1
|
Endisch C, Millard K, Preuß S, Stenzel W, Nee J, Storm C, Ploner CJ, Leithner C. Duration of resuscitation, regain of consciousness and histopathological severity of hypoxic-ischemic encephalopathy after cardiac arrest. Resusc Plus 2025; 23:100945. [PMID: 40235929 PMCID: PMC11999640 DOI: 10.1016/j.resplu.2025.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Purpose To study the histopathologically quantified severity of hypoxic-ischemic encephalopathy (HIE) in deceased cardiac arrest unbiased by death causes and correlated with demographic parameters. Methods We conducted a retrospective, single-centre study including cardiac arrest patients with postmortem brain autopsies. Using the selective eosinophilic neuronal death (SEND), the histopathological severity of HIE was quantified in the cerebral neocortex, hippocampus, basal ganglia, cerebellum, and brainstem, and correlated with demographic parameters. Results We included 319 patients with a median time of return from cardiac arrest to spontaneous circulation (tROSC) of 10 min, of whom 62(19.4%) had a regain of consciousness (RoC) before death. The tROSC was significantly correlated with the SEND in all brain regions (p < 0.05, Spearman's rho = 0.14 to 0.29). The SEND in the neocortex, hippocampus, and basal ganglia was significantly correlated with RoC (p < 0.05, Spearman's rho = -0.25 to -0.11). In 9 patients with tROSCs less than 1 min, all had a brainstem SEND less than 30%, and 8(88.9%) had neocortical SEND less than 30%. Among 69 patients with tROSCs greater than 20 min, 47.8-82.6% showed a SEND less than 30% across brain regions. Conclusions We found less SEND and RoC was more likely in patients with shorter tROSCs. A tROSC less than 1 min was mostly associated with SEND less than 30% in all brain regions. Prolonged resuscitations with tROSCs greater than 20 min did not exclude a SEND less than 30% in a relevant proportion of patients. Future histopathological studies are warranted to investigate the impact of modifiable clinical parameters on the severity of HIE.
Collapse
Affiliation(s)
- Christian Endisch
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Millard
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Preuß
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Nee
- Telehealth Competence Center GmbH, Humboldtstraße 67a, 22083 Hamburg, Germany
| | - Christian Storm
- Telehealth Competence Center GmbH, Humboldtstraße 67a, 22083 Hamburg, Germany
| | - Christoph J. Ploner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christoph Leithner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
2
|
Endisch C, Millard K, Preuß S, Stenzel W, Ploner CJ, Storm C, Nee J, Leithner C. Histopathological patterns of hypoxic-ischemic encephalopathy after cardiac arrest: A retrospective brain autopsy study of 319 patients. Resuscitation 2025:110608. [PMID: 40246166 DOI: 10.1016/j.resuscitation.2025.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE Understanding the pathophysiology of hypoxic-ischemic encephalopathy (HIE) provides important knowledge for the interpretation of neuroprognostic investigations after cardiac arrest (CA). One important aspect are the patterns of regional severity of selective neuronal death within the brain. METHODS In a monocentric, retrospective study, we included CA patients with initially successful resuscitation, who had received brain autopsies after death. We quantified selective eosinophilic neuronal death (SEND) in cerebral neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. Using a previously established classification, we dichotomized HIE severity in SEND 0-1 (<30%, reflecting no or mild HIE) versus SEND 2-4 (≥30%, reflecting moderate to severe HIE). We analyzed histopathological HIE patterns and analyzed inter-regional and inter-neocortical correlation of SEND. RESULTS Of 319 patients, the mean SEND was 1.8 in hippocampus, 1.4 in neocortex, and 0.9 in brainstem. Typical histopathological HIE patterns were: (I) No or mild SEND in all brain regions, (II) predominant SEND in hippocampus with no or mild SEND in other brain regions, (III) severe SEND in neocortex, but not in brainstem, and (IV) severe SEND in the brainstem with neocortical HIE. In 7(9.7%) of 72 patients with histopathology from two different neocortical regions, the SEND differed by more than 30%. Among 154 patients with a SEND greater than 30% in at least one brain region, 14(9.1%) had predominant SEND in cerebellum, and 4(2.6%) predominant SEND in basal ganglia. CONCLUSIONS CA causes typical histopathological HIE patterns, with the hippocampus being more susceptible to SEND, than the cerebral neocortex, and the brainstem being the most resistant brain region. The neocortical distribution of SEND is mostly homogeneous; however, a relevant subgroup shows substantial neocortical HIE heterogeneity. Further studies are required to provide a more granular histopathological analysis of infrequent HIE patterns and their implications for neuroprognostication.
Collapse
Affiliation(s)
- Christian Endisch
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Katharina Millard
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Preuß
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiology and Angiology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Intensive Care Medicine, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Nee
- Department of Nephrology and Intensive Care Medicine, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christoph Leithner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
3
|
Barones L, Weihs W, Schratter A, Janata A, Kodajova P, Bergmeister H, Kenner L, Holzer M, Behringer W, Högler S. Cold aortic flush after ventricular fibrillation cardiac arrest reduces inflammatory reaction but not neuronal loss in the pig cerebral cortex. Sci Rep 2025; 15:11659. [PMID: 40185805 PMCID: PMC11971268 DOI: 10.1038/s41598-025-95611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
This study aims to retrospectively compare two resuscitation methods (extracorporeal cardiopulmonary resuscitation (ECPR) vs. emergency preservation and resuscitation (EPR)) by pathohistologically assessing pig brains in a ventricular fibrillation cardiac arrest (VFCA) model. In prospective studies from 2004 to 2006, swine underwent VFCA for 13 (n = 6), 15 (n = 14) or 17 (n = 6) minutes with ECPR (ECPR13, ECPR15 and ECPR17). Another 15 min VFCA group (n = 8) was resuscitated with EPR and chest compressions (EPR15 + CC). Brains of animals surviving for nine days (ECPR13 n = 4, ECPR15 n = 2, ECPR17 n = 1, EPR15 + CC n = 7) were harvested. Eight different brain regions were analyzed with the image analysis software QuPath using HE-staining, GFAP- and Iba1-immunohistochemistry. Only ECPR13 and EPR15 + CC animals were included in statistical analysis, due to low survival rates in the other groups. All VFCA samples showed significantly fewer viable neurons compared to shams, but no significant differences between ECPR13 and EPR15 + CC animals were observed. ECPR13 animals showed significantly more glial activation in all cerebral cortex regions compared to shams and in occipital, temporal and parietal cortex compared to EPR15 + CC. In conclusion, EPR + CC resulted in a significantly reduced inflammatory reaction in cerebral cortex compared to ECPR but did not influence the extent of neuronal death after VFCA.
Collapse
Affiliation(s)
- Lisa Barones
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wolfgang Weihs
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Janata
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Kodajova
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery and Ludwig Boltzmann Institute for Cardiovascular Research, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Behringer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Laboratory Animal Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Hsu CH, Hsu YY, Chang BM, Raffensperger K, Kadden M, Ton HT, Ette EA, Lin S, Brooks J, Burke MW, Lee YJ, Wang PC, Shoykhet M, Tu TW. StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest. Commun Biol 2025; 8:462. [PMID: 40114030 PMCID: PMC11926354 DOI: 10.1038/s42003-025-07926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Microglia, the brain's resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from "resting" to "activated" shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Yi-Yu Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Miin Wu School of Computing, National Cheng Kung University, Tainan City, Taiwan
| | - Be-Ming Chang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Katherine Raffensperger
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Micah Kadden
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Hoai T Ton
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Essiet-Adidiong Ette
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Yih-Jing Lee
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Paul C Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Physics, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Michael Shoykhet
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
5
|
Renz M, Siegert P, Paul R, Lepadatu A, Leukel P, Frauenknecht K, Urmann A, Hain J, Mohnke K, Ziebart A, Harder A, Ruemmler R. Hypoxic-ischemic brain injury in pig after cardiac arrest - A new histopathological scoring system for non-specialists. Resusc Plus 2024; 20:100779. [PMID: 39328899 PMCID: PMC11424782 DOI: 10.1016/j.resplu.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction After cardiac arrest and successful resuscitation patients often present with hypoxic-ischemic brain injury, which is a major cause of death due to poor neurological outcome. The development of a robust histopathological scoring system for the reliable and easy identification and quantification of hypoxic-ischemic brain injury could lead to a standardization in the evaluation of brain damage. We wanted to establish an easy-to-use neuropathological scoring system to identify and quantify hypoxic-ischemic brain injury. Methods The criteria for regular neurons, hypoxic-ischemic brain injury neurons and neurons with ischemic neuronal change (ischemic change neurons) were established in collaboration with specialized neuropathologists. Nine non-specialist examiners performed cell counting using the mentioned criteria in brain tissue samples from a porcine cardiac arrest model. The statistical analyses were performed using the interclass correlation coefficient for counting data and reliability testing. Results The inter-rater reliability for regular neurons (ICC 0.68 (0.42 - 0.84; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.87 (0.81 - 0.92; p < 0.001) showed moderate to excellent correlation while ischemic change neurons showed poor reliability. Excellent results were seen for intra-rater reliability for regular neurons (ICC 0.9 (0.68 - 0.97; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.99 (0.83 - 1; p < 0.001). Conclusion The scoring system provides a reliable method for the discrimination between regular neurons and neurons affected by hypoxic/ischemic injury. This scoring system allows an easy and reliable identification and quantification of hypoxic-ischemic brain injury for non-specialists and offers a standardization to evaluate hypoxic-ischemic brain injury after cardiac arrest.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Pascal Siegert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Roman Paul
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adina Lepadatu
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Luxembourg Center of Neuropathology (LCNP) & Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Andrea Urmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Hain
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
- Cure NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle, Saale, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Marquez AM, Kosmopoulos M, Kalra R, Goslar T, Jaeger D, Gaisendrees C, Gutierrez A, Carlisle G, Alexy T, Gurevich S, Elliott AM, Steiner ME, Bartos JA, Seelig D, Yannopoulos D. Mild (34 °C) versus moderate hypothermia (24 °C) in a swine model of extracorporeal cardiopulmonary resuscitation. Resusc Plus 2024; 19:100745. [PMID: 39246406 PMCID: PMC11378253 DOI: 10.1016/j.resplu.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background The role of hypothermia in post-arrest neuroprotection is controversial. Animal studies suggest potential benefits with lower temperatures, but high-fidelity ECPR models evaluating temperatures below 30 °C are lacking. Objectives To determine whether rapid cooling to 24 °C initiated upon reperfusion reduces brain injury compared to 34 °C in a swine model of ECPR. Methods Twenty-four female pigs had electrically induced VF and mechanical CPR for 30 min. Animals were cannulated for VA-ECMO and cooled to either 34 °C for 4 h (n = 8), 24 °C for 1 h with rewarming to 34 °C over 3 h (n = 7), or 24 °C for 4 h without rewarming (n = 9). Cooling was initiated upon VA-ECMO reperfusion by circulating ice water through the oxygenator. Brain temperature and cerebral and systemic hemodynamics were continuously monitored. After four hours on VA-ECMO, brain tissue was obtained for examination. Results Target brain temperature was achieved within 30 min of reperfusion (p = 0.74). Carotid blood flow was higher in the 24 °C without rewarming group throughout the VA-ECMO period compared to 34 °C and 24 °C with rewarming (p < 0.001). Vasopressin requirement was higher in animals treated with 24 °C without rewarming (p = 0.07). Compared to 34 °C, animals treated with 24 °C with rewarming were less coagulopathic and had less immunohistochemistry-detected neurologic injury. There were no differences in global brain injury score. Conclusions Despite improvement in carotid blood flow and immunohistochemistry detected neurologic injury, reperfusion at 24 °C with or without rewarming did not reduce early global brain injury compared to 34 °C in a swine model of ECPR.
Collapse
Affiliation(s)
- Alexandra M Marquez
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Marinos Kosmopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rajat Kalra
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Tomaz Goslar
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Deborah Jaeger
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Christopher Gaisendrees
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Alejandra Gutierrez
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Carlisle
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tamas Alexy
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sergey Gurevich
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrea M Elliott
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marie E Steiner
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Demetris Yannopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Persson O, Valerianova A, Bělohlávek J, Cronberg T, Nielsen N, Englund E, Mlček M, Friberg H. Hypothermia After Cardiac Arrest in Large Animals (HACA-LA): Study protocol of a randomized controlled experimental trial. Resusc Plus 2024; 19:100704. [PMID: 39040822 PMCID: PMC11261465 DOI: 10.1016/j.resplu.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Induced hypothermia post-cardiac arrest is neuroprotective in animal experiments, but few high-quality studies have been performed in larger animals with human-like brains. The neuroprotective effect of postischemic hypothermia has recently been questioned in human trials. Our aim is to investigate whether hypothermia post-cardiac arrest confers a benefit compared to normothermia in large adult animals. Our hypothesis is that induced hypothermia post cardiac arrest is neuroprotective and that the effect diminishes when delayed two hours. Methods Adult female pigs were anesthetized, mechanically ventilated and kept at baseline parameters including normothermia (38 °C). All animals were subjected to ten minutes of cardiac arrest (no-flow) by induced ventricular fibrillation, followed by four minutes of cardiopulmonary resuscitation with mechanical compressions, prior to the first countershock. Animals with sustained return of spontaneous circulation (systolic blood pressure >60 mmHg for ten minutes) within fifteen minutes from start of life support were included and randomized to three groups; immediate or delayed (2 h) intravenous cooling, both targeting 33 °C, or intravenously controlled normothermia (38 °C). Temperature control was applied for thirty hours including cooling time, temperature at target and controlled rewarming (0.5 °C/h). Animals were extubated and kept alive for seven days. The primary outcome measure is histological brain injury on day seven. Secondary outcomes include neurological and neurocognitive recovery, and the trajectory of biomarkers of brain injury. Conclusion High-quality animal experiments in clinically relevant large animal models are necessary to close the gap of knowledge regarding neuroprotective effects of induced hypothermia after cardiac arrest.Trial registration:Preclinicaltrials.eu (PCTE0000272), published 2021-11-03.
Collapse
Affiliation(s)
- Olof Persson
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, Sweden
| | - Anna Valerianova
- Third Department of Internal Medicine, General University Hospital, Charles University, Prague, Czech Republic
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Bělohlávek
- Second Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences, Pathology, Lund University, Lund, Sweden
- Department of Genetics, Pathology and Molecular Diagnostics, Skåne University Hospital, Lund, Sweden
| | - Mikuláš Mlček
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesiology and Intensive Care, Lund University, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
8
|
Renz M, Siegert P, Mohnke K, Ruemmler R, Frauenknecht K, Sommer C, Harder A. Precise Definition of Porcine Hippocampal Cornu Ammonis 2: High Histoarchitectural Similarity to Humans but Unequal Sensitivity to Hypoxia. Biomedicines 2024; 12:1896. [PMID: 39200360 PMCID: PMC11351859 DOI: 10.3390/biomedicines12081896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Experimental animal studies of hypoxic-ischemic injury of the hippocampus of pigs are limited due to the unprecise definition of hippocampal subfields, cornu ammonis 1 to 4, compared to humans. Given that the pig model closely mirrors human physiology and serves as an important model for critical care research, a more precise description is necessary to draw valid conclusions applicable to human diseases. In our study, we were able to precisely define the CA2 and its adjacent regions in a domestic pig model by arginine vasopressin receptor 1B (AVPR1B) and calbindin-D28K like (CaBP-Li) expression patterns. Our findings demonstrate that the histoarchitecture of the porcine cornu ammonis subfields closely resembles that of the human hippocampus. Notably, we identified unusually strong neuronal damage in regions of the pig hippocampus following global ischemia, which are typically not susceptible to hypoxic-ischemic damage in humans.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Pascal Siegert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Cancer Research (DoCR), Luxembourg Center of Neuropathology (LCNP), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
9
|
Kenda M, Lang M, Nee J, Hinrichs C, Dell'Orco A, Salih F, Kemmling A, Nielsen N, Wise M, Thomas M, Düring J, McGuigan P, Cronberg T, Scheel M, Moseby-Knappe M, Leithner C. Regional Brain Net Water Uptake in Computed Tomography after Cardiac Arrest - A Novel Biomarker for Neuroprognostication. Resuscitation 2024; 200:110243. [PMID: 38796092 DOI: 10.1016/j.resuscitation.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Selective water uptake by neurons and glial cells and subsequent brain tissue oedema are key pathophysiological processes of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). Although brain computed tomography (CT) is widely used to assess the severity of HIE, changes of brain radiodensity over time have not been investigated. These could be used to quantify regional brain net water uptake (NWU), a potential prognostic biomarker. METHODS We conducted an observational prognostic accuracy study including a derivation (single center cardiac arrest registry) and a validation (international multicenter TTM2 trial) cohort. Early (<6 h) and follow-up (>24 h) head CTs of CA patients were used to determine regional NWU for grey and white matter regions after co-registration with a brain atlas. Neurological outcome was dichotomized as good versus poor using the Cerebral Performance Category Scale (CPC) in the derivation cohort and Modified Rankin Scale (mRS) in the validation cohort. RESULTS We included 115 patients (81 derivation, 34 validation) with out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA). Regional brain water content remained unchanged in patients with good outcome. In patients with poor neurological outcome, we found considerable regional water uptake with the strongest effect in the basal ganglia. NWU >8% in the putamen and caudate nucleus predicted poor outcome with 100% specificity (95%-CI: 86-100%) and 43% (moderate) sensitivity (95%-CI: 31-56%). CONCLUSION This pilot study indicates that NWU derived from serial head CTs is a promising novel biomarker for outcome prediction after CA. NWU >8% in basal ganglia grey matter regions predicted poor outcome while absence of NWU indicated good outcome. NWU and follow-up CTs should be investigated in larger, prospective trials with standardized CT acquisition protocols.
Collapse
Affiliation(s)
- Martin Kenda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany.
| | - Margareta Lang
- Department of Clinical Sciences Lund, Radiology, Lund University, Helsingborg Hospital, Lund, Sweden
| | - Jens Nee
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Circulatory Arrest Center Berlin, Berlin, Germany
| | - Carl Hinrichs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Circulatory Arrest Center Berlin, Berlin, Germany
| | - Andrea Dell'Orco
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuroradiology, Campus Charité, Mitte, Germany
| | - Farid Salih
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - André Kemmling
- Department of Neuroradiology, University Hospital Marburg, Marburg, Germany
| | - Niklas Nielsen
- Anaesthesiology and Intensive Care, Department of Clinical Sciences Lund, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Matt Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | | | - Joachim Düring
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Peter McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Tobias Cronberg
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuroradiology, Campus Charité, Mitte, Germany
| | - Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology and Rehabilitation, Lund University, Skåne University Hospital, Lund, Sweden
| | - Christoph Leithner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
10
|
Preuß S, Multmeier J, Stenzel W, Major S, Ploner CJ, Storm C, Nee J, Leithner C, Endisch C. Survival, but not the severity of hypoxic-ischemic encephalopathy, is associated with higher mean arterial blood pressure after cardiac arrest: a retrospective cohort study. Front Cardiovasc Med 2024; 11:1337344. [PMID: 38774664 PMCID: PMC11106407 DOI: 10.3389/fcvm.2024.1337344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background This study investigates the association between the mean arterial blood pressure (MAP), vasopressor requirement, and severity of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). Methods Between 2008 and 2017, we retrospectively analyzed the MAP 200 h after CA and quantified the vasopressor requirements using the cumulative vasopressor index (CVI). Through a postmortem brain autopsy in non-survivors, the severity of the HIE was histopathologically dichotomized into no/mild and severe HIE. In survivors, we dichotomized the severity of HIE into no/mild cerebral performance category (CPC) 1 and severe HIE (CPC 4). We investigated the regain of consciousness, causes of death, and 5-day survival as hemodynamic confounders. Results Among the 350 non-survivors, 117 had histopathologically severe HIE while 233 had no/mild HIE, without differences observed in the MAP (73.1 vs. 72.0 mmHg, pgroup = 0.639). Compared to the non-survivors, 211 patients with CPC 1 and 57 patients with CPC 4 had higher MAP values that showed significant, but clinically non-relevant, MAP differences (81.2 vs. 82.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors (n = 54), who regained consciousness before death, had higher MAP values compared to those with no/mild HIE (n = 179), who remained persistently comatose (74.7 vs. 69.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors, who regained consciousness, required fewer vasopressors (CVI 2.1 vs. 3.6, pgroup < 0.001). Independent of the severity of HIE, the survivors were weaned faster from vasopressors (CVI 1.0). Conclusions Although a higher MAP was associated with survival in CA patients treated with a vasopressor-supported MAP target above 65 mmHg, the severity of HIE was not. Awakening from coma was associated with less vasopressor requirements. Our results provide no evidence for a MAP target above the current guideline recommendations that can decrease the severity of HIE.
Collapse
Affiliation(s)
- Sandra Preuß
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Multmeier
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Ada Health GmbH, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J. Ploner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Nee
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Leithner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Endisch
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Damjanovic D, Pooth JS, Liu Y, Frensch F, Wolkewitz M, Haberstroh J, Doostkam S, Cristina Schmitz HR, Foerster K, Taunyane I, Neubert T, Scherer C, Diel P, Benk C, Beyersdorf F, Trummer G. The Impact of Head Position on Neurological and Histopathological Outcome Following Controlled Automated Reperfusion of the Whole Body (CARL) in a Pig Model. J Clin Med 2023; 12:7054. [PMID: 38002667 PMCID: PMC10672538 DOI: 10.3390/jcm12227054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Introduction: Based on extracorporeal circulation, targeted reperfusion strategies have been developed to improve survival and neurologic recovery in refractory cardiac arrest: Controlled Automated Reperfusion of the whoLe Body (CARL). Furthermore, animal and human cadaver studies have shown beneficial effects on cerebral pressure due to head elevation during conventional cardiopulmonary resuscitation. Our aim was to evaluate the impact of head elevation on survival, neurologic recovery and histopathologic outcome in addition to CARL in an animal model. Methods: After 20 min of ventricular fibrillation, 46 domestic pigs underwent CARL, including high, pulsatile extracorporeal blood flow, pH-stat acid-base management, priming with a colloid, mannitol and citrate, targeted oxygen, carbon dioxide and blood pressure management, rapid cooling and slow rewarming. N = 25 were head-up (HUP) during CARL, and N = 21 were supine (SUP). After weaning from ECC, the pigs were extubated and followed up in the animal care facility for up to seven days. Neuronal density was evaluated in neurohistopathology. Results: More animals in the HUP group survived and achieved a favorable neurological recovery, 21/25 (84%) versus 6/21 (29%) in the SUP group. Head positioning was an independent factor in neurologically favorable survival (p < 0.00012). Neurohistopathology showed no significant structural differences between HUP and SUP. Distinct, partly transient clinical neurologic deficits were blindness and ataxia. Conclusions: Head elevation during CARL after 20 min of cardiac arrest independently improved survival and neurologic outcome in pigs. Clinical follow-up revealed transient neurologic deficits potentially attributable to functions localized in the posterior perfusion area, whereas histopathologic findings did not show corresponding differences between the groups. A possible explanation of our findings may be venous congestion and edema as modifiable contributing factors of neurologic injury following prolonged cardiac arrest.
Collapse
Affiliation(s)
- Domagoj Damjanovic
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Jan-Steffen Pooth
- Department of Emergency Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Yechi Liu
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Fabienne Frensch
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Division Methods in Clinical Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, D-79104 Freiburg, Germany
| | - Joerg Haberstroh
- Experimental Surgery, Center for Experimental Models and Transgenic Service, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, D-79106 Freiburg, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 64, D-79106 Freiburg, Germany
| | - Heidi Ramona Cristina Schmitz
- Experimental Surgery, Center for Experimental Models and Transgenic Service, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, D-79106 Freiburg, Germany
| | - Katharina Foerster
- Center for Experimental Models and Transgenic Service, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany
| | - Itumeleng Taunyane
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Tabea Neubert
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Christian Scherer
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Patric Diel
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Christoph Benk
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| |
Collapse
|
12
|
Renz M, Müller L, Herbst M, Riedel J, Mohnke K, Ziebart A, Ruemmler R. Analysis of cerebral Interleukin-6 and tumor necrosis factor alpha patterns following different ventilation strategies during cardiac arrest in pigs. PeerJ 2023; 11:e16062. [PMID: 37790622 PMCID: PMC10544304 DOI: 10.7717/peerj.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hypoxia-induced neuroinflammation after cardiac arrest has been shown to be mitigated by different ventilation methods. In this prospective randomized animal trial, 35 landrace pigs were randomly divided into four groups: intermittent positive pressure ventilation (IPPV), synchronized ventilation 20 mbar (SV 20 mbar), chest compression synchronized ventilation 40 mbar (CCSV 40 mbar) and a control group (Sham). After inducing ventricular fibrillation, basic life support (BLS) and advanced life support (ALS) were performed, followed by post-resuscitation monitoring. After 6 hours, the animals were euthanized, and direct postmortem brain tissue samples were taken from the hippocampus (HC) and cortex (Cor) for molecular biological investigation of cytokine mRNA levels of Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα). The data analysis showed that CCSV 40 mbar displayed low TNFα mRNA-levels, especially in the HC, while the highest TNFα mRNA-levels were detected in SV 20 mbar. The results indicate that chest compression synchronized ventilation may have a potential positive impact on the cytokine expression levels post-resuscitation. Further studies are needed to derive potential therapeutic algorithms from these findings.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Lea Müller
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Manuel Herbst
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg Universität, Mainz, Germany
| | - Julian Riedel
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| |
Collapse
|
13
|
Piantino JA, Ruzas CM, Press CA, Subramanian S, Balakrishnan B, Panigrahy A, Pettersson D, Maloney JA, Vossough A, Topjian A, Kirschen MP, Doughty L, Chung MG, Maloney D, Haller T, Fabio A, Fink EL. Use of Magnetic Resonance Imaging in Neuroprognostication After Pediatric Cardiac Arrest: Survey of Current Practices. Pediatr Neurol 2022; 134:45-51. [PMID: 35835025 PMCID: PMC9883065 DOI: 10.1016/j.pediatrneurol.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Use of magnetic resonance imaging (MRI) as a tool to aid in neuroprognostication after cardiac arrest (CA) has been described, yet details of specific indications, timing, and sequences are unknown. We aim to define the current practices in use of brain MRI in prognostication after pediatric CA. METHODS A survey was distributed to pediatric institutions participating in three international studies. Survey questions related to center demographics, clinical practice patterns of MRI after CA, neuroimaging resources, and details regarding MRI decision support. RESULTS Response rate was 31% (44 of 143). Thirty-four percent (15 of 44) of centers have a clinical pathway informing the use of MRI after CA. Fifty percent (22 of 44) of respondents reported that an MRI is obtained in nearly all patients with CA, and 32% (14 of 44) obtain an MRI in those who do not return to baseline neurological status. Poor neurological examination was reported as the most common factor (91% [40 of 44]) determining the timing of the MRI. Conventional sequences (T1, T2, fluid-attenuated inversion recovery, and diffusion-weighted imaging/apparent diffusion coefficient) are routinely used at greater than 97% of centers. Use of advanced imaging techniques (magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI) were reported by less than half of centers. CONCLUSIONS Conventional brain MRI is a common practice for prognostication after CA. Advanced imaging techniques are used infrequently. The lack of standardized clinical pathways and variability in reported practices support a need for higher-quality evidence regarding the indications, timing, and acquisition protocols of clinical MRI studies.
Collapse
Affiliation(s)
- Juan A Piantino
- Division of Child Neurology, Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon
| | - Christopher M Ruzas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Craig A Press
- Division of Neurology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Pettersson
- Division of Neuroradiology, Department of Diagnostic Radiology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon
| | - John A Maloney
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lesley Doughty
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melissa G Chung
- Divisions of Critical Care Medicine and Pediatric Neurology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - David Maloney
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara Haller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Lee HY, Jung YH, Mamadjonov N, Jeung KW, Kim MC, Lim KS, Jeon CY, Lee Y, Kim HJ. Effects of Sodium Nitroprusside Administered Via a Subdural Intracranial Catheter on the Microcirculation, Oxygenation, and Electrocortical Activity of the Cerebral Cortex in a Pig Cardiac Arrest Model. J Am Heart Assoc 2022; 11:e025400. [PMID: 35624079 PMCID: PMC9238727 DOI: 10.1161/jaha.122.025400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Postischemic cerebral hypoperfusion has been indicated as an important contributing factor to secondary cerebral injury after cardiac arrest. We evaluated the effects of sodium nitroprusside administered via a subdural intracranial catheter on the microcirculation, oxygenation, and electrocortical activity of the cerebral cortex in the early postresuscitation period using a pig model of cardiac arrest. Methods and Results Twenty‐nine pigs were resuscitated with closed cardiopulmonary resuscitation after 14 minutes of untreated ventricular fibrillation. Thirty minutes after restoration of spontaneous circulation, 24 pigs randomly received either 4 mg of sodium nitroprusside (IT‐SNP group) or saline placebo (IT‐saline group) via subdural intracranial catheters and were observed for 5 hours. The same dose of sodium nitroprusside was administered intravenously in another 5 pigs. Compared with the IT‐saline group, the IT‐SNP group had larger areas under the curve for tissue oxygen tension and percent changes of arteriole diameter and number of perfused microvessels from baseline (all P<0.05) monitored on the cerebral cortex during the 5‐hour period, without severe hemodynamic instability. This group also showed faster recovery of electrocortical activity measured using amplitude‐integrated electroencephalography. Repeated‐measures analysis of variance revealed significant group–time interactions for these parameters. Intravenously administered sodium nitroprusside caused profound hypotension but did not appear to increase the cerebral parameters. Conclusions Sodium nitroprusside administered via a subdural intracranial catheter increased post–restoration of spontaneous circulation cerebral cortical microcirculation and oxygenation and hastened electrocortical activity recovery in a pig model of cardiac arrest. Further studies are required to determine its impact on the long‐term neurologic outcomes.
Collapse
Affiliation(s)
- Hyoung Youn Lee
- Trauma Center Chonnam National University Hospital Gwangju Republic of Korea
| | - Yong Hun Jung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Najmiddin Mamadjonov
- Department of Medical Science Chonnam National University Graduate School Gwangju Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Min Chul Kim
- Division of Cardiology Department of Internal Medicine Chonnam National University Hospital Gwangju Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center Korea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Youngjeon Lee
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Hyung Joong Kim
- Medical Science Research InstituteKyung Hee University Hospital Seoul Republic of Korea
| |
Collapse
|
15
|
Arrich J, Herkner H, Müllner D, Behringer W. Targeted temperature management after cardiac arrest. A systematic review and meta-analysis of animal studies. Resuscitation 2021; 162:47-55. [PMID: 33582259 DOI: 10.1016/j.resuscitation.2021.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
AIM Animal studies are an important knowledge base when information from clinical trials is missing or conflicting. The goal of this systematic review and meta-analysis was to investigate the effect of conventional targeted temperature management (TTM) between 32-36 °C in animal cardiac arrest models, and to estimate the influence of effect modifiers on the pooled effect of TTM. DATA SOURCES We searched Medline and Scopus from inception to May 2020 for randomised controlled animal trials assessing the effect of conventional TTM versus normothermia on neurologic outcome after cardiac arrest. We extracted data on study characteristics, study quality data, neurologic outcome, mortality, and potential effect modifiers. RESULTS We retrieved 1635 studies, 45 studies comprising data of 981 animals met the inclusion criteria. Risk of bias was high in 17 studies and moderate in 28 studies. We undertook random-effects meta-analyses and meta-regression analyses to calculate the pooled effect and the influence of effect modifiers. There was a strong beneficial effect of TTM as compared to normothermia on neurologic outcome (standardised mean difference of 1.4 [95% CI -1.7 to -1.1; I2 = 75%]). Faster cooling rates, lower target temperature of TTM within the range of 32-36 °C, and shorter duration of cooling were independently associated with an increasing effect size of TTM. CONCLUSIONS This systematic review of animal cardiac arrest studies showed a consistent favourable effect of postresuscitation TTM as compared to normothermia on neurologic outcome that increased with lower target temperatures.
Collapse
Affiliation(s)
- Jasmin Arrich
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria; Department of Emergency Medicine, Jena University Hospital, Friedrich Schiller University Jena, Faculty of Medicine, Am Klinikum 1, 07747 Jena, Germany.
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - David Müllner
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Wilhelm Behringer
- Department of Emergency Medicine, Jena University Hospital, Friedrich Schiller University Jena, Faculty of Medicine, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
16
|
Ton HT, Raffensperger K, Shoykhet M. Early Thalamic Injury After Resuscitation From Severe Asphyxial Cardiac Arrest in Developing Rats. Front Cell Dev Biol 2021; 9:737319. [PMID: 34950655 PMCID: PMC8688916 DOI: 10.3389/fcell.2021.737319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Children who survive cardiac arrest often develop debilitating sensorimotor and cognitive deficits. In animal models of cardiac arrest, delayed neuronal death in the hippocampal CA1 region has served as a fruitful paradigm for investigating mechanisms of injury and neuroprotection. Cardiac arrest in humans, however, is more prolonged than in most experimental models. Consequently, neurologic deficits in cardiac arrest survivors arise from injury not solely to CA1 but to multiple vulnerable brain structures. Here, we develop a rat model of prolonged pediatric asphyxial cardiac arrest and resuscitation, which better approximates arrest characteristics and injury severity in children. Using this model, we characterize features of microglial activation and neuronal degeneration in the thalamus 24 h after resuscitation from 11 and 12 min long cardiac arrest. In addition, we test the effect of mild hypothermia to 34°C for 8 h after 12.5 min of arrest. Microglial activation and neuronal degeneration are most prominent in the thalamic Reticular Nucleus (nRT). The severity of injury increases with increasing arrest duration, leading to frank loss of nRT neurons at longer arrest times. Hypothermia does not prevent nRT injury. Interestingly, injury occurs selectively in intermediate and posterior nRT segments while sparing the anterior segment. Since all nRT segments consist exclusively of GABA-ergic neurons, we asked if GABA-ergic neurons in general are more susceptible to hypoxic-ischemic injury. Surprisingly, cortical GABA-ergic neurons, like their counterparts in the anterior nRT segment, do not degenerate in this model. Hence, we propose that GABA-ergic identity alone is not sufficient to explain selective vulnerability of intermediate and posterior nRT neurons to hypoxic-ischemic injury after cardiac arrest and resuscitation. Our current findings align the animal model of pediatric cardiac arrest with human data and suggest novel mechanisms of selective vulnerability to hypoxic-ischemic injury among thalamic GABA-ergic neurons.
Collapse
|
17
|
Warenits AM, Hatami J, Müllebner A, Ettl F, Teubenbacher U, Magnet IAM, Bauder B, Janata A, Miller I, Moldzio R, Kramer AM, Sterz F, Holzer M, Högler S, Weihs W, Duvigneau JC. Motor Cortex and Hippocampus Display Decreased Heme Oxygenase Activity 2 Weeks After Ventricular Fibrillation Cardiac Arrest in Rats. Front Med (Lausanne) 2020; 7:513. [PMID: 33015090 PMCID: PMC7511667 DOI: 10.3389/fmed.2020.00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
Heme oxygenase (HO) and biliverdin reductase (BVR) activities are important for neuronal function and redox homeostasis. Resuscitation from cardiac arrest (CA) frequently results in neuronal injury and delayed neurodegeneration that typically affect vulnerable brain regions, primarily hippocampus (Hc) and motor cortex (mC), but occasionally also striatum and cerebellum. We questioned whether these delayed effects are associated with changes of the HO/BVR system. We therefore analyzed the activities of HO and BVR in the brain regions Hc, mC, striatum and cerebellum of rats subjected to ventricular fibrillation CA (6 min or 8 min) after 2 weeks following resuscitation, or sham operation. From all investigated regions, only Hc and mC showed significantly decreased HO activities, while BVR activity was not affected. In order to find an explanation for the changed HO activity, we analyzed protein abundance and mRNA expression levels of HO-1, the inducible, and HO-2, the constitutively expressed isoform, in the affected regions. In both regions we found a tendency for a decreased immunoreactivity of HO-2 using immunoblots and immunohistochemistry. Additionally, we investigated the histological appearance and the expression of markers indicative for activation of microglia [tumor necrosis factor receptor type I (TNFR1) mRNA and immunoreactivity for ionized calcium-binding adapter molecule 1 (Iba1])], and activation of astrocytes [immunoreactivity for glial fibrillary acidic protein (GFAP)] in Hc and mC. Morphological changes were detected only in Hc displaying loss of neurons in the cornu ammonis 1 (CA1) region, which was most pronounced in the 8 min CA group. In this region also markers indicating inflammation and activation of pro-death pathways (expression of HO-1 and TNFR1 mRNA, as well as Iba1 and GFAP immunoreactivity) were upregulated. Since HO products are relevant for maintaining neuronal function, our data suggest that neurodegenerative processes following CA may be associated with a decreased capacity to convert heme into HO products in particularly vulnerable brain regions.
Collapse
Affiliation(s)
| | - Jasmin Hatami
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Müllebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florian Ettl
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Ursula Teubenbacher
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | | | - Barbara Bauder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andreas Janata
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Miller
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Fritz Sterz
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weihs
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
18
|
Fink EL, Wisnowski J, Clark R, Berger RP, Fabio A, Furtado A, Narayan S, Angus DC, Watson RS, Wang C, Callaway CW, Bell MJ, Kochanek PM, Bluml S, Panigrahy A. Brain MR imaging and spectroscopy for outcome prognostication after pediatric cardiac arrest. Resuscitation 2020; 157:185-194. [PMID: 32653571 DOI: 10.1016/j.resuscitation.2020.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
AIM Children surviving cardiac arrest are at high risk of neurological morbidity and mortality; however, there is a lack of validated prognostic biomarkers. We aimed to evaluate brain magnetic resonance imaging (MRI) and spectroscopy (MRS) as predictors of death and disability. Secondly, we evaluated whether MRI/S by randomized group. METHODS This single center study analyzed clinically indicated brain MRI/S data from children enrolled in a randomized controlled trial of 24 vs. 72 h of hypothermia following cardiac arrest. Two pediatric radiologists scored conventional MRIs. Lactate and N-acetyl-aspartate (NAA) concentrations (mmol/kg) were determined from spectra acquired from the basal ganglia, thalamus, parietal white matter and parietooccipital gray matter. Mortality and neurological outcomes (favorable = Pediatric Cerebral Performance Category [PCPC] 1, 2, 3 or increase < 2) were assessed at hospital discharge. Non-parametric tests were used to test for associations between MRI/S biomarkers and outcome and randomized group. RESULTS 23 children with (median [interquartile range]) age of 1.5 (0.3-4.0) years. Ten (44%) had favorable outcome. There were more T2 brain lesions in the lentiform nuclei in children with unfavorable 12 (92%) vs. favorable 3 (33%) outcome, p = 0.007. Increased lactate and decreased NAA concentrations in the parietooccipital gray matter and decreased NAA in the parietal white matter were associated with unfavorable outcome (p's < 0.05). There were no differences for any biomarker by randomized group. CONCLUSION Regional cerebral and metabolic MRI/S biomarkers are predictive of neurological outcomes at hospital discharge in pediatric cardiac arrest and should undergo validation testing in a large sample.
Collapse
Affiliation(s)
- Ericka L Fink
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA.
| | | | - Robert Clark
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Rachel P Berger
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andre Furtado
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Srikala Narayan
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
| | - R Scott Watson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chunyan Wang
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | | | - Patrick M Kochanek
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - Stefan Bluml
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Establishing a Rodent Model of Ventricular Fibrillation Cardiac Arrest With Graded Histologic and Neurologic Damage With Different Cardiac Arrest Durations. Shock 2019; 50:219-225. [PMID: 28968287 PMCID: PMC6039375 DOI: 10.1097/shk.0000000000001004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose: The aim of the study was to establish a ventricular fibrillation (VF) cardiac arrest (CA) resuscitation model with consistent neurologic and neuropathologic damage as potential therapeutic target. Methods: Prospectively randomized groups of experiments in two phases. In phase 1 four groups of male Sprague–Dawley rats (n = 5) were resuscitated after 6 min VFCA with 2 and 6 min basic life support durations (BLS) with and without adrenaline. In phase 2 the most promising group regarding return of spontaneous circulation (ROSC) and survival was compared with a group of 8 min CA. Resuscitability, neurologic deficit scores (NDS), and overall performance category (OPC) were assessed daily; histolopathology of the hippocampal CA1 region [hematoxylin and eosin- (viable neurons), Fluoro-Jade- (dying neurons), and Iba-1 immunostaining (microglial activation–semiquantitative)] on day 14. Results: Two minutes BLS and with adrenaline as most promising group of phase 1 compared with an 8 min group in phase 2 exhibited ROSC in 8 (80%) vs. 9 (82%) animals and survivors till day 14 in 7 (88%) (all OPC 1, NDS 0 ± 0) vs. 6 (67%) (5 OPC 1, 1 OPC 2, NDS 0.83 ± 2.4) animals. OPC and NDS were only significantly different at day 1 (OPC: P = 0.035; NDS: P = 0.003). Histopathologic results between groups were not significantly different; however, a smaller variance of extent of lesions was found in the 8 min group. Both CA durations caused graded neurologic, overall, such as histopathologic damage. Conclusions: This dynamic global ischemia model offers the possibility to evaluate further cognitive and novel neuroprotective therapy testing after CA.
Collapse
|
20
|
Microdialysis Assessment of Cerebral Perfusion during Cardiac Arrest, Extracorporeal Life Support and Cardiopulmonary Resuscitation in Rats - A Pilot Trial. PLoS One 2016; 11:e0155303. [PMID: 27175905 PMCID: PMC4866776 DOI: 10.1371/journal.pone.0155303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
Cerebral metabolic alterations during cardiac arrest, cardiopulmonary resuscitation (CPR) and extracorporeal cardiopulmonary life support (ECLS) are poorly explored. Markers are needed for a more personalized resuscitation and post-resuscitation care. Aim of this study was to investigate early metabolic changes in the hippocampal CA1 region during ventricular fibrillation cardiac arrest (VF-CA) and ECLS versus conventional CPR. Male Sprague-Dawley rats (350g) underwent 8min untreated VF-CA followed by ECLS (n = 8; bloodflow 100ml/kg), mechanical CPR (n = 18; 200/min) until return of spontaneous circulation (ROSC). Shams (n = 2) were included. Glucose, glutamate and lactate/pyruvate ratio were compared between treatment groups and animals with and without ROSC. Ten animals (39%) achieved ROSC (ECLS 5/8 vs. CPR 5/18; OR 4,3;CI:0.7-25;p = 0.189). During VF-CA central nervous glucose decreased (0.32±0.1mmol/l to 0.04±0.01mmol/l; p<0.001) and showed a significant rise (0.53±0.1;p<0.001) after resuscitation. Lactate/pyruvate (L/P) ratio showed a 5fold increase (31 to 164; p<0.001; maximum 8min post ROSC). Glutamate showed a 3.5-fold increase to (2.06±1.5 to 7.12±5.1μmol/L; p<0.001) after CA. All parameters normalized after ROSC with no significant differences between ECLS and CPR. Metabolic changes during ischemia and resuscitation can be displayed by cerebral microdialysis in our VF-CA CPR and ECLS rat model. We found similar microdialysate concentrations and patterns of normalization in both resuscitation methods used. Institutional Protocol Number: GZ0064.11/3b/2011.
Collapse
|
21
|
Bartos JA, Matsuura TR, Sarraf M, Youngquist ST, McKnite SH, Rees JN, Sloper DT, Bates FS, Segal N, Debaty G, Lurie KG, Neumar RW, Metzger JM, Riess ML, Yannopoulos D. Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17 min of untreated cardiac arrest. Resuscitation 2014; 87:7-13. [PMID: 25447036 DOI: 10.1016/j.resuscitation.2014.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/04/2014] [Accepted: 10/14/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to mitigate the effects of reperfusion injury in cardiac tissue after 15min of ventricular fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to neuronal and cardiac tissue during reperfusion injury in human and animal models. We hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard advanced life support would improve post-resuscitation cardiac and neurologic function after prolonged VF arrest. METHODS Following 17min of untreated VF, 20 pigs were randomized to Control treatment with active compression/decompression (ACD) CPR and impedance threshold device (ITD) (n=8) or Bundle therapy with stutter ACD CPR+ITD+sevoflurane+P188 (n=12). Epinephrine and post-resuscitation hypothermia were given in both groups per standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a cerebral performance category score. RESULTS Bundle therapy improved hemodynamics during resuscitation, reduced need for epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end-organ dysfunction, and increased left ventricular ejection fraction compared to Controls. Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse events (50% vs. 0% at 48h), and neurologic function (42% with mild or no neurologic deficit and 17% achieving normal function at 48h). CONCLUSIONS Bundle therapy with a combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and neurologic function after 17min of untreated cardiac arrest in pigs. All studies were performed with approval from the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation (protocol #12-11).
Collapse
Affiliation(s)
- Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, United States
| | - Mohammad Sarraf
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | | | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Daniel T Sloper
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, United States
| | - Nicolas Segal
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Guillaume Debaty
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States; UJF-Grenoble 1/CNRS/CHU de Grenoble/TIMC-IMAG UMR 5525, Grenoble F-38041, France
| | - Keith G Lurie
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, United States
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, United States; Department of Anesthesiology, Vanderbilt University, Nashville, TN, United States
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States.
| |
Collapse
|
22
|
Bro-Jeppesen J, Hassager C, Wanscher M, Søholm H, Thomsen JH, Lippert FK, Møller JE, Køber L, Kjaergaard J. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation 2013; 84:1734-40. [PMID: 23917079 DOI: 10.1016/j.resuscitation.2013.07.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Post-cardiac arrest fever has been associated with adverse outcome before implementation of therapeutic hypothermia (TH), however the prognostic implications of post-hypothermia fever (PHF) in the era of modern post-resuscitation care including TH has not been thoroughly investigated. The aim of the study was to assess the prognostic implication of PHF in a large consecutive cohort of comatose survivors after out-of-hospital cardiac arrest (OHCA) treated with TH. METHODS In the period 2004-2010, a total of 270 patients resuscitated after OHCA and surviving a 24-h protocol of TH with a target temperature of 32-34°C were included. The population was stratified in two groups by median peak temperature (≥38.5°C) within 36h after rewarming: PHF and no-PHF. Primary endpoint was 30-days mortality and secondary endpoint was neurological outcome assessed by Cerebral Performance Category (CPC) at hospital discharge. RESULTS PHF (≥38.5°C) was associated with a 36% 30-days mortality rate compared to 22% in patients without PHF, plog-rank=0.02, corresponding to an adjusted hazard rate (HR) of 1.8 (95% CI: 1.1-2.7), p=0.02). The maximum temperature (HR=2.0 per °C above 36.5°C (95% CI: 1.4-3.0), p=0.0005) and the duration of PHF (HR=1.6 per 8h (95% CI: 1.3-2.0), p<0.0001) were also independent predictors of 30-days mortality in multivariable models. Good neurological outcome (CPC1-2) versus unfavourable outcome (CPC3-5) at hospital discharge was found in 61% vs. 39% in the PHF group compared to 75% vs. 25% in the No PHF group, p=0.02. CONCLUSIONS Post-hypothermia fever ≥38.5°C is associated with increased 30-days mortality, even after controlling for potential confounding factors. Avoidance of PHF as a therapeutic target should be evaluated in prospective randomized trials.
Collapse
Affiliation(s)
- John Bro-Jeppesen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yannopoulos D, Segal N, Matsuura T, Sarraf M, Thorsgard M, Caldwell E, Rees J, McKnite S, Santacruz K, Lurie KG. Ischemic post-conditioning and vasodilator therapy during standard cardiopulmonary resuscitation to reduce cardiac and brain injury after prolonged untreated ventricular fibrillation. Resuscitation 2013; 84:1143-9. [PMID: 23376583 DOI: 10.1016/j.resuscitation.2013.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 01/25/2023]
Abstract
AIM OF THE STUDY We investigated the effects of ischemic postconditioning (IPC) with and without cardioprotective vasodilatory therapy (CVT) at the initiation of cardiopulmonary resuscitation (CPR) on cardio-cerebral function and 48-h survival. METHODS Prospective randomized animal study. Following 15 min of ventricular fibrillation, 42 Yorkshire farm pigs weighing an average of 34 ± 2 kg were randomized to receive standard CPR (SCPR, n=12), SCPR+IPC (n=10), SCPR+IPC+CVT (n=10), or SCPR+CVT (n=10). IPC was delivered during the first 3 min of CPR with 4 cycles of 20s of chest compressions followed by 20-s pauses. CVT consisted of intravenous sodium nitroprusside (2mg) and adenosine (24 mg) during the first minute of CPR. Epinephrine was given in all groups per standard protocol. A transthoracic echocardiogram was obtained on all survivors 1 and 4h post-ROSC. The brains were extracted after euthanasia at least 24h later to assess ischemic injury in 7 regions. Ischemic injury was graded on a 0-4 scale with (0=no injury to 4 ≥ 50% neural injury). The sum of the regional scores was reported as cerebral histological score (CHS). 48 h survival was reported. RESULTS Post-resuscitation left ventricular ejection (LVEF) fraction improved in SCPR+CVT, SCPR+IPC+CVT and SCPR+IPC groups compared to SCPR (59% ± 9%, 52% ± 14%, 52% ± 14% vs. 35% ± 11%, respectively, p<0.05). Only SCPR+IPC and SCPR+IPC+CVT, but not SCPR+CVT, had lower mean CHS compared to SCPR (5.8 ± 2.6, 2.8 ± 1.8 vs. 10 ± 2.1, respectively, p<0.01). The 48-h survival among SCPR+IPC, SCPR+CVT, SCPR+IPC+CVT and SCPR was 6/10, 3/10, 5/10 and 1/12, respectively (Cox regression p<0.01). CONCLUSIONS IPC and CVT during standard CPR improved post-resuscitation LVEF but only IPC was independently neuroprotective and improved 48-h survival after 15 min of untreated cardiac arrest in pigs.
Collapse
|
24
|
Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Crit Care Med 2012; 40:1562-9. [PMID: 22430233 DOI: 10.1097/ccm.0b013e31823e9f78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A multipronged approach to improve vital organ perfusion during cardiopulmonary resuscitation that includes sodium nitroprusside, active compression-decompression cardiopulmonary resuscitation, an impedance threshold device, and abdominal pressure (sodium nitroprusside-enhanced cardiopulmonary resuscitation) has been recently shown to increase coronary and cerebral perfusion pressures and higher rates of return of spontaneous circulation vs. standard cardiopulmonary resuscitation. To further reduce reperfusion injury during sodium nitroprusside-enhanced cardiopulmonary resuscitation, we investigated the addition of adenosine and four 20-sec controlled pauses spread throughout the first 3 mins of sodium nitroprusside-enhanced cardiopulmonary resuscitation. The primary study end point was 24-hr survival with favorable neurologic function after 15 mins of untreated ventricular fibrillation. DESIGN Randomized, prospective, blinded animal investigation. SETTING Preclinical animal laboratory. SUBJECTS Thirty-two female pigs (four groups of eight) 32±2 kg. INTERVENTIONS After 15 mins of untreated ventricular fibrillation, isoflurane-anesthetized pigs received 5 mins of either standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine. After 4 mins of cardiopulmonary resuscitation, all animals received epinephrine (0.5 mg) and a defibrillation shock 1 min later. Sodium nitroprusside-enhanced cardiopulmonary resuscitation-treated animals received sodium nitroprusside (2 mg) after 1 min of cardiopulmonary resuscitation and 1 mg after 3 mins of cardiopulmonary resuscitation. After 1 min of sodium nitroprusside-enhanced cardiopulmonary resuscitation, adenosine (24 mg) was administered in two groups. MEASUREMENTS AND MAIN RESULTS A veterinarian blinded to the treatment assigned a cerebral performance category score of 1-5 (normal, slightly disabled, severely disabled but conscious, vegetative state, or dead, respectively) 24 hrs after return of spontaneous circulation. Sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, and controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine resulted in a significantly higher 24-hr survival rate compared to standard cardiopulmonary resuscitation (7 of 8, 8 of 8, and 8 of 8 vs. 2 of 8, respectively p<.05). The mean cerebral performance category scores for standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine were 4.6±0.7, 3±1.3, 2.5±0.9, and 1.5±0.9, respectively (p<.01 for controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine compared to all other groups). CONCLUSIONS Reducing reperfusion injury and maximizing circulation during cardiopulmonary resuscitation significantly improved functional neurologic recovery after 15 mins of untreated ventricular fibrillation. These results suggest that brain resuscitation after prolonged cardiac arrest is possible with novel, noninvasive approaches focused on reversing the mechanisms of tissue injury.
Collapse
|
25
|
Schultz J, Segal N, Kolbeck J, Caldwell E, Thorsgard M, McKnite S, Aufderheide TP, Lurie KG, Yannopoulos D. Sodium nitroprusside enhanced cardiopulmonary resuscitation prevents post-resuscitation left ventricular dysfunction and improves 24-hour survival and neurological function in a porcine model of prolonged untreated ventricular fibrillation. Resuscitation 2012; 82 Suppl 2:S35-40. [PMID: 22208176 DOI: 10.1016/s0300-9572(11)70149-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AIM OF STUDY Sodium nitroprusside-enhanced CPR, or SNPeCPR, consists of active compression-decompression CPR with an impedance threshold device, abdominal compression, and intravenous sodium nitroprusside (SNP). We hypothesize that SNPeCPR will improve post resuscitation left ventricular function and neurological function compared to standard (S) CPR after 15 min of untreated ventricular fibrillation in a porcine model of cardiac arrest. METHODS Pigs (n = 22) anesthetized with isoflurane underwent 15 min of untreated ventricular fibrillation, were then randomized to 6 min of S-CPR (n = 11) or SNPeCPR (n = 11) followed by defibrillation. The primary endpoints were neurologic function as measured by cerebral performance category (CPC) score and left ventricular ejection fraction. RESULTS SNPeCPR increased 24-hour survival rates compared to S-CPR (10/11 versus 5/11, p = 0.03) and improved neurological function (CPC score 2.5 ± 1, versus 3.8 ± 0.4, respectively, p = 0.004). Left ventricular ejection fractions at 1, 4 and 24 hours after defibrillation were 72 ± 11, 57 ± 11.4 and 64 ± 11 with SNPeCPR versus 29 ± 10, 30 ± 17 and 39 ± 6 with S-CPR, respectively (p < 0.01 for all). CONCLUSIONS In this pig model, after 15 min of untreated ventricular fibrillation, SNPeCPR significantly improved 24-hour survival rates, neurologic function and prevented post-resuscitation left ventricular dysfunction compared to S-CPR.
Collapse
Affiliation(s)
- Jason Schultz
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455-0341, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Segal N, Matsuura T, Caldwell E, Sarraf M, McKnite S, Zviman M, Aufderheide TP, Halperin HR, Lurie KG, Yannopoulos D. Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after prolonged untreated ventricular fibrillation. Resuscitation 2012; 83:1397-403. [PMID: 22521449 DOI: 10.1016/j.resuscitation.2012.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/23/2012] [Accepted: 04/05/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Ischemic postconditioning (PC) with "stuttering" reintroduction of blood flow after prolonged ischemia has been shown to offer protection from ischemia reperfusion injury to the myocardium and brain. We hypothesized that four 20-s pauses during the first 3 min of standard CPR would improve post resuscitation cardiac and neurological function, in a porcine model of prolonged untreated cardiac arrest. METHODS 18 female farm pigs, intubated and isoflurane anesthetized had 15 min of untreated ventricular fibrillation followed by standard CPR (SCPR). Nine animals were randomized to receive PC with four, controlled, 20-s pauses, during the first 3 min of CPR (SCPR+PC). Resuscitated animals had echocardiographic evaluation of their ejection fraction after 1 and 4 h and a blinded neurological assessment with a cerebral performance category (CPC) score assigned at 24 and 48 h. All animals received 12 h of post resuscitation mild therapeutic hypothermia. RESULTS SCPR+PC animals had significant improvement in left ventricular ejection fraction at 1 and 4 h compared to SCPR (59±11% vs. 35±7% and 55±8% vs. 31±13% respectively, p<0.01). Neurological function at 24h significantly improved with SCPR+PC compared to SCPR alone (CPC: 2.7±0.4 vs. 3.8±0.4 respectively, p=0.003). Neurological function significantly improved in the SCPR+PC group at 48 h and the mean CPC score of that group decreased from 2.7±0.4 to 1.7±0.4 (p<0.00001). CONCLUSIONS Ischemic postconditioning with four 20-s pauses during the first 3 min of SCPR improved post resuscitation cardiac function and facilitated neurological recovery after 15 min of untreated cardiac arrest in pigs.
Collapse
Affiliation(s)
- Nicolas Segal
- Cardiovascular Division, University of Minnesota, Minneapolis 55455-0341, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models. Crit Care Med 2012; 39:2705-10. [PMID: 21725236 DOI: 10.1097/ccm.0b013e31822668ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Sodium nitroprusside-enhanced cardiopulmonary resuscitation consists of active compression-decompression, an impedance threshold device, abdominal binding, and large intravenous doses of sodium nitroprusside. We hypothesize that sodium nitroprusside-enhanced cardiopulmonary resuscitation will significantly increase carotid blood flow and return of spontaneous circulation compared to standard cardiopulmonary resuscitation after prolonged ventricular fibrillation and pulseless electrical activity cardiac arrest. DESIGN Prospective randomized animal study. SETTING Hennepin County Medical Center Animal Laboratory. SUBJECTS Forty Yorkshire female farm-bred pigs weighing 32 ± 2 kg. INTERVENTIONS In protocol A, 24 isoflurane-anesthetized pigs underwent 15 mins of untreated ventricular fibrillation and were subsequently randomized to receive standard cardiopulmonary resuscitation (n = 6), active compression-decompression cardiopulmonary resuscitation + impedance threshold device (n = 6), or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 12) for up to 15 mins. First defibrillation was attempted at minute 6 of cardiopulmonary resuscitation. In protocol B, a separate group of 16 pigs underwent 10 mins of untreated ventricular fibrillation followed by 3 mins of chest compression only cardiopulmonary resuscitation followed by countershock-induced pulseless electrical activity, after which animals were randomized to standard cardiopulmonary resuscitation (n = 8) or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 8). MEASUREMENTS AND MAIN RESULTS The primary end point was carotid blood flow during cardiopulmonary resuscitation and return of spontaneous circulation. Secondary end points included end-tidal CO2 as well as coronary and cerebral perfusion pressure. After prolonged untreated ventricular fibrillation, sodium nitroprusside-enhanced cardiopulmonary resuscitation demonstrated superior rates of return of spontaneous circulation when compared to standard cardiopulmonary resuscitation and active compression-decompression cardiopulmonary resuscitation + impedance threshold device (12 of 12, 0 of 6, and 0 of 6 respectively, p < .01). In animals with pulseless electrical activity, sodium nitroprusside-enhanced cardiopulmonary resuscitation increased return of spontaneous circulation rates when compared to standard cardiopulmonary resuscitation. In both groups, carotid blood flow, coronary perfusion pressure, cerebral perfusion pressure, and end-tidal CO2 were increased with sodium nitroprusside-enhanced cardiopulmonary resuscitation. CONCLUSIONS In pigs, sodium nitroprusside-enhanced cardiopulmonary resuscitation significantly increased return of spontaneous circulation rates, as well as carotid blood flow and end-tidal CO2, when compared to standard cardiopulmonary resuscitation or active compression-decompression cardiopulmonary resuscitation + impedance threshold device.
Collapse
|
28
|
Combination pharmacotherapy improves neurological outcome after asphyxial cardiac arrest. Resuscitation 2011; 83:527-32. [PMID: 21963816 DOI: 10.1016/j.resuscitation.2011.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/07/2011] [Accepted: 09/18/2011] [Indexed: 01/14/2023]
Abstract
AIM To study the effects of the combination of adrenaline (epinephrine) and vasopressin compared to adrenaline alone on initial resuscitation success, 24h survival, and neurological outcome in a swine model of asphyxial cardiac arrest (CA). METHODS This prospective randomized experimental study was conducted at a laboratory research department. Twenty female Landrace/Large-White pigs, 12-15 weeks of age, were investigated. Asphyxial CA was induced by clamping of the endotracheal tube. After 4min of untreated CA, resuscitation was initiated by unclamping the endotracheal tube, mechanical ventilation, chest compressions and adrenaline (Group A) or a combination of adrenaline with vasopressin (Group A+V) administered intravenously. In case of restoration of spontaneous circulation (ROSC), the animals were monitored for 30min and then observed for 24h. RESULTS Hemodynamic variables were measured at baseline during CPR and in the post-resuscitation period. Statistically significant difference was observed in groups A and A+V regarding coronary perfusion pressure (CPP) during the first minute of CPR. In both groups, ROSC and survival rates were comparable (p=NS). Neurological deficit score (NDS) was significantly higher in the combination group 24h following CA (p<0.001). Brain histological damage score (HDS) was also better in the combination group (p<0.001). Total HDS and NDS showed a statistical significant correlation (p<0.001). CONCLUSIONS In this porcine model of asphyxial CA, adrenaline alone as well as the combined administration of adrenaline and vasopressin resulted in similar ROSC and survival rates, but the combination of adrenaline and vasopressin resulted in improved neurological and cerebral histopathological outcomes.
Collapse
|