1
|
Chen Y, Kou Y, Ni Y, Yang H, Xu C, Fan H, Liu H. Microglia efferocytosis: an emerging mechanism for the resolution of neuroinflammation in Alzheimer's disease. J Neuroinflammation 2025; 22:96. [PMID: 40159486 PMCID: PMC11955113 DOI: 10.1186/s12974-025-03428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by significant neuroinflammatory responses. Microglia, the immune cells of the central nervous system, play a crucial role in the pathophysiology of AD. Recent studies have indicated that microglial efferocytosis is an important mechanism for clearing apoptotic cells and cellular debris, facilitating the resolution of neuroinflammation. This review summarizes the biological characteristics of microglia and the mechanisms underlying microglial efferocytosis, including the factors and signaling pathways that regulate efferocytosis, the interactions between microglia and other cells that influence this process, and the role of neuroinflammation in AD. Furthermore, we explore the role of microglial efferocytosis in AD from three perspectives: its impact on the clearance of amyloid plaques, its regulation of neuroinflammation, and its effects on neuroprotection. Finally, we summarize the current research status on enhancing microglial efferocytosis to alleviate neuroinflammation and improve AD, as well as the future challenges of this approach as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yongping Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yang Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haotian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Cailin Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China.
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Pereyra K, Diaz-Jara E, Bernal-Santander I, Vicencio S, Del Rio R, Iturriaga R. Carotid bodies mediate glial cell activation and neuroinflammation in the NTS following long-term intermittent hypoxia: role in cardiorespiratory dysfunction. Am J Physiol Lung Cell Mol Physiol 2025; 328:L357-L371. [PMID: 39772911 DOI: 10.1152/ajplung.00280.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, heightened chemosensory discharges of the carotid body (CB), which contributes to potentiate the ventilatory hypoxic response and elicits hypertension. We aimed to determine 1) whether the persistence of cardiorespiratory alterations found in long-term CIH depends on the inputs from the CB and 2) in what extension the activation of glial cells and neuroinflammation in the caudal region of the nucleus of the solitary tract (NTS) require functional CB chemosensory activity. To evaluate these hypotheses, we exposed male mice to CIH for 60 days. At 50 days of CIH, CBs were denervated and animals were kept in CIH for 10 additional days. At the end of the experiments, we measured arterial blood pressure, breathing regularity, and hypoxic ventilatory response (HVR) and assessed astrocyte and microglia cell activation. Compared to sham treatment, CIH induced hypertension [mean arterial blood pressure (MABP): 83.47 ± 1.39 vs. 95.00 ± 2.18 mmHg] and disordered breathing [irregularity score (IS): 7.77 ± 0.49 vs. 12.56 ± 1.66], increased the HVR [1.69 ± 0.17 vs. 4.31 ± 0.87 change in minute ventilation (ΔV̇e)/min], and produced an early transient activation of astrocytes followed by a late and persistent activation of microglia in the NTS. In addition, CIH increased IL-1β, IL-6, and TNF-α levels in the NTS. Bilateral CB denervation after 50 days of CIH results in the restoration of normal glial cell activation in the NTS, lower levels of IL-6 and TNF-α, and reductions in arterial blood pressure (83.47 ± 1.38 mmHg) and HVR (1.63 ± 0.43 ΔV̇e/min). The present results suggest that CB inputs to the NTS during long-term CIH contribute to maintain the cardiorespiratory alterations and the formation of a neuroinflammatory niche at the NTS by modifying glial cell activity.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH), a feature of obstructive sleep apnea, causes cardiorespiratory alterations (i.e. hypertension) linked to oxidative stress, inflammation, and sympathoexcitation. In the present study, we highlight the role of enhanced carotid body (CB) chemosensory afferent discharges to the nucleus of the solitary tract (NTS) in long-term CIH-induced cardiorespiratory disorders. Indeed, we provide evidence that supports the notion that increased CB afferent activity contributes to persistent CIH-induced hypertension, likely triggering neuroinflammation in the NTS.
Collapse
Affiliation(s)
- Katherin Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Diaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Bernal-Santander
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell Biology and Physiology, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Rodrigo Iturriaga
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
3
|
Ostrowski D, Heesch CM, Kline DD, Hasser EM. Nucleus tractus solitarii is required for the development and maintenance of phrenic and sympathetic long-term facilitation after acute intermittent hypoxia. Front Physiol 2023; 14:1120341. [PMID: 36846346 PMCID: PMC9949380 DOI: 10.3389/fphys.2023.1120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Biology, Truman State University, Kirksville, MO, United States
| | - Cheryl M. Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States,*Correspondence: Eileen M. Hasser,
| |
Collapse
|
4
|
Yoshizawa M, Fukushi I, Takeda K, Kono Y, Hasebe Y, Koizumi K, Ikeda K, Pokorski M, Toda T, Okada Y. Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. J Physiol Sci 2022; 72:26. [PMID: 36229778 PMCID: PMC10717757 DOI: 10.1186/s12576-022-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.
Collapse
Affiliation(s)
- Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Keiko Ikeda
- Institute of Innovative Research, Homeostatic Mechanism Research Unit, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
5
|
Roy A, Farnham MMJ, Derakhshan F, Pilowsky PM, Wilson RJA. Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor-dependent sensory long-term facilitation in naïve carotid bodies. J Physiol 2018; 596:3149-3169. [PMID: 29159869 PMCID: PMC6068228 DOI: 10.1113/jp275001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Activity-dependent plasticity can be induced in carotid body (CB) chemosensory afferents without chronic intermittent hypoxia (CIH) preconditioning by acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc). Several properties of this acute plasticity are shared with CIH-dependent sensory long-term facilitation (LTF) in that induction is dependent on 5-HT, angiotensin II, protein kinase C and reactive oxygen species. Several properties differ from CIH-dependent sensory LTF; H2 O2 appears to play no part in induction, whereas maintenance requires purinergic P2X2/3 receptor activation and is dependent on transient receptor potential vanilloid type 1 (TRPV1) receptor sensitization. Because P2X2/3 and TRPV1 receptors are located in carotid sinus nerve (CSN) terminals but not presynaptic glomus cells, a primary site of the acute AIH-Hc induced sensory LTF appears to be postsynaptic. Our results obtained in vivo suggest a role for TRPV1-dependent CB activity in acute sympathetic LTF. We propose that P2X-TRPV1-receptor-dependent sensory LTF may constitute an important early mechanism linking sleep apnoea with hypertension and/or cardiovascular disease. ABSTRACT Apnoeas constitute an acute existential threat to neonates and adults. In large part, this threat is detected by the carotid bodies, which are the primary peripheral chemoreceptors, and is combatted by arousal and acute cardiorespiratory responses, including increased sympathetic output. Similar responses occur with repeated apnoeas but they continue beyond the last apnoea and can persist for hours [i.e. ventilatory and sympathetic long-term facilitation (LTF)]. These long-term effects may be adaptive during acute episodic apnoea, although they may prolong hypertension causing chronic cardiovascular impairment. We report a novel mechanism of acute carotid body (CB) plasticity (sensory LTF) induced by repeated apnoea-like stimuli [i.e. acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc)]. This plasticity did not require chronic intermittent hypoxia preconditioning, was dependent on P2X receptors and protein kinase C, and involved heat-sensitive transient receptor potential vanilloid type 1 (TRPV1) receptors. Reactive oxygen species (O2 ·¯) were involved in initiating plasticity only; no evidence was found for H2 O2 involvement. Angiotensin II and 5-HT receptor antagonists, losartan and ketanserin, severely reduced CB responses to individual hypoxic-hypercapnic challenges and prevented the induction of sensory LTF but, if applied after AIH-Hc, failed to reduce plasticity-associated activity. Conversely, TRPV1 receptor antagonism had no effect on responses to individual hypoxic-hypercapnic challenges but reduced plasticity-associated activity by ∼50%. Further, TRPV1 receptor antagonism in vivo reduced sympathetic LTF caused by AIH-Hc, although only if the CBs were functional. These data demonstrate a new mechanism of CB plasticity and suggest P2X-TRPV1-dependent sensory LTF as a novel target for pharmacological intervention in some forms of neurogenic hypertension associated with recurrent apnoeas.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Fatemeh Derakhshan
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Richard J. A. Wilson
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
6
|
Silva TLA, Braz GRF, Silva SCDA, Pedroza AADS, Freitas CDM, Ferreira DJS, da Silva AI, Lagranha CJ. Serotonin transporter inhibition during neonatal period induces sex-dependent effects on mitochondrial bioenergetics in the rat brainstem. Eur J Neurosci 2018; 48:1620-1634. [PMID: 29802653 DOI: 10.1111/ejn.13971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
The serotonin reuptake is mainly regulated by the serotonin transporters (SERTs), which are abundantly found in the raphe nuclei, located in the brainstem. Previous studies have shown that dysfunction in the SERT has been associated with several disorders, including depression and cardiovascular diseases. In this manuscript, we aimed to investigate how gender and the treatment with a serotonin selective reuptake inhibitor (SSRI) could affect mitochondrial bioenergetics and oxidative stress in the brainstem of male and female rats. Fluoxetine, our chosen SSRI, was used during the neonatal period (i.e., from postnatal Day 1 to postnatal Day 21-PND1 to PND21) in both male and female animals. Thereafter, experiments were conducted in adult rats (60 days old). Our results demonstrate that, during lactation, fluoxetine treatment modulates the mitochondrial bioenergetics in a sex-dependent manner, such as improving male mitochondrial function and female antioxidant capacity.
Collapse
Affiliation(s)
- Tercya Lucidi Araujo Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | - Aline Isabel da Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Jacques Lagranha
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Kim SJ, Fong AY, Pilowsky PM, Abbott SBG. Sympathoexcitation following intermittent hypoxia in rat is mediated by circulating angiotensin II acting at the carotid body and subfornical organ. J Physiol 2018; 596:3217-3232. [PMID: 29645283 DOI: 10.1113/jp275804] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In anaesthetized rats, acute intermittent hypoxia increases sympathetic nerve activity, sympathetic peripheral chemoreflex sensitivity and central sympathetic-respiratory coupling. Renin-angiotensin system inhibition prevents the sympathetic effects of intermittent hypoxia, with intermittent injections of angiotensin II into the systemic circulation replicating these effects. Bilateral carotid body denervation reduces the sympathetic effects of acute intermittent hypoxia and eliminates the increases in chemoreflex sensitivity and sympathetic-respiratory coupling. Pharmacological inhibition of the subfornical organ also reduces the sympathetic effects of acute intermittent hypoxia, although it has no effect on the increases in chemoreflex sensitivity and central sympathetic-respiratory coupling. Combining both interventions eliminates the sympathetic effects of both intermittent hypoxia and angiotensin II. ABSTRACT Circulating angiotensin II (Ang II) is vital for arterial pressure elevation following intermittent hypoxia in rats, although its importance in the induction of sympathetic changes is unclear. We tested the contribution of the renin-angiotensin system to the effects of acute intermittent hypoxia (AIH) in anaesthetized and ventilated rats. There was a 33.7 ± 2.9% increase in sympathetic nerve activity (SNA), while sympathetic chemoreflex sensitivity and central sympathetic-respiratory coupling increased by one-fold following AIH. The sympathetic effects of AIH were prevented by blocking angiotensin type 1 receptors with systemic losartan. Intermittent systemic injections of Ang II (Int.Ang II) elicited similar sympathetic responses to AIH. To identify the neural pathways responsible for the effects of AIH and Int.Ang II, we performed bilateral carotid body denervation, which reduced the increase in SNA by 56% and 45%, respectively. Conversely, pharmacological inhibition of the subfornical organ (SFO), an established target of circulating Ang II, reduced the increase in SNA following AIH and Int.Ang II by 65% and 59%, respectively, although it did not prevent the sensitization of the sympathetic peripheral chemoreflex, nor the increase in central sympathetic-respiratory coupling. Combined carotid body denervation and inhibition of the SFO eliminated the enhancement of SNA following AIH and Int.Ang II. Repeated systemic injections of phenylephrine caused an elevation in SNA similar to AIH, and this effect was prevented by a renin inhibitor, aliskiren. Our findings show that the sympathetic effects of AIH are the result of RAS-mediated activations of the carotid bodies and the SFO.
Collapse
Affiliation(s)
- Seung Jae Kim
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, Australia
| | - Angelina Y Fong
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul M Pilowsky
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, Australia
| | - Stephen B G Abbott
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Kim SJ, Pilowsky PM, Farnham MMJ. Intrathecal Intermittent Orexin-A Causes Sympathetic Long-Term Facilitation and Sensitizes the Peripheral Chemoreceptor Response to Hypoxia in Rats. J Pharmacol Exp Ther 2016; 358:492-501. [PMID: 27384072 PMCID: PMC4998673 DOI: 10.1124/jpet.116.234443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia causes a persistent increase in sympathetic nerve activity (SNA), which progresses to hypertension in conditions such as obstructive sleep apnea. Orexins (A and B) are hypothalamic neurotransmitters with arousal-promoting and sympathoexcitatory effects. We investigated whether the sustained elevation of SNA, termed sympathetic long-term facilitation, after acute intermittent hypoxia (AIH) is caused by endogenous orexin acting on spinal sympathetic preganglionic neurons. The role of orexin in the increased SNA response to AIH was investigated in urethane-anesthetized, vagotomized, and artificially ventilated Sprague-Dawley rats (n = 58). A spinally infused subthreshold dose of orexin-A (intermittent; 0.1 nmol × 10) produced long-term enhancement in SNA (41.4% ± 6.9%) from baseline. This phenomenon was not produced by the same dose of orexin-A administered as a bolus intrathecal infusion (1 nmol; 7.3% ± 2.3%). The dual orexin receptor blocker, Almorexant, attenuated the effect of sympathetic long-term facilitation generated by intermittent orexin-A (20.7% ± 4.5% for Almorexant at 30 mg∙kg(-1) and 18.5% ± 1.2% for 75 mg∙kg(-1)), but not in AIH. The peripheral chemoreflex sympathoexcitatory response to hypoxia was greatly enhanced by intermittent orexin-A and AIH. In both cases, the sympathetic chemoreflex sensitization was reduced by Almorexant. Taken together, spinally acting orexin-A is mechanistically sufficient to evoke sympathetic long-term facilitation. However, AIH-induced sympathetic long-term facilitation appears to rely on mechanisms that are independent of orexin neurotransmission. Our findings further reveal that the activation of spinal orexin receptors is critical to enhance peripheral chemoreceptor responses to hypoxia after AIH.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Sydney Medical School, University of Sydney, and Heart Research Institute, Sydney, New South Wales, Australia
| | - Paul M Pilowsky
- Department of Physiology, Sydney Medical School, University of Sydney, and Heart Research Institute, Sydney, New South Wales, Australia
| | - Melissa M J Farnham
- Department of Physiology, Sydney Medical School, University of Sydney, and Heart Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Pilowsky PM. Foreword. Respir Physiol Neurobiol 2016; 226:1-2. [PMID: 27305188 DOI: 10.1016/j.resp.2016.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Paul M Pilowsky
- University of Sydney, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia.
| |
Collapse
|