1
|
Khurram OU, Sieck GC. An update on spinal cord injury and diaphragm neuromotor control. Expert Rev Respir Med 2025:1-17. [PMID: 40258801 DOI: 10.1080/17476348.2025.2495165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Understanding neuromotor control of the diaphragm muscle (DIAm) is the foundation for developing therapeutic approaches for functional recovery of ventilatory and non-ventilatory behaviors. Although the DIAm is the primary inspiratory pump, it plays a vital role in a wide variety of higher-force behaviors including airway clearance activities. After spinal cord injury (SCI), higher-force behaviors experience the greatest deficits. A classification scheme for SCI that incorporates this information would be clinically valuable. AREAS COVERED We begin by presenting foundational information about DIAm motor units. In addition, we introduce a classification scheme of SCI based on the impact it has on neural circuitry involved in breathing and other functions of the DIAm. Finally, we consider various promising therapeutic options available to improve DIAm motor function. Relevant literature was identified by searching PubMed and Google Scholar without specific limits on the dates. EXPERT OPINION Classification of SCI based on its impact on the neural circuitry involved in DIAm motor behaviors is an important part of developing effective therapeutics. An approach that considers the specific type of SCI and leverages a combination of interventions will likely yield the best outcomes for restoring both ventilatory and non-ventilatory functions.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Walling I, Baumgartner S, Patel M, Crone SA. Electrical stimulation of the sciatic nerve restores inspiratory diaphragm function in mice after spinal cord injury. Front Neural Circuits 2025; 18:1480291. [PMID: 39911754 PMCID: PMC11794311 DOI: 10.3389/fncir.2024.1480291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Spinal cord injury in the high cervical cord can impair breathing due to disruption of pathways between brainstem respiratory centers and respiratory motor neurons in the spinal cord. Electrical stimulation of limb afferents can increase ventilation in healthy humans and animals, but it is not known if limb afferent stimulation can improve breathing following a cervical injury. Methods We stimulated the sciatic nerve while using electromyography to measure diaphragm function in anesthetized mice following a cervical (C2) hemisection spinal cord injury, as well as in uninjured controls. The amplitude and frequency of inspiratory bursts was analyzed over a range of stimulation thresholds. Results We show that electrical stimulation (at sufficient current thresholds) of either the left or right sciatic nerve could restore inspiratory activity to the previously paralyzed diaphragm ipsilateral to a C2 hemisection injury at either acute (1 day) or chronic (2 months) stages after injury. We also show that sciatic nerve stimulation can increase the frequency and amplitude of diaphragm inspiratory bursts in uninjured mice. Discussion Our findings indicate that therapies targeting limb afferents could potentially be used to improve breathing in patients with cervical spinal cord injury and provide an experimental model to further investigate the neural pathways by which limb afferents can increase respiratory muscle activity.
Collapse
Affiliation(s)
- Ian Walling
- Neuroscience Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah Baumgartner
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Mitesh Patel
- Neurobiology Program, University of Cincinnati, College of Arts and Sciences, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Lieb S, Schumann S. Loss of muscular force in isolated rat diaphragms is related to changes in muscle fibre size. Physiol Meas 2021; 42:025003. [PMID: 33705356 DOI: 10.1088/1361-6579/abdf3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Passivity of the diaphragm during prolonged mechanical ventilation can lead to ventilation-induced diaphragmatic dysfunction reasoned by a reduction of diaphragmatic muscle strength. Electrical stimulation may be utilised to modulate diaphragm muscle strength. Therefore we intended to investigate diaphragmatic muscle strength based on stimulation with electric impulses. APPROACH Diaphragms of Wistar rats were excised, embedded in various incubation solutions and placed in a diaphragm force measurement device. Pressure amplitudes generated by the diaphragm in dependency of the embedding solution, stimulation frequency and time (360 min) were determined. Furthermore, the diaphragms were histologically evaluated. MAIN RESULTS The ex vivo diaphragms evoked no pressure if embedded in incubation solutions with high potassium concentrations and up to >20 cmH2O if embedded in incubation solutions with extracellular potassium concentrations. Although vitality was well maintained after 360 min (78%) cultivation, the diaphragm's force dropped by 90.8% after 240 min. The decline in the diaphragm's force progressed faster if stimulation was performed every 20 min compared to every 120 min. The size of Type I muscle fibres was largest in diaphragms stimulated every 120 min. The fibre size of Type 2b/x muscle cells was lower in diaphragms after electrical stimulation compared to non-stimulated diaphragms. SIGNIFICANCE The force that the diaphragm can develop in ex vivo conditions depends on the incubation solution and the conditions of activation. Activity-related changes in the diaphragm's muscular force are accompanied by specific changes in muscle fibre size.
Collapse
Affiliation(s)
- Samuel Lieb
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | | |
Collapse
|
4
|
LoMauro A, Aliverti A, Perchiazzi G, Frykholm P. Physiological changes and compensatory mechanisms by the action of respiratory muscles in a porcine model of phrenic nerve injury. J Appl Physiol (1985) 2021; 130:813-826. [PMID: 33444121 DOI: 10.1152/japplphysiol.00781.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phrenic nerve damage may occur as a complication of specific surgical procedures, prolonged mechanical ventilation, or physical trauma. The consequent diaphragmatic paralysis or dysfunction can lead to major complications. The purpose of this study was to elucidate the role of the nondiaphragmatic respiratory muscles during partial or complete diaphragm paralysis induced by unilateral and bilateral phrenic nerve damage at different levels of ventilatory pressure support in an animal model. Ten pigs were instrumented, the phrenic nerve was exposed from the neck, and spontaneous respiration was preserved at three levels of pressure support, namely, high, low, and null, at baseline condition, after left phrenic nerve damage, and after bilateral phrenic nerve damage. Breathing pattern, thoracoabdominal volumes and asynchrony, and pressures were measured at each condition. Physiological breathing was predominantly diaphragmatic and homogeneously distributed between right and left sides. After unilateral damage, the paralyzed hemidiaphragm was passively dragged by the ipsilateral rib cage muscles and the contralateral hemidiaphragm. After bilateral damage, the drive to and the work of breathing of rib cage and abdominal muscles increased, to compensate for diaphragmatic paralysis, ensuing paradoxical thoracoabdominal breathing. Increasing level of pressure support ventilation replaces this muscle group compensation. When the diaphragm is paralyzed (unilaterally and/or bilaterally), there is a coordinated reorganization of nondiaphragmatic respiratory muscles as compensation that might be obscured by high level of pressure support ventilation. Noninvasive thoracoabdominal volume and asynchrony assessment could be useful in phrenic nerve-injured patients to estimate the extent and type of inspiratory muscle dysfunction.NEW & NOTEWORTHY This was the first (to our knowledge) implanted porcine model of phrenic nerve injury with a detailed multidimensional analysis of different degrees of diaphragmatic paralysis (unilateral and bilateral). Noninvasive thoracoabdominal volume and asynchrony assessment was shown to be useful in estimating the extent of diaphragmatic dysfunction and the consequent coordinated reorganization of nondiaphragmatic respiratory muscles. High level of pressure support ventilation was proved to obscure the interaction and compensation of respiratory muscles to deal with phrenic nerve injury.
Collapse
Affiliation(s)
- Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.,Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Gaetano Perchiazzi
- Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Frykholm
- Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Sekiguchi H, Minei A, Noborikawa M, Kondo Y, Tamaki Y, Fukuda T, Hanashiro K, Kukita I. Difference in electromyographic activity between the trapezius muscle and other neck accessory muscles under an increase in inspiratory resistive loading in the supine position. Respir Physiol Neurobiol 2020; 281:103509. [PMID: 32739461 DOI: 10.1016/j.resp.2020.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
The activity of the trapezius muscle is reportedly higher than that of other neck accessory muscles under a condition of increased inspiratory pressure in the standing position. The present study aimed to compare the activity of the trapezius muscle with those of the scalene and sternocleidomastoid muscles under a condition of increased inspiratory pressure in the supine position. This study included 40 subjects, and the muscle activity was measured using surface electromyography. Regarding the results, there was a significant difference in the muscle activity between the trapezius muscle and the scalene and sternocleidomastoid muscles (p = 0.003) in both men and women. Post-hoc analysis showed significant differences between trapezius and the other muscles. Moreover, there was no difference between the scalene and sternocleidomastoid muscles (p = 0.596). The increase in the change in electromyography activity of the muscle is greater in the trapezius muscle than in other muscles when the level of inspiratory pressure increases in the supine position.
Collapse
Affiliation(s)
- Hiroshi Sekiguchi
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Akira Minei
- Department of Rehabilitation, University of the Ryukyu Hospital, Okinawa, Japan
| | - Masako Noborikawa
- Department of Laboratory, Tomishiro Central Hospital, Okinawa, Japan
| | - Yutaka Kondo
- Department of Emergency Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuichiro Tamaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuhiko Hanashiro
- Department of Nursing, Faculty of Human Health Sciences, Meio University, Okinawa, Okinawa, Japan
| | - Ichiro Kukita
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
6
|
Vang P, Vasdev A, Zhan W, Gransee HM, Sieck GC, Mantilla CB. Diaphragm muscle sarcopenia into very old age in mice. Physiol Rep 2020; 8:e14305. [PMID: 31908152 PMCID: PMC6944709 DOI: 10.14814/phy2.14305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is the age-related decline of skeletal muscle mass and function. Diaphragm muscle (DIAm) sarcopenia may contribute to respiratory complications, a common cause of morbidity and mortality in the elderly. From 6 to 24 months (mo) of age, representing ~100% and ~80% survival in C57BL/6 × 129 male and female mice, there is a significant reduction in DIAm force generation (~30%) and cross-sectional area (CSA) of type IIx and/or IIb muscle fibers (~30%), impacting the ability to perform high force, non-ventilatory behaviors. To date, there is little information available regarding DIAm sarcopenia in very old age groups. The present study examined DIAm sarcopenia in C57BL/6 × 129 male and female mice at 24, 27, and 30 mo, representing ~80%, ~60%, and ~30% survival, respectively. We hypothesized that survival into older ages will show no further worsening of DIAm sarcopenia and functional impairment in 30 mo mice compared to 24 or 27 mo C57BL/6 × 129 mice. Measurements included resting ventilation, transdiaphragmatic pressure (Pdi) generation across a range of motor behaviors, muscle fiber CSA, and proportion of type-identified DIAm fibers. Maximum Pdi and resting ventilation did not change into very old age (from 24 to 30 mo). Type IIx and/or IIb fiber CSA and proportions did not change into very old age. The results of the study support a critical threshold for the reduction in DIAm force and Pdi such that survival into very old age is not associated with evidence of progression of DIAm sarcopenia or impairment in ventilation.
Collapse
Affiliation(s)
- Pangdra Vang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Amrit Vasdev
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesota
| | - Wen‐Zhi Zhan
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Heather M. Gransee
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesota
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesota
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesota
| | - Carlos B. Mantilla
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesota
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesota
| |
Collapse
|
7
|
Geltser BI, Kurpatov IG, Dej AA, Kozhanov AG. Respiratory muscles dysfunction and respiratory diseases. TERAPEVT ARKH 2019; 91:93-100. [PMID: 31094466 DOI: 10.26442/00403660.2019.03.000108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents an analysis of the literature on the topic of respiratory muscle (RM) dysfunction in various forms of respiratory pathology: chronic obstructive pulmonary disease (COPD), asthma, community-acquired pneumonia, idiopathic pulmonary fibrosis (IPF), sarcoidosis and interstitial lung diseases (ILD), associated with systemic connective tissue diseases (polymyositis, dermatomyositis and systemic lupus erythematosus - SLE). Various clinical and pathophysiological aspects of RM dysfunction and general patterns of its pathogenesis were examined. It was proved that the role of RM in the development of respiratory failure depends on the form and stage of the pulmonary pathology and the severity of systemic manifestations of these diseases: excessive proteolysis, oxidative stress, hypoxia, chronic systemic inflammation. These factors modify the morphofunctional status of RM, worsens their contractile function, which is contributed to the development of respiratory failure. In some cases, the primary weakness of RM precedes the clinical manifestation of pulmonary pathology, which is distinctive for some variants of myositis-associated ILD and SLE. Endogenous intoxication syndrome plays a significant role in the development of RM dysfunction during community-acquired pneumonia. It is noted that sarcoid pulmonary ventilation disorders associate with the RM weakness, but not with the degree of lung damage. In most cases, secondary RM dysfunction predominates that contributes to respiratory failure progression, which is especially noticeable in case of COPD, asthma and IPF.
Collapse
Affiliation(s)
- B I Geltser
- Far Eastern Federal University of the Ministry of Education and Science, Vladivostok, Russia.,Pacific State Medical University of the Ministry of Health of the Russian Federation, Vladivostok, Russi
| | - I G Kurpatov
- Pacific State Medical University of the Ministry of Health of the Russian Federation, Vladivostok, Russi
| | - A A Dej
- Far Eastern Federal University of the Ministry of Education and Science, Vladivostok, Russia
| | - A G Kozhanov
- Far Eastern Federal University of the Ministry of Education and Science, Vladivostok, Russia
| |
Collapse
|
8
|
Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF. Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 2019; 316:L679-L690. [PMID: 30702345 DOI: 10.1152/ajplung.00516.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFREF) increases neutral sphingomyelinase (NSMase) activity and mitochondrial reactive oxygen species (ROS) emission and causes diaphragm weakness. We tested whether a systemic pharmacological NSMase inhibitor or short-hairpin RNA (shRNA) targeting NSMase isoform 3 (NSMase3) would prevent diaphragm abnormalities induced by HFREF caused by myocardial infarction. In the pharmacological intervention, we used intraperitoneal injection of GW4869 or vehicle. In the genetic intervention, we injected adeno-associated virus serotype 9 (AAV9) containing shRNA targeting NSMase3 or a scrambled sequence directly into the diaphragm. We also studied acid sphingomyelinase-knockout mice. GW4869 prevented the increase in diaphragm ceramide content, weakness, and tachypnea caused by HFREF. For example, maximal specific forces (in N/cm2) were vehicle [sham 31 ± 2 and HFREF 26 ± 2 ( P < 0.05)] and GW4869 (sham 31 ± 2 and HFREF 31 ± 1). Respiratory rates were (in breaths/min) vehicle [sham 61 ± 3 and HFREF 84 ± 11 ( P < 0.05)] and GW4869 (sham 66 ± 2 and HFREF 72 ± 2). AAV9-NSMase3 shRNA prevented heightening of diaphragm mitochondrial ROS and weakness [in N/cm2, AAV9-scrambled shRNA: sham 31 ± 2 and HFREF 27 ± 2 ( P < 0.05); AAV9-NSMase3 shRNA: sham 30 ± 1 and HFREF 30 ± 1] but displayed tachypnea. Both wild-type and ASMase-knockout mice with HFREF displayed diaphragm weakness. Our study suggests that activation of NSMase3 causes diaphragm weakness in HFREF, presumably through accumulation of ceramide and elevation in mitochondrial ROS. Our data also reveal a novel inhibitory effect of GW4869 on tachypnea in HFREF likely mediated by changes in neural control of breathing.
Collapse
Affiliation(s)
- Philip D Coblentz
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Linda F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| |
Collapse
|
9
|
Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 2018; 22:191-207. [PMID: 27000754 DOI: 10.1007/s10741-016-9549-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.
Collapse
|
10
|
Fogarty MJ, Omar TS, Zhan WZ, Mantilla CB, Sieck GC. Phrenic motor neuron loss in aged rats. J Neurophysiol 2018; 119:1852-1862. [PMID: 29412773 DOI: 10.1152/jn.00868.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the age-related reduction of muscle mass and specific force. In previous studies, we found that sarcopenia of the diaphragm muscle (DIAm) is evident by 24 mo of age in both rats and mice and is associated with selective atrophy of type IIx and IIb muscle fibers and a decrease in maximum specific force. These fiber type-specific effects of sarcopenia resemble those induced by DIAm denervation, leading us to hypothesize that sarcopenia is due to an age-related loss of phrenic motor neurons (PhMNs). To address this hypothesis, we determined the number of PhMNs in young (6 mo old) and old (24 mo old) Fischer 344 rats. Moreover, we determined age-related changes in the size of PhMNs, since larger PhMNs innervate type IIx and IIb DIAm fibers. The PhMN pool was retrogradely labeled and imaged with confocal microscopy to assess the number of PhMNs and the morphometry of PhMN soma and proximal dendrites. In older animals, there were 22% fewer PhMNs, a 19% decrease in somal surface area, and a 21% decrease in dendritic surface area compared with young Fischer 344 rats. The age-associated loss of PhMNs involved predominantly larger PhMNs. These results are consistent with an age-related denervation of larger, more fatigable DIAm motor units, which are required primarily for high-force airway clearance behaviors. NEW & NOTEWORTHY Diaphragm muscle sarcopenia in rodent models is well described in the literature; however, the relationship between sarcopenia and frank phrenic motor neuron (MN) loss is unexplored in these models. We quantify a 22% loss of phrenic MNs in old (24 mo) compared with young (6 mo) Fischer 344 rats. We also report reductions in phrenic MN somal and proximal dendritic morphology that relate to decreased MN heterogeneity in old compared with young Fischer 344 rats.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Tanya S Omar
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
11
|
Greising SM, Mantilla CB, Sieck GC. Functional Measurement of Respiratory Muscle Motor Behaviors Using Transdiaphragmatic Pressure. Methods Mol Biol 2018; 1460:309-19. [PMID: 27492181 DOI: 10.1007/978-1-4939-3810-0_21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The diaphragm muscle must be able to generate sufficient forces to accomplish a range of ventilatory and non-ventilatory behaviors throughout life. Measurements of transdiaphragmatic pressure (Pdi) can be conducted during eupnea, hypoxia (10 % O2)-hypercapnia (5 % CO2), chemical airway stimulation (i.e., sneezing), spontaneously occurring deep breaths (i.e., sighs), sustained airway or tracheal occlusion, and maximal efforts elicited via bilateral phrenic nerve stimulation, representing the full range of motor behaviors available by the diaphragm muscle. We provide detailed methods on the in vivo measurements of Pdi in mice.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, MN, 55905, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, MN, 55905, USA.,Department of Anesthesiology, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, MN, 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, MN, 55905, USA. .,Department of Anesthesiology, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Ahn B, Coblentz PD, Beharry AW, Patel N, Judge AR, Moylan JS, Hoopes CW, Bonnell MR, Ferreira LF. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation. Front Physiol 2017; 7:686. [PMID: 28119629 PMCID: PMC5220111 DOI: 10.3389/fphys.2016.00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023] Open
Abstract
Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p < 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p < 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals.
Collapse
Affiliation(s)
- Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Philip D Coblentz
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Adam W Beharry
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | - Nikhil Patel
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | | | - Charles W Hoopes
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark R Bonnell
- Division of Cardiothoracic Surgery, University of Toledo Medical Center Toledo, OH, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| |
Collapse
|
13
|
Greising SM, Vasdev AK, Zhan WZ, Sieck GC, Mantilla CB. Chronic TrkB agonist treatment in old age does not mitigate diaphragm neuromuscular dysfunction. Physiol Rep 2017; 5:e13103. [PMID: 28082429 PMCID: PMC5256161 DOI: 10.14814/phy2.13103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Previously, we found that brain-derived neurotrophic factor (BDNF) signaling through the high-affinity tropomyosin-related kinase receptor subtype B (TrkB) enhances neuromuscular transmission in the diaphragm muscle. However, there is an age-related loss of this effect of BDNF/TrkB signaling that may contribute to diaphragm muscle sarcopenia (atrophy and force loss). We hypothesized that chronic treatment with 7,8-dihydroxyflavone (7,8-DHF), a small molecule BDNF analog and TrkB agonist, will mitigate age-related diaphragm neuromuscular transmission failure and sarcopenia in old mice. Adult male TrkBF616A mice (n = 32) were randomized to the following 6-month treatment groups: vehicle-control, 7,8-DHF, and 7,8-DHF and 1NMPP1 (an inhibitor of TrkB kinase activity in TrkBF616A mice) cotreatment, beginning at 18 months of age. At 24 months of age, diaphragm neuromuscular transmission failure, muscle-specific force, and fiber cross-sectional areas were compared across treatment groups. The results did not support our hypothesis in that chronic 7,8-DHF treatment did not improve diaphragm neuromuscular transmission or mitigate diaphragm muscle sarcopenia. Taken together, these results do not exclude a role for BDNF/TrkB signaling in aging-related changes in the diaphragm muscle, but they do not support the use of 7,8-DHF as a therapeutic agent to mitigate age-related neuromuscular dysfunction.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Amrit K Vasdev
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
E Souza MÂN, Nobre RA, Bezerra PC, Dos Santos AA, Sifrim D. Anatomical and functional deficiencies of the crural diaphragm in patients with esophagitis. Neurogastroenterol Motil 2017; 29. [PMID: 27418308 DOI: 10.1111/nmo.12899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inspiratory esophagogastric junction (EGJ) pressure is lower in gastroesophageal reflux disease (GERD) and patients fail to increase EGJ pressure during the inspiratory effort. The aim of this study was to assess the EGJ activity during inspiratory maneuvers (high-resolution manometry, HRM) and the crural diaphragm (CD) thickness (endoscopic ultrasound, EUS) in GERD. METHODS Twenty esophagitis patients (average age 45 years, 7 grade A, 13 grade B) had HRM and EUS. Forty-three controls were recruited; 30 had HRM (average age 33 years), and 13 had EUS (average age 40 years). The EGJ contractility index (EGJ-CI) (mm Hg×cm) was measured during normal respiration and two inspiratory maneuvers: without and with inspiratory loads of 12, 24, and 48 cmH2 O (TH-maneuvers). A composite metric for TH-maneuvers ("EGJ total activity") was defined as the product of the maximal EGJ pressure and the length of its aboral excursion during the maneuver (mm Hg×cm). The CD thickness (cm) was measured during expiration (12 MHz). KEY RESULTS Expiratory lower esophageal sphincter pressure and integrated relaxation pressure were lower in GERD. The EGJ-CI and the "EGJ total activity" were lower in GERD during TH-maneuvers (48-cmH2 O load: 168.4 ± 13.8 vs 114.8 ± 9.6, P=.006). Patients failed to sustain the inspiratory CD activity across the 12 and 48-cmH2 O efforts. The CD was thinner in GERD patients (0.37 ± 0.03 vs 0.49 ± 0.04, P=.02). The CD thickness correlated with the increment in the "EGJ total activity" in GERD without a hiatal hernia (r=.702, P=.016, n=11). CONCLUSIONS & INFERENCES There are anatomical changes and functional failure of the CD in esophagitis patients supporting the possibility of a skeletal muscle deficiency in GERD.
Collapse
Affiliation(s)
- M Â N E Souza
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - R A Nobre
- Fortaleza University (UNIFOR), Fortaleza, Brazil
| | - P C Bezerra
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - A A Dos Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - D Sifrim
- Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Hellyer NJ, Andreas NM, Bernstetter AS, Cieslak KR, Donahue GF, Steiner EA, Hollman JH, Boon AJ. Comparison of Diaphragm Thickness Measurements Among Postures Via Ultrasound Imaging. PM R 2016; 9:21-25. [PMID: 27297447 DOI: 10.1016/j.pmrj.2016.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Assessment of diaphragm contraction may be useful for identifying impairments in patients with movement dysfunction involving trunk stabilization, respiration, or both. Real-time ultrasound imaging is a readily available technology that can be used to quickly assess this aspect of diaphragm activity. Although previous studies have examined diaphragm contraction in the supine posture, a comparison of measurements between supine and upright postures has not been made. OBJECTIVE To examine whether diaphragm thickness measurements differ among 3 different body postures in healthy subjects. DESIGN Descriptive repeated measures. SETTING Clinical laboratory. PATIENTS (OR PARTICIPANTS) Twenty-four healthy subjects (12 male and 12 female) aged 22-35 years old were recruited and completed the study. METHOD Diaphragm thickness was assessed in via B-mode ultrasound imaging in supine, seated, and standing postures. Measurements of diaphragm thickness were taken in the zone of apposition during maximal inspiration to total lung capacity (TLC) and end-tidal expiratory lung volume (EELV). A thickness ratio (inspiration thickness/expiration thickness) was calculated to compare relative diaphragm contraction during each condition. MAIN OUTCOME MEASUREMENTS The primary dependent variable was diaphragm thickness (mm). RESULTS Average diaphragm thickness at EELV and maximum TLC were more than 20% greater in the seated and standing postures than in supine (P < .05). Moreover, the diaphragm was approximately 205% thicker at TLC than at EELV (P < .05). Relative inspiratory to expiratory thickness ratios (TLC/EELV) did not differ among postures (P = .24). CONCLUSIONS The diaphragm is thicker when the body is in more upright postures (standing and sitting versus supine) perhaps due to greater vertical gravitational load on the muscle and associated change in the resting length of the muscle fibers. Thus it appears that ultrasound imaging may be a sensitive tool to examine changes in diaphragm contraction during varying postural tasks. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Nathan J Hellyer
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, 1107 Siebens Bldg, Rochester, MN 55905(∗).
| | - Nicholas M Andreas
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(†)
| | - Andrew S Bernstetter
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(‡)
| | - Kathryn R Cieslak
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(§)
| | - Gerad F Donahue
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(¶)
| | - Elizabeth A Steiner
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(#)
| | - John H Hollman
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN(∗∗)
| | - Andrea J Boon
- Departments of Physical Medicine and Rehabilitation and Neurology, Mayo Clinic, Rochester, MN(††)
| |
Collapse
|
16
|
Greising SM, Medina-Martínez JS, Vasdev AK, Sieck GC, Mantilla CB. Analysis of muscle fiber clustering in the diaphragm muscle of sarcopenic mice. Muscle Nerve 2015; 52:76-82. [PMID: 25808550 DOI: 10.1002/mus.24641] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2015] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Sarcopenia likely comprises muscle fiber denervation and re-innervation, resulting in clustering of muscle fibers of the same type (classified by myosin heavy chain isoform composition). Development of methodology to quantitatively evaluate clustering of muscle fibers according to fiber type is necessary. METHODS Fiber type specific immunofluorescence histology was used to quantify fiber clustering in murine diaphragm muscle (n = 15) at ages 6 and 24 months. RESULTS With age, fiber type clustering is evidenced by fiber type specific changes in distances between fibers, specifically a 14% decrease to the closest fiber for type I and 24% increase for type IIx and/or IIb fibers (P < 0.001). Additionally, a 34% increase to the 3 closest type IIx and/or IIb fibers was found (P < 0.001). CONCLUSIONS This novel method of analyzing fiber type clustering may be useful in examining pathophysiological conditions of motor unit loss in neuromuscular disorders, myopathies, dystrophies, injuries, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, Minnesota, 55905, USA
| | - Juan S Medina-Martínez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, Minnesota, 55905, USA
| | - Amrit K Vasdev
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, Minnesota, 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, Minnesota, 55905, USA.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, SMH Jo 4-184, Rochester, Minnesota, 55905, USA.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections. Exp Neurol 2014; 267:18-29. [PMID: 25476493 DOI: 10.1016/j.expneurol.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; p<0.05). CTB-SAP caused minimal cell death in other brainstem or spinal cord regions. CTB-SAP 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7days post-25μg, CTB-SAP 0.3±0.07V; CTB+SAP: 1.5±0.3; n=9; p<0.05). Intrapleural CTB-SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss.
Collapse
|
18
|
Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R88. [PMID: 24886999 PMCID: PMC4056378 DOI: 10.1186/cc13855] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/24/2014] [Indexed: 12/27/2022]
Abstract
Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). PEG-SOD also restored HG-induced reductions in diaphragm single fiber force generation (for example, Fmax was 182.9 ± 1.8, 85.7 ± 2.0, 148.6 ± 2.4 and 90.9 ± 1.5 kPa in control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). HG-induced troponin T depletion, protein nitrotyrosine formation, and carbonyl modifications were largely prevented by PEG-SOD. Conclusions HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.
Collapse
|
19
|
Clinical challenges to ventilatory control. Respir Physiol Neurobiol 2013; 189:211-2. [PMID: 24056024 DOI: 10.1016/j.resp.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|