinhorn
- Department of Hospitalist Medicine, Children's National Health System, Washington DC, USA
| | | |
Collapse
|
19
|
Schultz A, Olorundami OA, Teng RJ, Jarzembowski J, Shi ZZ, Kumar SN, Pritchard K, Konduri GG, Afolayan AJ. Decreased OLA1 (Obg-Like ATPase-1) Expression Drives Ubiquitin-Proteasome Pathways to Downregulate Mitochondrial SOD2 (Superoxide Dismutase) in Persistent Pulmonary Hypertension of the Newborn. Hypertension 2019; 74:957-966. [PMID: 31476900 PMCID: PMC6739165 DOI: 10.1161/hypertensionaha.119.13430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.
Collapse
Affiliation(s)
- Adam Schultz
- Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226
- Department of Pediatrics, Children Hospital of Wisconsin, Milwaukee, WI, 53226
| | | | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226
- Department of Pediatrics, Children Hospital of Wisconsin, Milwaukee, WI, 53226
| | - Jason Jarzembowski
- Department of Pathology, Children Hospital of Wisconsin, Milwaukee. WI. 53226
| | | | - Suresh N Kumar
- Department of Pediatrics, Children Hospital of Wisconsin, Milwaukee, WI, 53226
- Department of Pathology, Children Hospital of Wisconsin, Milwaukee. WI. 53226
| | - Kirkwood Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee. WI. 53226
| | - Girija G. Konduri
- Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226
- Department of Pediatrics, Children Hospital of Wisconsin, Milwaukee, WI, 53226
| | - Adeleye J. Afolayan
- Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226
- Department of Pediatrics, Children Hospital of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
20
|
Lauterbach R, Pawlik D, Lauterbach JP. L-citrulline supplementation in the treatment of pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infant: A case report. SAGE Open Med Case Rep 2018; 6:2050313X18778730. [PMID: 29854406 PMCID: PMC5968659 DOI: 10.1177/2050313x18778730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/01/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION the aim of this case report is to present that oral L-citrulline supplementation may attenuate chronic pulmonary hypertension and reduce oxygen requirement in infants with severe bronchopulmonary dysplasia. IMPORTANT CLINICAL FINDINGS a boy, with a birth weight of 700 g, born by cesarean section after 25 weeks of pregnancy complicated with preeclampsia, was admitted to the neonatal intensive care unit. He was ventilatory dependent for the next 3 months with significantly increased oxygen requirements. A severe stage of bronchopulmonary dysplasia, complicated with increased pulmonary vascular resistance, was diagnosed. Treatment with inhaled nitric oxide and oral sildenafil was included in the therapy of chronic pulmonary hypertension. The results of screening echocardiograms and increased plasma brain natriuretic peptide concentrations, suggested right ventricle dysfunction. THE MAIN INTERVENTION at the beginning of the sixth month of hospitalization, oral supplementation of L-citrulline in a single dose of 150 mg/kg/day was introduced and continued for 70 days. During the first 3 weeks after L-citrulline was started, the patient was weaned from mechanical ventilation and he was never intubated again until he was discharged. Plasma brain natriuretic peptide concentrations decreased significantly during the first month of L-citrulline administration and became stable until the termination of L-citrulline supplementation. At discharge, the patient required 22%-25% concentration of oxygen supplemented intermittently, exclusively during feeding. CONCLUSION these results indicate that L-citrulline supplementation may deserve coverage as an additional, potentially beneficial alternative in the prophylaxis or therapy of chronic pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Ryszard Lauterbach
- Department of Neonatology, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Pawlik
- Department of Neonatology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
21
|
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:227-240. [PMID: 29047089 DOI: 10.1007/978-3-319-63245-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The soluble form of guanylate cyclase (sGC) and cGMP signaling are major regulators of pulmonary vasodilation and vascular remodeling that protect the pulmonary circulation from hypertension development. Nitric oxide, reactive oxygen species, thiol and heme redox, and heme biosynthesis control mechanisms regulating the production of cGMP by sGC. In addition, a cGMP-independent mechanism regulates protein kinase G through thiol oxidation in manner controlled by peroxide metabolism and NADPH redox. Multiple aspects of these regulatory processes contribute to physiological and pathophysiological regulation of the pulmonary circulation, and create potentially novel therapeutic targets for the treatment of pulmonary vascular disease.
Collapse
|
22
|
Sharma M, Afolayan AJ. Redox Signaling and Persistent Pulmonary Hypertension of the Newborn. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:277-287. [PMID: 29047092 DOI: 10.1007/978-3-319-63245-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.
Collapse
Affiliation(s)
- Megha Sharma
- Assistant Professor of Pediatrics, 999 N92nd Street, CCC suite 410, Milwaukee, WI, 53226, USA
| | - Adeleye J Afolayan
- Assistant Professor of Pediatrics, 999 N92nd Street, CCC suite 410, Milwaukee, WI, 53226, USA.
| |
Collapse
|
23
|
Suresh K, Shimoda LA. Endothelial Cell Reactive Oxygen Species and Ca 2+ Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:299-314. [PMID: 29047094 DOI: 10.1007/978-3-319-63245-2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca2+ homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca2+ concentration in the pathobiology of PH.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA. .,Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| |
Collapse
|
24
|
Kipfmueller F, Schroeder L, Berg C, Heindel K, Bartmann P, Mueller A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr Pulmonol 2018; 53:452-460. [PMID: 29316358 DOI: 10.1002/ppul.23935] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/02/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is an important contributor of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Treatment options are limited, but sildenafil might improve oxygenation and PH in neonates with CDH. OBJECTIVE Aim of this study is to assess effects of intravenous sildenafil on oxygenation and PH in neonates with CDH. METHODS A retrospective chart review was performed in all neonates with CDH born in our institution between September 2012 and December 2014. Indication for sildenafil was an OI > 15, PH > 2/3 systemic pressure, or a difference in pre- and postductal oxygen saturation (≥8%). A sildenafil bolus was administered followed by a maintenance infusion of 1.6 mg/kg/d. Primary outcome was improved oxygenation after starting sildenafil. Patients were compared according to improvement in oxygenation (responder vs non-responder). RESULTS A total of 26 of 44 neonates were treated with intravenous sildenafil and in all sildenafil were initiated within the first 24 h of life (median age 3.1 h). Improved oxygenation was observed in 11 infants (42.3%). Among the 15 non-responders (57.6%) ECMO was started in 13 and two infants died without ECMO. Vasopressor support increased significantly during the first hours after commencing sildenafil in responders and non-responders. Echocardiographic indices demonstrated an effect on pulmonary arterial pressure within the first 24 h after starting sildenafil. CONCLUSIONS Treatment of neonates with intravenous sildenafil during the first day of life was associated with acute improvement in oxygenation in more than 40% of patients. However, a significant increase in vasopressor support was observed.
Collapse
Affiliation(s)
- Florian Kipfmueller
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Lukas Schroeder
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Katrin Heindel
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Critical Care Medicine, University Children's Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Ghanian Z, Konduri GG, Audi SH, Camara AKS, Ranji M. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11:1750018. [PMID: 30123329 PMCID: PMC6097638 DOI: 10.1142/s1793545817500183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion ( O2•- ) production in fetal pulmonary artery endothelia cells (PAECs) has never been reported. The aim of this study is to assess mitochondrial O2•- production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•- production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC) complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•- . After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX) online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•- fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•- production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•- production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•- production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•- production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro.
Collapse
Affiliation(s)
- Zahra Ghanian
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Girija Ganesh Konduri
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Said Halim Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology and Anesthesia Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mahsa Ranji
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Afolayan AJ, Alexander M, Holme RL, Michalkiewicz T, Rana U, Teng RJ, Zemanovic S, Sahoo D, Pritchard KA, Konduri GG. Domain Mapping of Heat Shock Protein 70 Reveals That Glutamic Acid 446 and Arginine 447 Are Critical for Regulating Superoxide Dismutase 2 Function. J Biol Chem 2017; 292:2369-2378. [PMID: 28028182 PMCID: PMC5313107 DOI: 10.1074/jbc.m116.756122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Stress-inducible heat shock protein 70 (hsp70) interacts with superoxide dismutase 2 (SOD2) in the cytosol after synthesis to transfer the enzyme to the mitochondria for subsequent activation. However, the structural basis for this interaction remains to be defined. To map the SOD2-binding site in hsp70, mutants of hsp70 were made and tested for their ability to bind SOD2. These studies showed that SOD2 binds in the amino acid 393-537 region of the chaperone. To map the hsp70-binding site in SOD2, we used a series of pulldown assays and showed that hsp70 binds to the amino-terminal domain of SOD2. To better define the binding site, we used a series of decoy peptides derived from the primary amino acid sequence in the SOD2-binding site in hsp70. This study shows that SOD2 specifically binds to hsp70 at 445GERAMT450 Small peptides containing GERAMT inhibited the transfer of SOD2 to the mitochondria and decreased SOD2 activity in vitro and in vivo To determine the amino acid residues in hsp70 that are critical for SOD2 interactions, we substituted each amino acid residue for alanine or more conservative residues, glutamine or asparagine, in the GERAMT-binding site. Substitutions of E446A/Q and R447A/Q inhibited the ability of the GERAMT peptide to bind SOD2 and preserved SOD2 function more than other substitutions. Together, these findings indicate that the GERAMT sequence is critical for hsp70-mediated regulation of SOD2 and that Glu446 and Arg447 cooperate with other amino acid residues in the GERAMT-binding site for proper chaperone-dependent regulation of SOD2 antioxidant function.
Collapse
Affiliation(s)
- Adeleye J Afolayan
- From the Department of Pediatrics, Cardiovascular Research Center,
- Children's Research Institute
| | - Maxwell Alexander
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| | - Rebecca L Holme
- Children's Research Institute
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Teresa Michalkiewicz
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| | - Ujala Rana
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| | - Ru-Jeng Teng
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| | - Sara Zemanovic
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| | - Daisy Sahoo
- Children's Research Institute
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kirkwood A Pritchard
- Children's Research Institute
- Department of Surgery, Division of Pediatric Surgery, and
| | - Girija G Konduri
- From the Department of Pediatrics, Cardiovascular Research Center
- Children's Research Institute
| |
Collapse
|
27
|
Procter NEK, Hurst NL, Nooney VB, Imam H, De Caterina R, Chirkov YY, Horowitz JD. New Developments in Platelet Cyclic Nucleotide Signalling: Therapeutic Implications. Cardiovasc Drugs Ther 2016; 30:505-513. [PMID: 27358171 DOI: 10.1007/s10557-016-6671-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Altered platelet physiology may contribute to the emergence of thrombosis in patients with many forms of cardiovascular disease. Excess platelet activation may reflect increased stimulation of pro-aggregatory pathways. There is, however, increasing evidence that excessive platelet response, due to impaired efficacy of anti-aggregatory autacoids such as nitric oxide (NO) and prostacyclin (PGI2), may be just as important. For example, diminished platelet response to NO has been documented in acute and chronic myocardial ischaemia, heart failure, aortic valve disease and in the presence of hyperglycaemia. This "NO resistance" has been shown to reflect both the scavenging of NO by reactive oxygen species and dysfunction of its intracellular "receptor", soluble guanylate cyclase. Importantly, these abnormalities of NO signalling are potentially reversible through judicious application of pharmacotherapy. The analogous condition of impaired PGI2/adenylate cyclase (AC) signalling has received comparatively less attention to date. We have shown that platelet response to prostaglandin E1 (PGE1) is frequently impaired in patients with symptomatic myocardial ischaemia. Because the effects of ADP receptor antagonists such as clopidogrel and ticagrelor at the level of the P2Y12 receptor are coupled with changes in activity of AC, impaired response to PGE1 might imply both increased thrombotic risk and a reduced efficacy of anti-aggregatory drugs. Accordingly, patient response to treatment with clopidogrel is determined not only by variability of clopidogrel bio-activation, but also extensively by the integrity of platelet AC signalling. We here review these recent developments and their emerging therapeutic implications for thrombotic disorders.
Collapse
Affiliation(s)
- Nathan E K Procter
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of Adelaide, Cardiology Unit, 28 Woodville Rd, Woodville South, Adelaide, SA, 5011, Australia
| | - Nicola L Hurst
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of Adelaide, Cardiology Unit, 28 Woodville Rd, Woodville South, Adelaide, SA, 5011, Australia
| | - Vivek B Nooney
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of South Australia, Adelaide, Australia
| | - Hasan Imam
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of Adelaide, Cardiology Unit, 28 Woodville Rd, Woodville South, Adelaide, SA, 5011, Australia
| | - Raffaele De Caterina
- Institute of Cardiology and Centre for Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy
| | - Yuliy Y Chirkov
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of Adelaide, Cardiology Unit, 28 Woodville Rd, Woodville South, Adelaide, SA, 5011, Australia
| | - John D Horowitz
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, The University of Adelaide, Cardiology Unit, 28 Woodville Rd, Woodville South, Adelaide, SA, 5011, Australia.
| |
Collapse
|
28
|
Gao J, Deng Y, Yin C, Liu Y, Zhang W, Shi J, Gong Q. Icariside II, a novel phosphodiesterase 5 inhibitor, protects against H 2 O 2 -induced PC12 cells death by inhibiting mitochondria-mediated autophagy. J Cell Mol Med 2016; 21:375-386. [PMID: 27642051 PMCID: PMC5264130 DOI: 10.1111/jcmm.12971] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.
Collapse
Affiliation(s)
- Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Yuanyuan Deng
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Caixia Yin
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Yuangui Liu
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Wei Zhang
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Jingshan Shi
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Qihai Gong
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou, China
| |
Collapse
|
29
|
Jain A, McNamara PJ. Persistent pulmonary hypertension of the newborn: Advances in diagnosis and treatment. Semin Fetal Neonatal Med 2015; 20:262-71. [PMID: 25843770 DOI: 10.1016/j.siny.2015.03.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a frequent cause for admission to the neonatal intensive care unit and is associated with mortality and variable morbidities. It is primarily a state of oxygenation failure representing a failure of the normal postnatal decline in pulmonary vascular resistance that may be associated with right ventricular dysfunction. Enhanced knowledge of the pathophysiologic contributors to this syndrome helps clinicians understand its phenotypic expression and facilitates more focused intensive care decision-making. The approach to treatment should be based on alleviation of the elevation in pulmonary vascular resistance and should include optimization of lung recruitment and judicious use of pulmonary vasodilators. When response to inhaled nitric oxide is suboptimal, the physiologic contributors to impaired oxygenation need further investigation. Targeted neonatal echocardiography provides novel physiologic insights; in particular, it may help assess the adequacy of right ventricular performance, the relative contribution of the fetal shunts and the magnitude of the overall impairment to cardiac output. This information may facilitate therapeutic next steps and whether adjunctive vasodilators or drugs to augment ventricular function are preferable. This article provides a comprehensive overview of the pathological contributors to PPHN, the physiologic constituents of its phenotypic expression, standard approach to therapeutic intervention, and the role of bedside echocardiography in enhancing the decision-making process.
Collapse
Affiliation(s)
- Amish Jain
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Patrick J McNamara
- Division of Neonatology, Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Pediatrics and Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L196-203. [PMID: 26024892 DOI: 10.1152/ajplung.00097.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
This study was designed to determine whether cyclic stretch induces a persistent pulmonary hypertension of the newborn (PPHN) phenotype of increased NADPH oxidase (Nox) 4 signaling in control pulmonary artery smooth muscle cells (PASMC), and to identify the signal transduction molecules involved. To achieve this, PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and PASMC were isolated from control (twin) and PPHN lambs. Control PASMC were exposed to cyclic stretch at 1 Hz and 15% elongation for 24 h. Stretch-induced Nox4 expression was attenuated by inhibition of mitochondrial complex III and NF-κB, and stretch-induced protein thiol oxidation was attenuated by Nox4 small interfering RNA and complex III inhibition. NF-κB activity was increased by stretch in a complex III-dependent fashion, and stretch-induced cyclin D1 expression was attenuated by complex III inhibition and Nox4 small interfering RNA. This is the first study to show that cyclic stretch increases Nox4 expression via mitochondrial complex III-induced activation of NF-κB in fetal PASMC, resulting in ROS signaling and increased cyclin D1 expression. Targeting these signaling molecules may attenuate pulmonary vascular remodeling associated with PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California;
| | - Satyan Lakshminrusimha
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York; and
| | - Paul T Schumacker
- Department of Pediatrics, Northwestern University, Chicago, Illinois
| | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
31
|
Torres F, González-Candia A, Montt C, Ebensperger G, Chubretovic M, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J Pineal Res 2015; 58:362-73. [PMID: 25736256 DOI: 10.1111/jpi.12222] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.
Collapse
Affiliation(s)
- Flavio Torres
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Providencia, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SOD2 activity is not impacted by hyperoxia in murine neonatal pulmonary artery smooth muscle cells and mice. Int J Mol Sci 2015; 16:6373-90. [PMID: 25809610 PMCID: PMC4394537 DOI: 10.3390/ijms16036373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
Pulmonary hypertension (PH) complicates bronchopulmonary dysplasia (BPD) in 25% of infants. Superoxide dismutase 2 (SOD2) is an endogenous mitochondrial antioxidant, and overexpression protects against acute lung injury in adult mice. Little is known about SOD2 in neonatal lung disease and PH. C57Bl/6 mice and isogenic SOD2+/+ and SOD2-/+ mice were placed in room air (control) or 75% O2 (chronic hyperoxia, CH) for 14 days. Right ventricular hypertrophy (RVH) was assessed by Fulton's index. Medial wall thickness (MWT) and alveolar area were assessed on formalin fixed lung sections. Pulmonary artery smooth muscle cells (PASMC) were placed in 21% or 95% O2 for 24 h. Lung and PASMC protein were analyzed for SOD2 expression and activity. Oxidative stress was measured with a mitochondrially-targeted sensor, mitoRoGFP. CH lungs have increased SOD2 expression, but unchanged activity. SOD2-/+ PASMC have decreased expression and activity at baseline, but increased SOD2 expression in hyperoxia. Hyperoxia increased mitochondrial ROS in SOD2+/+ and SOD2-/+ PASMC. SOD2+/+ and SOD2-/+ CH pups induced SOD2 expression, but not activity, and developed equivalent increases in RVH, MWT, and alveolar area. Since SOD2-/+ mice develop equivalent disease, this suggests other antioxidant systems may compensate for partial SOD2 expression and activity in the neonatal period during hyperoxia-induced oxidative stress.
Collapse
|
33
|
Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Front Pharmacol 2015; 6:47. [PMID: 25814954 PMCID: PMC4356070 DOI: 10.3389/fphar.2015.00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/24/2015] [Indexed: 01/18/2023] Open
Abstract
Background: Mitochondrial reactive oxygen species (ROS) levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN). These events can trigger hypoxia inducible factor (HIF) signaling in response to hypoxia, which has been shown to contribute to pulmonary vascular remodeling in rodent models of pulmonary hypertension. However, the role of HIF signaling in chronic intrauterine pulmonary hypertension is not well understood. Aim: To determine if HIF signaling is increased in the lamb model of PPHN, and to identify the underlying mechanisms. Results: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and pulmonary artery smooth muscle cells (PASMC) were isolated from control and PPHN lambs. HIF-1α expression was increased in PPHN lungs and HIF activity was increased in PPHN PASMC relative to controls. Hypoxia increased HIF activity to a greater degree in PPHN vs. control PASMC. Control PASMC were exposed to cyclic stretch at 1 Hz and 15% elongation for 24 h, as an in vitro model of vascular stress. Stretch increased HIF activity, which was attenuated by inhibition of mitochondrial complex III and NFκB. Conclusion: Increased HIF signaling in PPHN is triggered by stretch, via mechanisms involving mitochondrial ROS and NFκB. Hypoxia substantially amplifies HIF activity in PPHN vascular cells. Targeting these signaling molecules may attenuate and reverse pulmonary vascular remodeling associated with PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center Sacramento, CA, USA
| | | | | | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center Sacramento, CA, USA
| |
Collapse
|
34
|
Steurer MA, Moon-Grady AJ, Fineman JR, Sun CE, Lusk LA, Wai KC, Keller RL. B-type natriuretic peptide: prognostic marker in congenital diaphragmatic hernia. Pediatr Res 2014; 76:549-54. [PMID: 25188741 PMCID: PMC4232979 DOI: 10.1038/pr.2014.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND B-type natriuretic peptide (BNP) has not been evaluated in newborns with congenital diaphragmatic hernia (CDH). We hypothesized that BNP and severity of pulmonary hypertension (PH) would predict clinical outcome in these infants. METHODS We measured BNP levels and assessed severity of PH by echocardiography at 1 d and 1 wk of life. Outcome was classified by status at 56 d (or prior discharge): Good (n = 13) if alive on room air and Poor (n = 14) if expired or receiving respiratory support. We estimated area under the curve (AUC) and 95% confidence interval (CI). RESULTS BNP levels were higher at 1 d in newborns with Poor outcome (median 220 pg/ml vs. 55 pg/ml, P < 0.01). At 1 wk, there was no significant difference in BNP level (median 547 pg/ml vs. 364 pg/ml, P = 0.70, for Poor and Good outcomes). At 1 d, BNP level predicted outcome (AUC = 0.91, 95% CI = 0.77-1.0), but this relationship dissipated by 1 wk (AUC = 0.55, 95% CI = 0.31-0.79). Severity of PH did not predict outcome at 1 d (AUC = 0.51, 95% CI = 0.27-0.74), but prediction improved at 1 wk (AUC = 0.80, 95% CI = 0.61-0.99). CONCLUSION BNP is a strong predictor of clinical outcome in newborns with CDH at 1 d of life.
Collapse
Affiliation(s)
- Martina A. Steurer
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Jeff R. Fineman
- Department of Pediatrics, University of California, San Francisco, CA, USA,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Christine E. Sun
- Department of Pediatrics, University of California, San Francisco, CA, USA,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Leslie A. Lusk
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Katherine C. Wai
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Roberta L. Keller
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Nozik-Grayck E, Woods C, Taylor JM, Benninger RKP, Johnson RD, Villegas LR, Stenmark KR, Harrison DG, Majka SM, Irwin D, Farrow KN. Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L868-76. [PMID: 25326578 PMCID: PMC4254965 DOI: 10.1152/ajplung.00096.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/08/2014] [Indexed: 02/04/2023] Open
Abstract
Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado;
| | - Crystal Woods
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Joann M Taylor
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Richard K P Benninger
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Leah R Villegas
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - David G Harrison
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Susan M Majka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kathryn N Farrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| |
Collapse
|
36
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
37
|
Perez M, Wedgwood S, Lakshminrusimha S, Farrow KN, Steinhorn RH. Hydrocortisone normalizes phosphodiesterase-5 activity in pulmonary artery smooth muscle cells from lambs with persistent pulmonary hypertension of the newborn. Pulm Circ 2014; 4:71-81. [PMID: 25006423 DOI: 10.1086/674903] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/09/2013] [Indexed: 12/15/2022] Open
Abstract
Phosphodiesterase-5 (PDE5) is the primary phosphodiesterase in the pulmonary vasculature. It degrades cyclic guanosine monophosphate (cGMP) and inhibits cGMP-mediated vasorelaxation. We previously reported that hydrocortisone treatment decreased hyperoxia-induced PDE5 activity and markers of oxidative stress in lambs with persistent pulmonary hypertension of the newborn (PPHN) ventilated with 100% O2. The objective of our study was to determine the molecular mechanism by which hydrocortisone downregulates PDE5 and oxidative stress in fetal pulmonary artery smooth muscle cells (FPASMCs) from PPHN lambs. PPHN FPASMC were incubated for 24 hours in either 21% or 95% O2. Some cells were treated with 100 nM hydrocortisone and/or ±1 μM helenalin, an inhibitor of nuclear factor κ B (NFκB), a redox-sensitive transcription factor. Exposure to hyperoxia led to increased PDE5 activity, oxidative stress, and NFκB activity. Pretreatment of PPHN FPASMC with hydrocortisone normalized PDE5 activity, decreased cytosolic oxidative stress, increased expression of extracellular superoxide dismutase and NFκB inhibitory protein, and decreased NFκB activity. Similarly, treatment with NFκB inhibitor, helenalin, decreased PDE5 activity. These data suggest that hyperoxia activates NFκB, which in turn induces PDE5 activity in PPHN FPASMC, whereas treatment with hydrocortisone attenuates these changes by blocking reactive oxygen species-induced NFκB activity.
Collapse
Affiliation(s)
- Marta Perez
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | - Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California, USA
| | | | - Kathryn N Farrow
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
38
|
Affiliation(s)
- Roxane Paulin
- From the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
39
|
Papamatheakis DG, Blood AB, Kim JH, Wilson SM. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr Vasc Pharmacol 2014; 11:616-40. [PMID: 24063380 DOI: 10.2174/1570161111311050006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 01/02/2023]
Abstract
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Center for Perinatal Biology, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, 92350 CA, USA.
| | | | | | | |
Collapse
|
40
|
Sureshbabu A, Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 2013; 4:384. [PMID: 24421769 PMCID: PMC3872744 DOI: 10.3389/fphys.2013.00384] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
During mild stressful conditions, cells activate a multitude of mechanisms in an attempt to repair or re-establish homeostasis. One such mechanism is autophagic degradation of mitochondria or mitophagy to dispose damaged mitochondria. However, if stress persists beyond recovery then dysfunctional mitochondria can ignite cell death. This review article summarizes recent studies highlighting the molecular pathways that facilitate mitochondria to alter its morphological dynamics, coordinate stress responses, initiate mitophagy and activate cell death in relevance to pulmonary pathologies. Thorough understanding of how these signaling mechanisms get disrupted may aid in designing new mitochondria-based therapies to combat lung diseases.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
41
|
Abstract
Normal pulmonary vascular development in infancy requires maintenance of low pulmonary vascular resistance after birth, and is necessary for normal lung function and growth. The developing lung is subject to multiple genetic, pathological and/or environmental influences that can adversely affect lung adaptation, development, and growth, leading to pulmonary hypertension. New classifications of pulmonary hypertension are beginning to account for these diverse phenotypes, and or pulmonary hypertension in infants due to PPHN, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). The most effective pharmacotherapeutic strategies for infants with PPHN are directed at selective reduction of PVR, and take advantage of a rapidly advancing understanding of the altered signaling pathways in the remodeled vasculature.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Department of Pediatrics, University of California Davis Children's Hospital, Sacramento, CA, United States.
| |
Collapse
|
42
|
Lee KJ, Czech L, Waypa GB, Farrow KN. Isolation of pulmonary artery smooth muscle cells from neonatal mice. J Vis Exp 2013:e50889. [PMID: 24193306 DOI: 10.3791/50889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
Collapse
Affiliation(s)
- Keng Jin Lee
- Department of Pediatrics, Northwestern University Feinberg School of Medicine
| | | | | | | |
Collapse
|
43
|
Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 2013; 61:51-60. [PMID: 23499839 PMCID: PMC3723750 DOI: 10.1016/j.freeradbiomed.2013.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/24/2013] [Accepted: 03/04/2013] [Indexed: 01/11/2023]
Abstract
Exposure of newborn mice to high inspired oxygen elicits a distinct phenotype of compromised alveolar and vascular development, although lethality during long-term exposure is lower in newborns compared to adults. As the effects of hyperoxia are mediated by excessive reactive oxygen species (ROS) generation, we hypothesized that newborn mice may exhibit enhanced expression of antioxidant defenses or attenuated ROS generation compared with adults. We measured subcellular oxidant responses to acute hyperoxia in lung slices and alveolar epithelial cells at varying time points during postnatal murine lung development. Oxidant stress was assessed using RoGFP, a ratiometric protein thiol redox sensor, targeted to the cytosol or the mitochondrial matrix. In contrast to newborn resistance to oxygen-induced mortality, cells of lung slices from younger mice demonstrated exaggerated mitochondrial matrix oxidant stress compared to adults, whereas oxidant stress responses in the cytosol were absent. Cell death in lung slices from newborn mice exposed to 48h of hyperoxia was also greater than for adults. Consistent with these findings, expression of antioxidant enzymes in newborn lungs was lower than in adults, and induction of antioxidant levels and activity during 24h of in vivo exposure was absent. However, expression of the reactive oxygen species-generating enzyme NADPH oxidase 1 was increased with hyperoxic exposure in the young but not the adult lung. Collectively, these results suggest that the greater lethality in adult animals may be more likely attributed to processes such as inflammation than to differences in antioxidant defenses. Therapies for neonatal and adult oxidative lung injury should therefore consider and address developmental differences in oxidative stress responses.
Collapse
Affiliation(s)
- Sara K. Berkelhamer
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Gina A. Kim
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Josiah E. Radder
- Department of Pulmonary and Critical Care Medicine, 240 E. Huron Ave, McGaw Mezzanine, Northwestern University, Chicago, IL. 60611 USA
| | - Stephen Wedgwood
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Lyubov Czech
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Robin H. Steinhorn
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Paul T. Schumacker
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| |
Collapse
|
44
|
Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH. Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 2013; 18:1765-76. [PMID: 23244636 PMCID: PMC3619152 DOI: 10.1089/ars.2012.4766] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM To determine if the NADPH oxidase isoform Nox4 contributes to increased H(2)O(2) generation in persistent pulmonary hypertension of the newborn (PPHN) pulmonary arteries (PA), and to identify downstream signaling targets of Nox4 that contribute to vascular remodeling and vasoconstriction. RESULTS PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs, PA, and PA smooth muscle cells (PASMC) were isolated from control and PPHN lambs. Increased expression of p22(phox) and Nox4 in PPHN lungs, PA, and PASMC was associated with increased reactive oxygen species in PPHN PA, increased protein thiol oxidation in PPHN PASMC, and a decreased activity of extracellular superoxide dismutase (ecSOD) in the lungs and PASMC. Nox4 small interfering RNA (siRNA) decreased Nox4 expression and thiol oxidation and increased the ecSOD activity in PPHN PASMC. An increased activity of nuclear factor-kappa B (NFκB) and expression of its target gene cyclin D1 were detected in PPHN lungs, PA, and PASMC. Nox4 siRNA and catalase attenuated these increases in PASMC, and catalase decreased cyclin D1 expression in PPHN lungs. INNOVATION This study demonstrates for the first time that Nox4 expression is elevated in a lamb model of neonatal pulmonary hypertension. It identifies increased NFκB and cyclin D1 expression and a decreased ecSOD activity as targets of increased Nox4 signaling. CONCLUSION PPHN increases p22(phox) and Nox4 expression and activity resulting in elevated H(2)O(2) levels in PPHN PA. Increased H(2)O(2) induces vasoconstriction via mechanisms involving ecSOD inactivation, and stimulates vascular remodeling via NFκB activation and increased cyclin D1 expression. Approaches that inhibit the pulmonary arterial Nox4 activity may attenuate vasoconstriction and vascular remodeling in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
45
|
Antenatal betamethasone improves postnatal transition in late preterm lambs with persistent pulmonary hypertension of the newborn. Pediatr Res 2013; 73:621-9. [PMID: 23370411 PMCID: PMC3749924 DOI: 10.1038/pr.2013.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension of the newborn (PPHN) is associated with increased oxidative stress in pulmonary arteries (PAs). Betamethasone decreases the oxidative stress and improves antioxidant balance in PPHN. We investigated whether antenatal betamethasone improves pulmonary vasodilation and postnatal oxygenation in late preterm lambs with PPHN. METHODS PPHN was induced by constriction of fetal ductus arteriosus from 128 to 136 d gestation. Ewes were given two intramuscular doses of betamethasone or saline at 24 and 12 h before cesarean-section delivery at 136 d gestation, simulating late preterm birth. Newborn lambs were mechanically ventilated for 8 h with monitoring of blood gas and hemodynamic variables. Lungs were harvested postmortem to determine oxidative stress markers and in vitro responses of PAs. RESULTS Postnatal arterial partial pressure of oxygen and pH were higher and the oxygenation index and arterial partial pressure of carbon dioxide were lower in betamethasone-treated lambs. PA pressure was lower and systemic pressure higher in lambs treated with betamethasone. Betamethasone decreased the oxidative stress markers and increased endothelial nitric oxide synthase expression in ventilated PPHN lungs. CONCLUSION Antenatal betamethasone decreases oxidative stress and improves postnatal transition in late preterm lambs with PPHN. This study suggests a potential benefit for antenatal betamethasone in late preterm births.
Collapse
|
46
|
Steinhorn RH, Kinsella JP, Abman SH. Beyond pulmonary hypertension: sildenafil for chronic lung disease of prematurity. Am J Respir Cell Mol Biol 2013; 48:iii-v. [PMID: 23378489 DOI: 10.1165/rcmb.2012-0441ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
47
|
Afolayan AJ, Eis A, Teng RJ, Bakhutashvili I, Kaul S, Davis JM, Konduri GG. Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2012; 303:L870-L879. [PMID: 22962015 PMCID: PMC3517675 DOI: 10.1152/ajplung.00098.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023] Open
Abstract
A rapid increase in the synthesis and release of nitric oxide (NO) facilitates the pulmonary vasodilation that occurs during birth-related transition. Alteration of this transition in persistent pulmonary hypertension of the newborn (PPHN) is associated with impaired function of endothelial nitric oxide synthase (eNOS) and an increase in oxidative stress. We investigated the hypothesis that a decrease in expression and activity of mitochondrial localized manganese superoxide dismutase (MnSOD) in pulmonary artery endothelial cells (PAEC) increases oxidative stress and impairs eNOS function in PPHN. We isolated PAEC and pulmonary arteries from fetal lambs with PPHN induced by prenatal ductus arteriosus ligation or sham ligation (control). We investigated MnSOD expression and activity, tyrosine nitration of MnSOD, and mitochondrial O(2)(-) levels in PAEC from control and PPHN lambs. We introduced exogenous MnSOD via an adenoviral vector (ad-MnSOD) transduction into PAEC and pulmonary arteries of PPHN lambs. The effect of ad-MnSOD was investigated on: mitochondrial O(2)(-) levels, MnSOD and eNOS expression and activity, intracellular hydrogen peroxide (H(2)O(2)) levels, and catalase expression in PAEC. MnSOD mRNA and protein levels and activity were decreased and MnSOD tyrosine nitration was increased in PPHN-PAEC. ad-MnSOD transduction of PPHN-PAEC increased its activity two- to threefold, decreased mitochondrial O(2)(-) levels, and increased H(2)O(2) levels and catalase expression. ad-MnSOD transduction improved eNOS expression and function and the relaxation response of PPHN pulmonary arteries. Our observations suggest that decreased MnSOD expression and activity contribute to the endothelial dysfunction observed in PPHN.
Collapse
Affiliation(s)
- Adeleye J Afolayan
- Department of Pediatrics, Cardiovascular Research Center and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Enomoto M, Gosal K, Cubells E, Escobar J, Vento M, Jankov RP, Belik J. Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure. Pediatr Res 2012; 72:468-78. [PMID: 22926548 DOI: 10.1038/pr.2012.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic exposure to supplemental oxygen (O(2)) induces lung damage and mortality in a sex-dependent manner. The effect of short-term hyperoxia on the newborn pulmonary vasculature is unknown but is, however, of clinical significance in the neonatal resuscitation context. We hypothesize that short-term hyperoxia has a sex-dependent effect on the pulmonary vasculature. METHODS Following 1-h 100% O(2) exposure, the pulmonary arteries and lung tissues of newborn rats were evaluated. RESULTS Superoxide dismutase 3 (SOD3) expression in female pups' lungs was increased as compared with that in the lungs of male pups. As compared with air-treated pups, the response of male pups to thromboxane was increased by O(2), whereas the opposite effect was documented in the vessels of female pups. The enhanced force of hyperoxia-exposed arteries of the male pups was suppressed with superoxide or peroxynitrite scavengers, and increased lung SOD activity and hydrogen peroxide content were seen in female, but not in male, rats. Hyperoxia induced an increase in lung tissue oxidative products and Rho-kinase (ROCK) activity in male, but not in female, pups. CONCLUSION A lower lung SOD content and failure to upregulate SOD activity facilitates peroxynitrite generation and ROCK activation in hyperoxia-exposed males, predisposing them to pulmonary vasoconstriction. These observations, if relevant to humans, may explain the increased mortality and higher incidence of pulmonary hypertension in male neonates.
Collapse
Affiliation(s)
- Masahiro Enomoto
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Vuckovic A, Roubliova XI, Votino C, Naeije R, Jani JC. Signaling molecules in the fetal rabbit model for congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47:1088-96. [PMID: 22328320 DOI: 10.1002/ppul.22512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/05/2012] [Indexed: 01/23/2023]
Abstract
RATIONALE AND OBJECTIVES Little is known about molecular changes in lungs of fetal rabbits with surgically induced diaphragmatic hernia (DH). Therefore, we examined in this model gene expressions of pivotal molecules for the developing lung. METHODS At day 23 of gestation, DH was created in 12 fetuses from 4 does. Both lungs from six live DH fetuses and from six unoperated controls were harvested and weighed at term. Transcription of 15 genes involved in alveolarization, angiogenesis, regulation of vascular tone, or epithelial maturation was investigated by real-time quantitative polymerase chain reaction. MAIN RESULTS DH decreased lung-to-body weight ratio (P < 0.001). A bilateral downregulation was seen for genes encoding for tropoelastin (P < 0.01), lysyl oxidase (P < 0.05), fibulin 5 (P < 0.05), and cGMP specific phosphodiesterase 5 (P < 0.05). Lower mRNA levels for endothelial nitric oxide synthase occurred in the ipsilateral lung (P < 0.05). CONCLUSIONS Experimental DH in fetal rabbits disrupted transcription of genes implicated in lung growth and function. Similarities with the human disease make this model appropriate for investigation of new prenatal therapies.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Physiopathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Pulmonary arterial hypertension is a serious disease with significant morbidity and mortality. Although it can occur idiopathically, it is more commonly associated with other cardiac or lung diseases. While most of the available therapies have been tested in adult populations and most therapies in children remain off-label, new reports and randomized trials are emerging that inform the treatment of pediatric populations. This review discusses currently available therapies for pediatric pulmonary hypertension, their biological rationales, and evidence for their clinical effectiveness.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Department of Pediatrics, The Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, 225 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|