1
|
Alonso A, Olmeda B, Pérez-Gil J. Surfactant protein SP-B: one ring to rule the molecular and biophysical mechanisms of the pulmonary surfactant system. Biophys Rev 2025; 17:653-666. [PMID: 40376411 PMCID: PMC12075752 DOI: 10.1007/s12551-025-01285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/04/2025] [Indexed: 05/18/2025] Open
Abstract
Pulmonary surfactant is a lipid/protein complex crucial to maintain mammalian lungs open, as it facilitates breathing mechanics through a dramatic reduction of surface tension at the air-liquid interface. Intensive research during a few decades has identified many of the molecular actors defining the molecular and biophysical mechanisms of surfactant at the airspaces. Pulmonary surfactant protein SP-B has been undoubtedly identified as the most important and essential molecule to allow for air breathing in the mammalian lungs, as its absence is incompatible with life. We now know that SP-B directs the assembly of surfactant complexes into the lamellar bodies of type II pneumocytes, their secretion, adsorption, and reorganization at the interface as well as the homeostasis of the surfactant layer during different pathophysiological contexts. This review summarizes current models on SP-B structure and biophysical function, supporting how the activity of SP-B may be crucial for the design and production of a new generation of therapeutic products in respiratory medicine.
Collapse
Affiliation(s)
- Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute “Hospital 12 de Octubre (imas12), Complutense University of Madrid, Madrid, Spain
| | - Bárbara Olmeda
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute “Hospital 12 de Octubre (imas12), Complutense University of Madrid, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute “Hospital 12 de Octubre (imas12), Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Guo B, Sun Y, Wang Y, Zhang Y, Zheng Y, Xu S, Yang G, Ren W. Evolutionary genetics of pulmonary anatomical adaptations in deep-diving cetaceans. BMC Genomics 2024; 25:339. [PMID: 38575860 PMCID: PMC10993460 DOI: 10.1186/s12864-024-10263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.
Collapse
Affiliation(s)
- Boxiong Guo
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yixuan Sun
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yuehua Wang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Ya Zhang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
3
|
Fahlman A. Cardiorespiratory adaptations in small cetaceans and marine mammals. Exp Physiol 2024; 109:324-334. [PMID: 37968859 PMCID: PMC10988691 DOI: 10.1113/ep091095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research SLValenciaSpain
- Fundación Oceanogràfic de la Comunidad ValencianaValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinköping UniversityLinköpingSweden
| |
Collapse
|
4
|
Clyde-Brockway CE, Ferreira CR, Flaherty EA, Paladino FV. Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma. PLoS One 2021; 16:e0253916. [PMID: 34280208 PMCID: PMC8289036 DOI: 10.1371/journal.pone.0253916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.
Collapse
Affiliation(s)
- Chelsea E. Clyde-Brockway
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Christina R. Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States of America
| | - Elizabeth A. Flaherty
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
| | - Frank V. Paladino
- Department of Biology, Purdue University-Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
5
|
Arieli R. Does the most potent lung surfactant dipalmitoylphosphatidylcholine pose a risk for decompression illness in diving mammals? Respir Physiol Neurobiol 2021; 290:103681. [PMID: 33962027 DOI: 10.1016/j.resp.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Ran Arieli
- The Israel Naval Medical Institute (INMI), Haifa, Israel; Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
6
|
Streptococcal Infections in Marine Mammals. Microorganisms 2021; 9:microorganisms9020350. [PMID: 33578962 PMCID: PMC7916692 DOI: 10.3390/microorganisms9020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 01/28/2023] Open
Abstract
Marine mammals are sentinels for the marine ecosystem and threatened by numerous factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine mammals is very limited. This review summarizes published reports on streptococcal species, which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine mammals have not been further identified. How these bacteria disseminate and adapt to their specific niches can only be speculated due to the lack of respective research. Considering the relevance of pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have been neglected and should receive scientific interest in the future.
Collapse
|
7
|
Lipids of lung and lung fat emboli of the toothed whales (Odontoceti). Sci Rep 2020; 10:14752. [PMID: 32901077 PMCID: PMC7479150 DOI: 10.1038/s41598-020-71658-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Lipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans. In the present study we aimed first, to characterize the lipids ordinarily present in the lung tissue of seven cetacean species; and second, to better understand the etiopathogenesis of fat embolism by comparing the lipid composition of lungs positive for fat emboli, and those negative for emboli in Physeter macrocephalus and Ziphius cavirostris (two species in which fat emboli have been described). Results showed that lipid content and lipid classes did not differ among species or diving profiles. In contrast, fatty acid composition was significantly different between species, with C16:0 and C18:1ω9 explaining most of the differences. This baseline knowledge of healthy lung tissue lipid composition will be extremely useful in future studies assessing lung pathologies involving lipids. Concerning fat embolism, non-significant differences could be established between lipid content, lipid classes, and fatty acid composition. However, an unidentified peak was only found in the chromatogram for the two struck whales and merits further investigation.
Collapse
|
8
|
Allen KN, Vázquez-Medina JP. Natural Tolerance to Ischemia and Hypoxemia in Diving Mammals: A Review. Front Physiol 2019; 10:1199. [PMID: 31620019 PMCID: PMC6763568 DOI: 10.3389/fphys.2019.01199] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reperfusion injury follows ischemia/reperfusion events occurring during myocardial infarction, stroke, embolism, and other peripheral vascular diseases. Decreased blood flow and reduced oxygen tension during ischemic episodes activate cellular pathways that upregulate pro-inflammatory signaling and promote oxidant generation. Reperfusion after ischemia recruits inflammatory cells to the vascular wall, further exacerbating oxidant production and ultimately resulting in cell death, tissue injury, and organ dysfunction. Diving mammals tolerate repetitive episodes of peripheral ischemia/reperfusion as part of the cardiovascular adjustments supporting long duration dives. These adjustments allow marine mammals to optimize the use of their body oxygen stores while diving but can result in selectively reduced perfusion to peripheral tissues. Remarkably, diving mammals show no apparent detrimental effects associated with these ischemia/reperfusion events. Here, we review the current knowledge regarding the strategies marine mammals use to suppress inflammation and cope with oxidant generation potentially derived from diving-induced ischemia/reperfusion.
Collapse
|
9
|
Ponganis PJ. State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax 2019; 74:512-518. [PMID: 30826734 DOI: 10.1136/thoraxjnl-2018-212136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 11/04/2022]
Abstract
Anatomical and physiological adaptations of animals to extreme environments provide insight into basic physiological principles and potential therapies for human disease. In that regard, the diving physiology of marine mammals and seabirds is especially relevant to pulmonary and cardiovascular function, and to the pathology and potential treatment of patients with hypoxaemia and/or ischaemia. This review highlights past and recent progress in the field of comparative diving physiology with emphasis on its potential relevance to human medicine.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Bagchi A, Batten AJ, Levin M, Allen KN, Fitzgerald ML, Hückstädt LA, Costa DP, Buys ES, Hindle AG. Intrinsic anti-inflammatory properties in the serum of two species of deep-diving seal. ACTA ACUST UNITED AC 2018; 221:jeb.178491. [PMID: 29748216 DOI: 10.1242/jeb.178491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.
Collapse
Affiliation(s)
- Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Annabelle J Batten
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - Kaitlin N Allen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Department of Integrative Biology, University of California Berkeley, Valley Life Sciences Building 5043, Berkeley, CA 94720, USA
| | - Michael L Fitzgerald
- Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Luis A Hückstädt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
11
|
Fahlman A, Moore MJ, Garcia-Parraga D. Respiratory function and mechanics in pinnipeds and cetaceans. J Exp Biol 2017; 220:1761-1773. [DOI: 10.1242/jeb.126870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Oceanográfic-Avanqua, Ciudad de las Artes y las Ciencias, Valencia 46013, Spain
| |
Collapse
|