1
|
Nelson NC, Wong KK, Mahoney IJ, Malik T, Rudym D, Lesko MB, Qayum S, Lewis TC, Chang SH, Chan JCY, Geraci TC, Li Y, Pamar P, Schnier J, Singh R, Collazo D, Chang M, Kyeremateng Y, McCormick C, Borghi S, Patel S, Darawshy F, Barnett CR, Sulaiman I, Kugler MC, Brosnahan SB, Singh S, Tsay JCJ, Wu BG, Pass HI, Angel LF, Segal LN, Natalini JG. Lung allograft dysbiosis associates with immune response and primary graft dysfunction. J Heart Lung Transplant 2025; 44:422-434. [PMID: 39561864 PMCID: PMC11956144 DOI: 10.1016/j.healun.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Lower airway enrichment with oral commensals has been previously associated with severe primary graft dysfunction (PGD) after lung transplantation (LT). We aimed to determine whether this dysbiotic signature is present across all PGD severity grades and whether it is associated with a distinct host inflammatory endotype. METHODS Lower airway samples from 96 LT recipients were used to evaluate the lung allograft microbiota via 16S rRNA gene sequencing. Bronchoalveolar lavage (BAL) cytokine concentrations and cell differential percentages were compared across PGD grades. In a subset of samples, we evaluated the lower airway host transcriptome using RNA sequencing methods. RESULTS Differential analyses demonstrated lower airway enrichment with supraglottic-predominant taxa (SPT) in moderate and severe PGD. Dirichlet multinomial mixtures modeling identified 2 distinct microbial clusters. A greater percentage of subjects with moderate-severe PGD than no PGD were identified within the dysbiotic cluster (C-SPT, 48% and 29%, respectively) though this did not reach statistical significance (p = 0.06). PGD severity associated with increased BAL neutrophil concentration (p = 0.03) and correlated with BAL concentrations of MCP-1/CCL2, IP-10/CXCL10, IL-10, and TNF-α (p < 0.05). Furthermore, signatures of dysbiosis correlated with neutrophils, MCP-1/CCL-2, IL-10, and TNF-α (p < 0.05). C-SPT exhibited differential expression of TNF, SERPINE1, MPO, and MMP1 genes and upregulation of MAPK pathways, host signling associated with neutrophilic inflammation. CONCLUSIONS Lower airway dysbiosis within the lung allograft is associated with a neutrophilic inflammatory endotype, an immune profile commonly recognized as the hallmark for PGD. These data highlight a putative role of lower airway microbial dysbiosis in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Nathaniel C Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Kendrew K Wong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Ian J Mahoney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Tahir Malik
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Darya Rudym
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Melissa B Lesko
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Seema Qayum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Tyler C Lewis
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Stephanie H Chang
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Justin C Y Chan
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Travis C Geraci
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Prerna Pamar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Joseph Schnier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Rajbir Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Destiny Collazo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Colin McCormick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Sara Borghi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Shrey Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Fares Darawshy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; The Institute of Pulmonology, Hadassah Medical Center, Jerusalem, Israel; Department of Medicine, The Faculty of Medicine at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Clea R Barnett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Luis F Angel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jake G Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York.
| |
Collapse
|
2
|
Kawamura A, Ito A, Takahashi A, Sawamoto A, Okuyama S, Nakajima M. Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide. J Pharmacol Sci 2024; 156:125-133. [PMID: 39179331 DOI: 10.1016/j.jphs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Benproperine (BNP) is a nonnarcotic antitussive drug that is used to treat bronchitis. In the present study, we examined the anti-inflammatory effects of BNP in vitro and in vivo. BNP was found to reduce the secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte/macrophage-lineage cells in vitro. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we used an animal model to determine whether BNP reduces IL-6 levels in vivo and improves sepsis symptoms. Notably, BNP reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. BNP reduced the mortality of septic mice administered a lethal dose of LPS. To reveal the mechanisms underlying the anti-inflammatory function of BNP, we assessed intracellular signaling in LPS-treated RAW264.7 cells. BNP induced the phosphorylation of protein kinase B (Akt) in RAW264.7 cells with/without LPS treatment. Wortmannin, an inhibitor of phosphoinositide 3-kinase reduced the phosphorylation levels of Akt. Wortmannin also obstructed the reduction of IL-6 secretion caused by BNP. Altogether, BNP was found to exhibit an anti-inflammatory function via Akt signaling. Therefore, BNP could be a drug candidate for inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Ayumi Kawamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Akane Ito
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Ayaka Takahashi
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
3
|
Wilcox NS, Yarovinsky TO, Pandya P, Ramgolam VS, Moro A, Wu Y, Nicoli S, Hirschi KK, Bender JR. Distinct hypoxia-induced translational profiles of embryonic and adult-derived macrophages. iScience 2023; 26:107985. [PMID: 38047075 PMCID: PMC10690575 DOI: 10.1016/j.isci.2023.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tissue resident macrophages are largely of embryonic (fetal liver) origin and long-lived, while bone marrow-derived macrophages (BMDM) are recruited following an acute perturbation, such as hypoxia in the setting of myocardial ischemia. Prior transcriptome analyses identified BMDM and fetal liver-derived macrophage (FLDM) differences at the RNA expression level. Posttranscriptional regulation determining mRNA stability and translation rate may override transcriptional signals in response to hypoxia. We profiled differentially regulated BMDM and FLDM transcripts in response to hypoxia at the level of mRNA translation. Using a translating ribosome affinity purification (TRAP) assay and RNA-seq, we identified non-overlapping transcripts with increased translation rate in BMDM (Ly6e, vimentin, PF4) and FLDM (Ccl7, Ccl2) after hypoxia. We further identified hypoxia-induced transcripts within these subsets that are regulated by the RNA-binding protein HuR. These findings define translational differences in macrophage subset gene expression programs, highlighting potential therapeutic targets in ischemic myocardium.
Collapse
Affiliation(s)
- Nicholas S. Wilcox
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Immunobiology, and Yale University School of Medicine, New Haven, CT 06511, USA
| | - Timur O. Yarovinsky
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Immunobiology, and Yale University School of Medicine, New Haven, CT 06511, USA
| | - Prakruti Pandya
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Immunobiology, and Yale University School of Medicine, New Haven, CT 06511, USA
| | - Vinod S. Ramgolam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Immunobiology, and Yale University School of Medicine, New Haven, CT 06511, USA
| | - Albertomaria Moro
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Yinyu Wu
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Stefania Nicoli
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Karen K. Hirschi
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jeffrey R. Bender
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT USA
- Department of Immunobiology, and Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Yegen CH, Haine L, Da Costa Ferreira K, Marchant D, Bernaudin JF, Planès C, Voituron N, Boncoeur E. A New Model of Acute Exacerbation of Experimental Pulmonary Fibrosis in Mice. Cells 2022; 11:3379. [PMID: 36359778 PMCID: PMC9654438 DOI: 10.3390/cells11213379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2023] Open
Abstract
RATIONALE idiopathic pulmonary fibrosis (IPF) is the most severe form of fibrosing interstitial lung disease, characterized by progressive respiratory failure leading to death. IPF's natural history is heterogeneous, and its progression unpredictable. Most patients develop a progressive decline of respiratory function over years; some remain stable, but others present a fast-respiratory deterioration without identifiable cause, classified as acute exacerbation (AE). OBJECTIVES to develop and characterize an experimental mice model of lung fibrosis AE, mimicking IPF-AE at the functional, histopathological, cellular and molecular levels. METHODS we established in C57BL/6 male mice a chronic pulmonary fibrosis using a repetitive low-dose bleomycin (BLM) intratracheal (IT) instillation regimen (four instillations of BLM every 2 weeks), followed by two IT instillations of a simple or double-dose BLM challenge to induce AE. Clinical follow-up and histological and molecular analyses were done for fibrotic and inflammatory lung remodeling analysis. MEASUREMENTS AND MAIN RESULTS as compared with a low-dose BLM regimen, this AE model induced a late burst of animal mortality, worsened lung fibrosis and remodeling, and superadded histopathological features as observed in humans IPF-AE. This was associated with stronger inflammation, increased macrophage infiltration of lung tissue and increased levels of pro-inflammatory cytokines in lung homogenates. Finally, it induced in the remodeled lung a diffuse expression of hypoxia-inducible factor 1α, a hallmark of tissular hypoxia response and a major player in the progression of IPF. CONCLUSION this new model is a promising model of AE in chronic pulmonary fibrosis that could be relevant to mimic IPF-AE in preclinical trials.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Liasmine Haine
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Kevin Da Costa Ferreira
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Dominique Marchant
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Jean-Francois Bernaudin
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Faculté de Médecine, Sorbonne Université, 75006 Paris, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Département STAPS, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| |
Collapse
|
5
|
Florentin J, O'Neil SP, Ohayon LL, Uddin A, Vasamsetti SB, Arunkumar A, Ghosh S, Boatz JC, Sui J, Kliment CR, Chan SY, Dutta P. VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Front Immunol 2022; 13:882484. [PMID: 35634304 PMCID: PMC9133347 DOI: 10.3389/fimmu.2022.882484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Although it is well known that hypoxia incites unleashed cellular inflammation, the mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known. We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC), precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed elevated expression of genes involved in progenitor proliferation and differentiation. Additionally, bone marrow cells in mice expressed high amount of vascular endothelial growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased HSPC proliferation and attenuated inflammation. In silico and ChIP experiments demonstrated that HIF-1α binds to the promoter region of VEGFR1. Correspondingly, HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation. These results indicate that VEGF signaling in HSPC is an important mediator of their proliferation and differentiation in hypoxia-induced inflammation and represents a potential therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Afaz Uddin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Samit Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Boatz
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin Sui
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Huang C. Pathogenesis of Coronaviruses Through Human Monocytes and Tissue Macrophages. Viral Immunol 2021; 34:597-606. [PMID: 34297627 DOI: 10.1089/vim.2021.0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) contribute significantly to the burden of respiratory diseases, frequently as upper respiratory tract infections. Recent emergence of novel coronaviruses in the last few decades has highlighted the potential transmission, disease, and mortality related to these viruses. In this literature review, we shall explore the disease-causing mechanism of the virus through human monocytes and macrophages. Common strains will be discussed; however, this review will center around coronaviruses responsible for epidemics, namely severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Macrophages are key players in the immune system and have been found to play a role in the pathogenesis of lethal coronaviruses. In physiology, they are white blood cells that engulf and digest cellular debris, foreign substances, and microbes. They play a critical role in innate immunity and help initiate adaptive immunity. Human coronaviruses utilize various mechanisms to undermine the innate immune response through its interaction with macrophages and monocytes. It is capable of entering immune cells through DPP4 (dipeptidyl-peptidase 4) receptors and antibody-dependent enhancement, delaying initial interferon response which supports robust viral replication. Pathogenesis includes triggering the production of overwhelming pro-inflammatory cytokines that attract other immune cells to the site of infection, which propagate prolonged pro-inflammatory response. The virus has also been found to suppress the release of anti-inflammatory mediators such as IL-10, leading to an aberrant inflammatory response. Elevated serum cytokines are also believed to contribute to pathological features seen in severe disease such as coagulopathy, acute lung injury, and multiorgan failure.
Collapse
Affiliation(s)
- Chenghao Huang
- Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Ramírez-Moreno IG, Ibarra-Sánchez A, Castillo-Arellano JI, Blank U, González-Espinosa C. Mast Cells Localize in Hypoxic Zones of Tumors and Secrete CCL-2 under Hypoxia through Activation of L-Type Calcium Channels. THE JOURNAL OF IMMUNOLOGY 2020; 204:1056-1068. [PMID: 31900336 DOI: 10.4049/jimmunol.1801430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Hypoxia is a condition that together with low pH, high amounts of reactive oxygen species (ROS), and increased adenosine levels characterize tumor microenvironment. Mast cells (MCs) are part of tumor microenvironment, but the effect of hypoxia on the production of MC-derived cytokines has not been fully described. Using the hypoxia marker pimonidazole in vivo, we found that MCs were largely located in the low-oxygen areas within B16-F1 mice melanoma tumors. In vitro, hypoxia promoted ROS production, a ROS-dependent increase of intracellular calcium, and the production of MCP 1 (CCL-2) in murine bone marrow-derived MCs. Hypoxia-induced CCL-2 production was sensitive to the antioxidant trolox and to nifedipine, a blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). Simultaneously with CCL-2 production, hypoxia caused the ROS-dependent glutathionylation and membrane translocation of the α1c subunit of Cav1.2 LVDCCs. Relationship between ROS production, calcium rise, and CCL-2 synthesis was also observed when cells were treated with H2O2 In vivo, high CCL-2 production was detected on hypoxic zones of melanoma tumors (where tryptase-positive MCs were also found). Pimonidazole and CCL-2 positive staining diminished when B16-F1 cell-inoculated animals were treated with trolox, nifedipine, or the adenosine receptor 2A antagonist KW6002. Our results show that MCs are located preferentially in hypoxic zones of melanoma tumors, hypoxia-induced CCL-2 production in MCs requires calcium rise mediated by glutathionylation and membrane translocation of LVDCCs, and this mechanism of CCL-2 synthesis seems to operate in other cells inside melanoma tumors, with the participation of the adenosine receptor 2A.
Collapse
Affiliation(s)
- Itzel G Ramírez-Moreno
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico
| | - Jorge Ivan Castillo-Arellano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico; and
| | - Ulrich Blank
- Inserm U1149, CNRS ERL 8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site X. bichat, Laboratorie d'excellence INFLAMEX, 75018 Paris, France
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico;
| |
Collapse
|
9
|
Chen IC, Lin YT, Huang JS, Wu BN, Hsu JH, Tan MS, Dai ZK. Decreased Ambient Oxygen Tension Alters the Expression of Endothelin-1, iNOS and cGMP in Rat Alveolar Macrophages. Int J Med Sci 2019; 16:443-449. [PMID: 30911278 PMCID: PMC6428981 DOI: 10.7150/ijms.28353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Hypoxia plays an important role in the vascular tone of pulmonary circulation via the vasculature and parenchymal tissue. Endothelin-1 (ET-1), a potent vasoconstrictive peptide, plays a role in inflammation in mononuclear cells. Nitric oxide synthase (NOS), which generates nitric oxide (NO)/cyclic 3', 5'-monophosphate (cGMP), is coexpressed with ET-1 in many cell types. The aim of this study was to assess whether hypoxia induces the production of ET-1 and associated expression of NOS, NO/cGMP and chemokines in rat alveolar macrophages (AMs). Methods: NR8383 cells were cultured under hypoxic (1% oxygen) conditions for 0, 2, 4, 8 and 12 hours. Levels of ET-1, inducible NOS (iNOS), phosphorylated iNOS (p-iNOS), nitrite/nitrate (NOx), cGMP and monocyte chemoattractant protein-1 (MCP-1) were measured. Results: ET-1, p-iNOS, NOx, and cGMP increased significantly in AMs after 4 hours of hypoxia (p < 0.05). ET-1 and MCP-1 mRNA increased after 8 hours (p < 0.05). The protein expression of ET-1, MCP-1, and p-iNOS increased in a time-dependent manner, while iNOS expression decreased with time. Conclusions: The changes in ET-1, p-iNOS, and the NO/cGMP pathway in AMs may help elucidate the mechanisms in the hypoxic lung. Understanding changes in the endothelin axis in hypoxic AMs is a crucial first step to unravel its role in pulmonary circulation.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jhy-Shrian Huang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Pugliese SC, Kumar S, Janssen WJ, Graham BB, Frid MG, Riddle SR, El Kasmi KC, Stenmark KR. A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension. THE JOURNAL OF IMMUNOLOGY 2017; 198:4802-4812. [PMID: 28500078 DOI: 10.4049/jimmunol.1601692] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases.
Collapse
Affiliation(s)
- Steven C Pugliese
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045.,Department of Medicine, National Jewish Health, Denver, CO 80206
| | - Brian B Graham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzette R Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Karim C El Kasmi
- Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
11
|
Casillan AJ, Chao J, Wood JG, Gonzalez NC. Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability. J Appl Physiol (1985) 2017; 123:974-982. [PMID: 28302706 DOI: 10.1152/japplphysiol.00322.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 02/15/2017] [Accepted: 03/12/2017] [Indexed: 11/22/2022] Open
Abstract
Rats breathing 10% O2 show a rapid and widespread systemic microvascular inflammation that results from nitric oxide (NO) depletion secondary to increased reactive O2 species (ROS) generation. The inflammation eventually resolves, and the microcirculation becomes resistant to more severe hypoxia. These experiments were directed to determine the mechanisms underlying this microvascular acclimatization process. Intravital microscopy of the mesentery showed that after 3 wk of hypoxia (barometric pressure ~380 Torr; partial pressure of inspired O2 ~68-70 Torr), rats showed no evidence of inflammation; however, treatment with the inducible NO synthase (iNOS) inhibitor L-N6-(1-iminoethyl) lysine dihydrochloride led to ROS generation, leukocyte-endothelial adherence and emigration, and increased vascular permeability. Mast cells harvested from normoxic rats underwent degranulation when exposed in vitro to monocyte chemoattractant protein-1 (MCP-1), the proximate mediator of mast cell degranulation in acute hypoxia. Mast cell degranulation by MCP-1 was prevented by the NO donor spermine-NONOate. MCP-1 did not induce degranulation of mast cells harvested from 6-day hypoxic rats; however, pretreatment with either the general NOS inhibitor L-NG-monomethyl arginine citrate or the selective iNOS inhibitor N-[3-(aminomethyl) benzyl] acetamidine restored the effect of MCP-1. iNOS was demonstrated in mast cells and alveolar macrophages of acclimatized rats. Nitrate + nitrite plasma levels decreased significantly in acute hypoxia and were restored after 6 days of acclimatization. The results support the hypothesis that the microvascular acclimatization to hypoxia results from the restoration of the ROS/NO balance mediated by iNOS expression at key sites in the inflammatory cascade.NEW & NOTEWORTHY The study shows that the systemic inflammation of acute hypoxia resolves via an inducible nitric oxide (NO) synthase-induced restoration of the reactive O2 species/NO balance in the systemic microcirculation. It is proposed that the acute systemic inflammation may represent the first step of the microvascular acclimatization process.
Collapse
Affiliation(s)
- Alfred J Casillan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Jie Chao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - John G Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and.,Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
12
|
Hou KL, Lin SK, Kok SH, Wang HW, Lai EHH, Hong CY, Yang H, Wang JS, Lin LD, Chang JZC. Increased Expression of Glutaminase in Osteoblasts Promotes Macrophage Recruitment in Periapical Lesions. J Endod 2017; 43:602-608. [PMID: 28190586 DOI: 10.1016/j.joen.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recently, we have shown that tissue hypoxia stimulates the progression of periapical lesions by up-regulating glycolysis-dependent apoptosis of osteoblasts. Other facets of hypoxia-induced metabolic reprogramming in disease pathogenesis require further investigation. In this study, we examined the connection between hypoxia-augmented glutamine catabolism in osteoblasts and the development of periapical lesions. METHODS Primary human osteoblasts were cultured under hypoxia. The expression of glutaminase 1 (GLS1) was examined using Western blot analysis. The production of glutamate was measured by colorimetric assay. Knockdown of GLS1 was performed with small interfering RNA technology. C-C motif chemokine ligand 2 (CCL2) secretion and chemotaxis of J774 macrophages were examined by enzyme-linked immunosorbent assay and transwell migration assay, respectively. In a rat model of induced periapical lesions, the relations between disease progression and osteoblastic expression of GLS1 or macrophage recruitment were studied. RESULTS Hypoxia enhanced GLS1 expression and subsequent glutamate production in osteoblasts. Glutamate induced chemoattraction of macrophages by osteoblasts through up-regulation of CCL2 synthesis. Hypoxia promoted CCL2 secretion and macrophage recruitment through augmentation of glutaminolysis. Knockdown of GLS1 abolished hypoxia-induced effects. In rat periapical lesions, progressive bone resorption was significantly related to elevated GLS1 expression in osteoblasts and increased macrophage recruitment. CONCLUSIONS In addition to the rise in glycolytic activity, the progression of periapical lesions is also associated with enhanced glutamine catabolism in osteoblasts. GLS1 may be a potential therapeutic target in the management of periapical lesions.
Collapse
Affiliation(s)
- Kuo-Liang Hou
- Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; College of Bio-Resources and Agriculture, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Juo-Song Wang
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenny Zwei-Chieng Chang
- Department of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
13
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
14
|
Chen T, Yang C, Li M, Tan X. Alveolar Hypoxia-Induced Pulmonary Inflammation: From Local Initiation to Secondary Promotion by Activated Systemic Inflammation. J Vasc Res 2016; 53:317-329. [PMID: 27974708 DOI: 10.1159/000452800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with high mortality and morbidity. Hypoxic PH (HPH) is a common form of PH occurring mainly due to lung disease and/or hypoxia. Most causes of HPH are associated with persistent or intermittent alveolar hypoxia, including exposure to high altitude and chronic obstructive respiratory disease. Recent evidence suggests that inflammation is a critical step for HPH initiation and development. A detailed understanding of the initiation and progression of pulmonary inflammation would help in exploring potential clinical treatments for HPH. In this review, the mechanism for alveolar hypoxia-induced local lung inflammation and its progression are discussed as follows: (1) low alveolar PO2 levels activate resident lung cells, mainly the alveolar macrophages, which initiate pulmonary inflammation; (2) systemic inflammation is induced by alveolar hypoxia through alveolar macrophage activation; (3) monocytes are recruited into the pulmonary circulation by alveolar hypoxia-induced macrophage activation, which then contributes to the progression of pulmonary inflammation during the chronic phase of alveolar hypoxia, and (4) alveolar hypoxia-induced systemic inflammation contributes to the development of HPH. We hypothesize that a combination of alveolar hypoxia-induced local lung inflammation and the initiation of systemic inflammation ("second hit") is essential for HPH progression.
Collapse
Affiliation(s)
- Ting Chen
- Department of High Altitude Physiology and Biology, College of High Altitude Medicine, Third Military Medical University, Ministry of Education, Chongqing, China
| | | | | | | |
Collapse
|
15
|
Kononikhin AS, Fedorchenko KY, Ryabokon AM, Starodubtseva NL, Popov IA, Zavialova MG, Anaev EC, Chuchalin AG, Varfolomeev SD, Nikolaev EN. Proteomic analysis of exhaled breath condensate for diagnostics of respiratory system diseases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Žaloudíková M, Vytášek R, Vajnerová O, Hniličková O, Vízek M, Hampl V, Herget J. Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia-induced increase in serum concentration of MCP-1. Physiol Res 2016; 65:763-768. [PMID: 27429111 DOI: 10.33549/physiolres.933187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exposure to hypoxia, leading to hypoxic pulmonary hypertension (HPH), is associated with activation of alveolar macrophages (AM). However, it remains unclear how AM participate in this process. There are studies which imply that the AM product monocyte chemoattractant protein-1 (MCP-1) plays an important role. Thus we tested: 1. if the selective elimination of AM attenuates HPH in rats, 2. the correlation of MCP-1 plasmatic concentrations with the presence and absence of AM during exposure to hypoxia, 3. the direct influence of hypoxia on MCP-1 production in isolated AM. We found that experimental depletion of AM attenuated the chronic hypoxia-induced increase in mean pulmonary arterial pressure, but did not affect the serum MCP-1 concentrations. Furthermore, the MCP-1 production by AM in vitro was unaffected by hypoxia. Thus we conclude that AM play a significant role in the mechanism of HPH, but MCP-1 release from these cells is most likely not involved in this process. The increase of MCP-1 accompanying the development of HPH probably originates from other sources than AM.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Wang R, Xie H, Sun Y, Tao R, Liu W, Li W, Lu H, Jia Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine 2016; 83:110-117. [PMID: 27104804 DOI: 10.1016/j.cyto.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/19/2016] [Accepted: 04/03/2016] [Indexed: 02/08/2023]
Abstract
Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude+ACZ (22.33mg/kg, Bid) (HA+ACZ) group. The rats were acute exposed to high altitude at 4300m for 3days. The HA+ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA+ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body's physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA+ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other reason to explain ACZ against the acute mountain sickness.
Collapse
Affiliation(s)
- Chang Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rong Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Hua Xie
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China
| | - Yuhuan Sun
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rui Tao
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wenqing Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wenbin Li
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Lu
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengping Jia
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Zhu T, Zhang W, Feng SJ, Yu HP. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int Immunopharmacol 2016; 34:16-24. [DOI: 10.1016/j.intimp.2016.02.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/31/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
|
19
|
Kononikhin AS, Fedorchenko KY, Ryabokon AM, Starodubtseva NL, Popov IA, Zavialova MG, Anaev EC, Chuchalin AG, Varfolomeev SD, Nikolaev EN. [Proteomic analysis of exhaled breath condensate for diagnosis of pathologies of the respiratory system]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:777-80. [PMID: 26716752 DOI: 10.18097/pbmc20156106777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Study of the proteomic composition of exhaled breath condensate (EBC), is a promising non-invasive method for the diagnosis of the respiratory tract diseases in patients. In this study the EBC proteomic composition of the 79 donors, including patients with different pathologies of the respiratory system has been investigated. Cytoskeletal keratins type II (1, 2, 3, 4, 5, 6) and cytoskeletal keratins the type I (9, 10, 14, 15, 16) were invariant for all samples. Analyzing the frequency of occurrence of proteins in different groups of examined patients, several categories of protein have been recognized: found in all pathologies (Dermcidin, Alpha-1-microglobulin, SHROOM3), found in several pathologies (CSTA, LCN1, JUP, PIP, TXN), and specific for a single pathology (PRDX1, Annexin A1/A2). The EBC analysis by HPLC-MS/MS can be used to identify potential protein markers characteristic for pathologies such as chronic obstructive pulmonary disease (PRDX1) and pneumonia (Annexin A1/A2).
Collapse
Affiliation(s)
- A S Kononikhin
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - K Yu Fedorchenko
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A M Ryabokon
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - N L Starodubtseva
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - I A Popov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - M G Zavialova
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - E C Anaev
- Research Institute of Pulmonology, Moscow, Russia
| | | | - S D Varfolomeev
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - E N Nikolaev
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| |
Collapse
|
20
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
21
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
Shen Q, Holloway N, Thimmesch A, Wood JG, Clancy RL, Pierce JD. Ubiquinol decreases hemorrhagic shock/resuscitation-induced microvascular inflammation in rat mesenteric microcirculation. Physiol Rep 2014; 2:e12199. [PMID: 25413319 PMCID: PMC4255806 DOI: 10.14814/phy2.12199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a leading cause of death in traumatic injury. Ischemia and hypoxia in HS and fluid resuscitation (FR) creates a condition that facilitates excessive generation of reactive oxygen species (ROS). This is a major factor causing increased leukocyte-endothelial cell adhesive interactions and inflammation in the microcirculation resulting in reperfusion tissue injury. The aim of this study was to determine if ubiquinol (coenzyme Q10) decreases microvascular inflammation following HS and FR. Intravital microscopy was used to measure leukocyte-endothelial cell adhesive interactions in the rat mesentery following 1-h of HS and 2-h post FR with or without ubiquinol. Hemorrhagic shock was induced by removing ~ 40% of anesthetized Sprague Dawley rats' blood volume to maintain a mean arterial blood pressure <50 mmHg for 1 h. Ubiquinol (1 mg/100 g body weight) was infused intravascularly in the ubiquinol group immediately after 1-h HS. The FR protocol included replacement of the shed blood and Lactate Ringer's in both the control and ubiquinol groups. We found that leukocyte adherence (2.3 ± 2.0), mast cell degranulation (1.02 ± 0.01), and ROS levels (159 ± 35%) in the ubiquinol group were significantly reduced compared to the control group (10.8 ± 2.3, 1.36 ± 0.03, and 343 ± 47%, respectively). In addition, vascular permeability in the control group (0.54 ± 0.11) was significantly greater than the ubiquinol group (0.34 ± 0.04). In conclusion, ubiquinol attenuates HS and FR-induced microvascular inflammation. These results suggest that ubiquinol provides protection to mesenteric microcirculation through its antioxidant properties.
Collapse
Affiliation(s)
- Qiuhua Shen
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
| | - Naomi Holloway
- Department of Surgery, University of Kansas, Kansas City, Kansas, USA (N.H., J.G.W.)
| | - Amanda Thimmesch
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
| | - John G. Wood
- Department of Surgery, University of Kansas, Kansas City, Kansas, USA (N.H., J.G.W.)
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| | - Richard L. Clancy
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| | - Janet D. Pierce
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| |
Collapse
|
23
|
The lungs in acute mountain sickness: victim, perpetrator, or both? Am J Med 2014; 127:899-900. [PMID: 24950487 DOI: 10.1016/j.amjmed.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022]
|
24
|
Yoshimura T, Galligan C, Takahashi M, Chen K, Liu M, Tessarollo L, Wang JM. Non-Myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein-1/CCL2. Front Immunol 2014; 4:482. [PMID: 24432017 PMCID: PMC3882876 DOI: 10.3389/fimmu.2013.00482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1)/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells, and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Carole Galligan
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Munehisa Takahashi
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mingyong Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
25
|
Ives SJ, Harris RA, Witman MAH, Fjeldstad AS, Garten RS, McDaniel J, Wray DW, Richardson RS. Vascular dysfunction and chronic obstructive pulmonary disease: the role of redox balance. Hypertension 2013; 63:459-67. [PMID: 24324045 DOI: 10.1161/hypertensionaha.113.02255] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by low pulmonary function, inflammation, free radical production, vascular dysfunction, and subsequently a greater incidence of cardiovascular disease. By administering an acute oral antioxidant cocktail to patients with COPD (n=30) and controls (n=30), we sought to determine the role of redox balance in the vascular dysfunction of these patients. Using a double-blind, randomized, placebo-controlled, crossover design, patients with COPD and controls were ingested placebo or the antioxidant cocktail (vitamin C, vitamin E, α-lipoic acid) after which brachial artery flow-mediated dilation and carotid-radial pulse wave velocity were assessed using ultrasound Doppler. The patients exhibited lower baseline antioxidant levels (vitamin C and superoxide dismutase activity) and higher levels of oxidative stress (thiobarbituic acid reactive species) in comparison with controls. The patients also displayed lower basal flow-mediated dilation (P<0.05), which was significantly improved with antioxidant cocktail (3.1±0.5 versus 4.7±0.6%; P<0.05; placebo versus antioxidant cocktail), but not controls (6.7±0.6 versus 6.9±0.7%; P>0.05; placebo versus antioxidant cocktail). The antioxidant cocktail also improved pulse wave velocity in patients with COPD (14±1 versus 11±1 m·s(-1); P<0.05; placebo versus antioxidant cocktail) while not affecting controls (11±2 versus 10±1 m·s(-1); P>0.05; placebo versus antioxidant). Patients with COPD exhibit vascular dysfunction, likely mediated by an altered redox balance, which can be acutely mitigated by an oral antioxidant. Therefore, free radically mediated vascular dysfunction may be an important mechanism contributing to this population's greater risk and incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Ives
- VA Medical Center Bldg 2, Rm 1D25, 500 Foothill Dr, Salt Lake City, UT 84148.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
First identified in Drosophila, the Crumbs (Crb) proteins are important in epithelial polarity, apical membrane formation, and tight junction (TJ) assembly. The conserved Crb intracellular region includes a FERM (band 4.1/ezrin/radixin/moesin) binding domain (FBD) whose mammalian binding partners are not well understood and a PDZ binding motif that interacts with mammalian Pals1 (protein associated with lin seven) (also known as MPP5). Pals1 binds Patj (Pals1-associated tight-junction protein), a multi-PDZ-domain protein that associates with many tight junction proteins. The Crb complex also binds the conserved Par3/Par6/atypical protein kinase C (aPKC) polarity cassette that restricts migration of basolateral proteins through phosphorylation. Here, we describe a Crb3 knockout mouse that demonstrates extensive defects in epithelial morphogenesis. The mice die shortly after birth, with cystic kidneys and proteinaceous debris throughout the lungs. The intestines display villus fusion, apical membrane blebs, and disrupted microvilli. These intestinal defects phenocopy those of Ezrin knockout mice, and we demonstrate an interaction between Crumbs3 and ezrin. Taken together, our data indicate that Crumbs3 is crucial for epithelial morphogenesis and plays a role in linking the apical membrane to the underlying ezrin-containing cytoskeleton.
Collapse
|
27
|
Shah RJ, Diamond JM, Lederer DJ, Arcasoy SM, Cantu EM, Demissie EJ, Kawut SM, Kohl B, Lee JC, Sonett J, Christie JD, Ware LB. Plasma monocyte chemotactic protein-1 levels at 24 hours are a biomarker of primary graft dysfunction after lung transplantation. Transl Res 2012; 160:435-42. [PMID: 22989614 PMCID: PMC3500407 DOI: 10.1016/j.trsl.2012.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/20/2012] [Indexed: 02/08/2023]
Abstract
Monocyte chemotactic protein-1 (MCP-1), also known as "chemokine ligand 2" (CCL2), is a monocyte-attracting chemokine produced in lung epithelial cells. We previously reported an association of increased levels of plasma MCP-1 with primary graft dysfunction (PGD) after lung transplantation in a nested case-control study of extreme phenotypes using a multiplex platform. In this study, we sought to evaluate the role of plasma MCP-1 level as a biomarker across the full spectrum of PGD. We performed a prospective cohort study of 108 lung transplant recipients within the Lung Transplant Outcomes Group cohort. Plasma MCP-1 levels were measured pretransplantation and 6 and 24 hours after transplantation. The primary outcome was development of grade 3 PGD within 72 hours of transplant, with secondary analyses at the 72-hour time point. Multivariable logistic regression was used to evaluate confounding. Thirty subjects (28%) developed PGD. Median MCP-1 measured at 24 hours post-transplant was elevated in subjects with PGD (167.95 vs 103.5 pg/mL, P = .04). MCP-1 levels at 24 hours were associated with increased odds of grade 3 PGD after lung transplantation (odds ratio for each 100 pg/mL, 1.24; 95% confidence interval, 1.00-1.53) and with grade 3 PGD present at the 72-hour time point (odds ratio for each 100 pg/mL, 1.57; 95% confidence interval, 1.18-2.08), independent of confounding variables in multivariable analyses. MCP-1 levels measured preoperatively and 6 hours after transplant were not significantly associated with PGD. Persistent elevations in MCP-1 levels at 24 hours are a biomarker of grade 3 PGD post-transplantation. Monocyte chemotaxis may play a role in the pathogenesis of PGD.
Collapse
Affiliation(s)
- Rupal J Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Makley AT, Belizaire R, Campion EM, Goodman MD, Sonnier DI, Friend LA, Schuster RM, Bailey SR, Johannigman JA, Dorlac WC, Lentsch AB, Pritts TA. Simulated aeromedical evacuation does not affect systemic inflammation or organ injury in a murine model of hemorrhagic shock. Mil Med 2012; 177:911-6. [PMID: 22934369 PMCID: PMC4615718 DOI: 10.7205/milmed-d-11-00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hemorrhagic shock is a primary injury amongst combat casualties. Aeromedical evacuation (AE) of casualties exposes patients to a hypobaric, hypoxic environment. The effect of this environment on the host response to hemorrhagic shock is unknown. In the present study, we sought to determine the effect of simulated AE on systemic inflammation and organ injury using a murine model of hemorrhagic shock. Mice underwent femoral artery cannulation and were hemorrhaged for 60 minutes. Mice were then resuscitated with a 1:1 ratio of plasma:packed red blood cells. At 1 or 24 hours after resuscitation, mice were exposed to a 5-hour simulated AE or remained at ground level (control). Serum was analyzed for cytokine concentrations and organs were assessed for neutrophil accumulation and vascular permeability. Mice in the simulated AE groups demonstrated reduced arterial oxygen saturation compared to ground controls. Serum cytokine concentrations, neutrophil recruitment, and vascular permeability in the lung, ileum, and colon in the simulated AE groups were not different from the ground controls. Our results demonstrate that mice exposed to simulated AE following hemorrhagic shock do not exhibit worsened systemic inflammation or organ injury compared to controls. The data suggest that AE has no adverse effect on isolated hemorrhagic shock.
Collapse
Affiliation(s)
- Amy T Makley
- Department of Surgery, Institute for Military Medicine, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inflammation and cardio-respiratory control. Foreword. Respir Physiol Neurobiol 2011; 178:359-61. [PMID: 21712104 DOI: 10.1016/j.resp.2011.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
|