1
|
Carneiro T, Goswami S, Smith CN, Giraldez MB, Maciel CB. Prolonged Monitoring of Brain Electrical Activity in the Intensive Care Unit. Neurol Clin 2025; 43:31-50. [PMID: 39547740 DOI: 10.1016/j.ncl.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Electroencephalography (EEG) has been used to assess brain electrical activity for over a century. More recently, technological advancements allowed EEG to be a widely available and powerful tool in the intensive care unit (ICU), where patients at risk for cerebral dysfunction and brain injury can be monitored in a continuous, real-time manner. In the last 2 decades, several organizations established guidelines for continuous EEG monitoring in the ICU, defining critical care EEG terminology and technical standards for technicians, machines, and electroencephalographers. This article provides an overview of the current role of continuous EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Thiago Carneiro
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA; Department of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA
| | - Shweta Goswami
- Cerebrovascular Center, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk S80-806, Cleveland, OH 44195, USA
| | - Christine Nicole Smith
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA; Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 Southwest Archer Road, Gainesville, FL 32608, USA
| | - Maria Bruzzone Giraldez
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Carolina B Maciel
- Departments of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA; Departments of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
De Stefano P, Leitinger M, Misirocchi F, Quintard H, Degano G, Trinka E. Myoclonus After Cardiac Arrest: Need for Standardization-A Systematic Review and Research Proposal on Terminology. Crit Care Med 2025; 53:e410-e423. [PMID: 39773812 PMCID: PMC11801442 DOI: 10.1097/ccm.0000000000006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research. DATA SOURCES PubMed, Embase, and Cochrane databases. STUDY SELECTION English-language adult (≥ 18 yr) studies from 1966 to May 31, 2024, reporting myoclonus, myoclonic status/status myoclonus (MyS/SM), myoclonic status epilepticus (MSE), and/or early Lance-Adams Syndrome (eLAS) less than or equal to 72 hours post-CA. All study designs were independently screened by two authors. DATA EXTRACTION Data on patients presenting myoclonus, MyS/SM, MSE, and eLAS less than or equal to 72 hours post-CA, along with their definitions, electroencephalogram, and outcomes were extracted. The Newcastle-Ottawa Scale and Cochrane-Risk-of-Bias Assessment tool were used to evaluate study quality (PROSPERO n.CRD42023438107). DATA SYNTHESIS Of 585 identified articles, 119 met the inclusion criteria, revealing substantial heterogeneity in definitions, electroencephalogram, and outcomes. Among 3881 patients, myoclonus was reported in 2659, MyS/SM in 883, MSE in 569, and eLAS in 40. Among patients with a defined outcome, a Cerebral Performance Category (CPC) scale of 1-2 was reported in 9.8% of patients with myoclonus, 5.8% with MyS/SM, 5.7% with MSE, and 82.0% with eLAS. Electroencephalogram was recorded in 2714 patients (69.9%). CPC of 1-2 was observed in 1.6% of patients with suppression/suppression burst (SB)/unreactive (U) electroencephalogram, 11.3% with non-SB/U electroencephalogram and status epilepticus (SE), and 22.3% with non-SB/U electroencephalogram without SE. CONCLUSIONS Heterogeneity in definitions resulted in weak associations with outcomes. We propose to investigate myoclonus by including related electroencephalogram patterns: myoclonus associated with suppression/SB background electroencephalogram, myoclonus with nonsuppression/SB background but SE-electroencephalogram, and myoclonus with nonsuppression/SB background without SE-electroencephalogram. This pragmatic research approach should be validated in future studies.
Collapse
Affiliation(s)
- Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Markus Leitinger
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
| | - Francesco Misirocchi
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Hervé Quintard
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Giulio Degano
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
3
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Bencsik CM, Kramer AH, Couillard P, MacKay M, Kromm JA. Postarrest Neuroprognostication: Practices and Opinions of Canadian Physicians. Can J Neurol Sci 2024; 51:404-415. [PMID: 37489539 DOI: 10.1017/cjn.2023.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
BACKGROUND Objective, evidence-based neuroprognostication of postarrest patients is crucial to avoid inappropriate withdrawal of life-sustaining therapies or prolonged, invasive, and costly therapies that could perpetuate suffering when there is no chance of an acceptable recovery. Postarrest prognostication guidelines exist; however, guideline adherence and practice variability are unknown. OBJECTIVE To investigate Canadian practices and opinions regarding assessment of neurological prognosis in postarrest patients. METHODS An anonymous electronic survey was distributed to physicians who care for adult postarrest patients. RESULTS Of the 134 physicians who responded to the survey, 63% had no institutional protocols for neuroprognostication. While the use of targeted temperature management did not affect the timing of neuroprognostication, an increasing number of clinical findings suggestive of a poor prognosis affected the timing of when physicians were comfortable concluding patients had a poor prognosis. Variability existed in what factors clinicians' thought were confounders. Physicians identified bilaterally absent pupillary light reflexes (85%), bilaterally absent corneal reflexes (80%), and status myoclonus (75%) as useful in determining poor prognosis. Computed tomography, magnetic resonance imaging, and spot electroencephalography were the most useful and accessible tests. Somatosensory evoked potentials were useful, but logistically challenging. Serum biomarkers were unavailable at most centers. Most (79%) physicians agreed ≥2 definitive findings on neurologic exam, electrophysiologic tests, neuroimaging, and/or biomarkers are required to determine a poor prognosis with a high degree of certainty. Distress during the process of neuroprognostication was reported by 70% of physicians and 51% request a second opinion from an external expert. CONCLUSION Significant variability exists in post-cardiac arrest neuroprognostication practices among Canadian physicians.
Collapse
Affiliation(s)
- Caralyn M Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Andreas H Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Philippe Couillard
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Julie A Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Bencsik C, Josephson C, Soo A, Ainsworth C, Savard M, van Diepen S, Kramer A, Kromm J. The Evolving Role of Electroencephalography in Postarrest Care. Can J Neurol Sci 2024:1-13. [PMID: 38572611 DOI: 10.1017/cjn.2024.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electroencephalography is an accessible, portable, noninvasive and safe means of evaluating a patient's brain activity. It can aid in diagnosis and management decisions for post-cardiac arrest patients with seizures, myoclonus and other non-epileptic movements. It also plays an important role in a multimodal approach to neuroprognostication predicting both poor and favorable outcomes. Individuals ordering, performing and interpreting these tests, regardless of the indication, should understand the supporting evidence, logistical considerations, limitations and impact the results may have on postarrest patients and their families as outlined herein.
Collapse
Affiliation(s)
- Caralyn Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Colin Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Soo
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Craig Ainsworth
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Savard
- Département de Médecine, Université Laval, Quebec City, QC, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julie Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Perman SM, Elmer J, Maciel CB, Uzendu A, May T, Mumma BE, Bartos JA, Rodriguez AJ, Kurz MC, Panchal AR, Rittenberger JC. 2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2024; 149:e254-e273. [PMID: 38108133 DOI: 10.1161/cir.0000000000001194] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cardiac arrest is common and deadly, affecting up to 700 000 people in the United States annually. Advanced cardiac life support measures are commonly used to improve outcomes. This "2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support" summarizes the most recent published evidence for and recommendations on the use of medications, temperature management, percutaneous coronary angiography, extracorporeal cardiopulmonary resuscitation, and seizure management in this population. We discuss the lack of data in recent cardiac arrest literature that limits our ability to evaluate diversity, equity, and inclusion in this population. Last, we consider how the cardiac arrest population may make up an important pool of organ donors for those awaiting organ transplantation.
Collapse
|
7
|
Hoedemaekers C, Hofmeijer J, Horn J. Value of EEG in outcome prediction of hypoxic-ischemic brain injury in the ICU: A narrative review. Resuscitation 2023; 189:109900. [PMID: 37419237 DOI: 10.1016/j.resuscitation.2023.109900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Prognostication of comatose patients after cardiac arrest aims to identify patients with a large probability of favourable or unfavouble outcome, usually within the first week after the event. Electroencephalography (EEG) is a technique that is increasingly used for this purpose and has many advantages, such as its non-invasive nature and the possibility to monitor the evolution of brain function over time. At the same time, use of EEG in a critical care environment faces a number of challenges. This narrative review describes the current role and future applications of EEG for outcome prediction of comatose patients with postanoxic encephalopathy.
Collapse
Affiliation(s)
- Cornelia Hoedemaekers
- Department of Critical Care, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Janneke Horn
- Department of Critical Care, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Fenter H, Ben-Hamouda N, Novy J, Rossetti AO. Benign EEG for prognostication of favorable outcome after cardiac arrest: A reappraisal. Resuscitation 2023; 182:109637. [PMID: 36396011 DOI: 10.1016/j.resuscitation.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
AIM The current EEG role for prognostication after cardiac arrest (CA) essentially aims at reliably identifying patients with poor prognosis ("highly malignant" patterns, defined by Westhall et al. in 2014). Conversely, "benign EEGs", defined by the absence of elements of "highly malignant" and "malignant" categories, has limited sensitivity in detecting good prognosis. We postulate that a less stringent "benign EEG" definition would improve sensitivity to detect patients with favorable outcomes. METHODS Retrospectively assessing our registry of unconscious adults after CA (1.2018-8.2021), we scored EEGs within 72 h after CA using a modified "benign EEG" classification (allowing discontinuity, low-voltage, or reversed anterio-posterior amplitude development), versus Westhall's "benign EEG" classification (not allowing the former items). We compared predictive performances towards good outcome (Cerebral Performance Category 1-2 at 3 months), using 2x2 tables (and binomial 95% confidence intervals) and proportions comparisons. RESULTS Among 381 patients (mean age 61.9 ± 15.4 years, 104 (27.2%) females, 240 (62.9%) having cardiac origin), the modified "benign EEG" definition identified a higher number of patients with potential good outcome (252, 66%, vs 163, 43%). Sensitivity of the modified EEG definition was 0.97 (95% CI: 0.92-0.97) vs 0.71 (95% CI: 0.62-0.78) (p < 0.001). Positive predictive values (PPV) were 0.53 (95% CI: 0.46-0.59) versus 0.59 (95% CI: 0.51-0.67; p = 0.17). Similar statistics were observed at definite recording times, and for survivors. DISCUSSION The modified "benign EEG" classification demonstrated a markedly higher sensitivity towards favorable outcome, with minor impact on PPV. Adaptation of "benign EEG" criteria may improve efficient identification of patients who may reach a good outcome.
Collapse
Affiliation(s)
- Hélène Fenter
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Benghanem S, Pruvost-Robieux E, Bouchereau E, Gavaret M, Cariou A. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge. Ann Intensive Care 2022; 12:111. [PMID: 36480063 PMCID: PMC9732180 DOI: 10.1186/s13613-022-01083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.
Collapse
Affiliation(s)
- Sarah Benghanem
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Estelle Pruvost-Robieux
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Eléonore Bouchereau
- Department of Neurocritical Care, G.H.U Paris Psychiatry and Neurosciences, 1, Rue Cabanis, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Martine Gavaret
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Alain Cariou
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.462416.30000 0004 0495 1460Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France
| |
Collapse
|
10
|
Urbano V, Alvarez V, Schindler K, Rüegg S, Ben-Hamouda N, Novy J, Rossetti AO. Continuous versus routine EEG in patients after cardiac arrest-Analysis of a randomized controlled trial (CERTA) - RESUS-D-22-00369. Resuscitation 2022; 176:68-73. [PMID: 35654226 DOI: 10.1016/j.resuscitation.2022.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Electroencephalography (EEG) is essential to assess prognosis in patients after cardiac arrest (CA). Use of continuous EEG (cEEG) is increasing in critically-ill patients, but it is more resource-consuming than routine EEG (rEEG). Observational studies did not show a major impact of cEEG versus rEEG on outcome, but randomized studies are lacking. METHODS We analyzed data of the CERTA trial (NCT03129438), including comatose adults after CA undergoing cEEG (30-48 hours) or two rEEG (20-30 minutes each). We explored correlations between recording EEG type and mortality (primary outcome), or Cerebral Performance Categories (CPC, secondary outcome), assessed blindly at 6 months, using uni- and multivariable analyses (adjusting for other prognostic variables showing some imbalance across groups). RESULTS We analyzed 112 adults (52 underwent rEEG, 60 cEEG,); 31 (27.7%) were women; 68 (60.7%) patients died. In univariate analysis, mortality (rEEG 59%, cEEG 65%, p=0.318) and good outcome (CPC 1-2; rEEG 33%, cEEG 27%, p=0.247) were comparable across EEG groups. This did not change after multiple logistic regressions, adjusting for shockable rhythm, time to return of spontaneous circulation, serum neuron-specific enolase, EEG background reactivity, regarding mortality (rEEG vs cEEG: OR 1.60, 95% CI 0.43 - 5.83, p=0.477), and good outcome (OR 0.51, 95% CI 0.14 - 1.90, p=0.318). CONCLUSION This analysis suggests that cEEG or repeated rEEG are related to comparable outcomes of comatose patients after CA. Pending a prospective, large randomized trial, this finding does not support the routine use of cEEG for prognostication in this setting. Trial registration Continuous EEG Randomized Trial in Adults (CERTA); NCT03129438; July 25, 2019.
Collapse
Affiliation(s)
- Valentina Urbano
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Alvarez
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Neurology, Hôpital du Valais, Sion, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel, and University of Basel, Basel, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Bronder J, Cho SM, Geocadin RG, Ritzl EK. Revisiting EEG as part of the multidisciplinary approach to post-cardiac arrest care and prognostication: A review. Resusc Plus 2022; 9:100189. [PMID: 34988537 PMCID: PMC8693464 DOI: 10.1016/j.resplu.2021.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/01/2022] Open
Abstract
Since the 1960s, EEG has been used to assess the neurologic function of patients in the hours and days after cardiac arrest. Accurate and reliable prognostication after cardiac arrest is vital for tailoring aggressive patient care for those with a high likelihood of recovery and setting appropriate goals of care for those who have a high likelihood of a poor outcome. Attempts to define EEG's role in this process has evolved over the years. In this review, we provide important historical context about EEG's use, it's perceived unreliability in the post-cardiac arrest patient in the past and provide a detailed analysis of how this role has changed recently. A review of the 71 most recent and highest quality studies demonstrates that the introduction of a uniform classification and a timed approach to EEG analysis have positioned EEG as a complementary tool in the multimodal approach for prognostication. The review was created and intended for medical staff in the intensive care units and emphasizes EEG patterns and timing which portend both favorable and poor prognoses. Also, the review addresses the overall quality of the existing studies and discusses future directions to address the knowledge gaps in this field.
Collapse
Affiliation(s)
- Jay Bronder
- Epilepsy Fellow, Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St / Meyer 2-147, Baltimore, MD 21287-7247, USA
| | - Sung-Min Cho
- Neuroscience Critical Care Division, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
| | - Romergryko G. Geocadin
- Professor of Neurology, Anesthesiology-Critical Care, Neurosurgery, and Joint Appointment in Medicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 455, Baltimore, MD 21287, USA
| | - Eva Katharina Ritzl
- Department of Neurology and Anesthesia and Critical Care Medicine, Johns Hopkins Hospital, 1800 Orleans Street, Suite 3329, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Amerineni R, Sun H, Lee H, Hsu J, Patorno E, Westover MB, Zafar SF. Using electronic health data to explore effectiveness of ICU EEG and anti-seizure treatment. Ann Clin Transl Neurol 2021; 8:2270-2279. [PMID: 34802196 PMCID: PMC8670316 DOI: 10.1002/acn3.51478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Objectives The purpose of this study was to examine critical care continuous electroencephalography (cEEG) utilization and downstream anti‐seizure treatment patterns, their association with outcomes, and generate hypotheses for larger comparative effectiveness studies of cEEG‐guided interventions. Methods Single‐center retrospective study of critically ill patients (n = 14,523, age ≥18 years). Exposure defined as ≥24 h of cEEG and subsequent anti‐seizure medication (ASM) escalation, with or without concomitant anesthetic. Exposure window was the first 7 days of admission. Primary outcome was in‐hospital mortality. Multivariable analysis was performed using penalized logistic regression. Results One thousand and seventy‐three patients underwent ≥24 h of cEEG within 7 days of admission. After adjusting for disease severity, ≥24 h of cEEG followed by ASM escalation in patients not on anesthetics (n = 239) was associated with lower in‐hospital mortality (OR 0.76 [0.53–1.07]), though the finding did not reach significance. ASM escalation with concomitant anesthetic use (n = 484) showed higher odds for mortality (OR 1.41 [1.03–1.94]). In the seizures/status epilepticus subgroup, post cEEG ASM escalation without anesthetics showed lower odds for mortality (OR 0.43 [0.23–0.74]). Within the same subgroup, ASM escalation with concomitant anesthetic use showed higher odds for mortality (OR 1.34 [0.92–1.91]) though not significant. Interpretation Based on our findings we propose the following hypotheses for larger comparative effectiveness studies investigating the direct causal effect of cEEG‐guided treatment on outcomes: (1) cEEG‐guided ASM escalation may improve outcomes in critically ill patients with seizures; (2) cEEG‐guided treatment with combination of ASMs and anesthetics may not improve outcomes in all critically ill patients.
Collapse
Affiliation(s)
- Rajesh Amerineni
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hang Lee
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John Hsu
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Wang CH, Wu CY, Liu CCY, Hsu TC, Liu MA, Wu MC, Tsai MS, Chang WT, Huang CH, Lee CC, Chen SC, Chen WJ. Neuroprognostic Accuracy of Quantitative Versus Standard Pupillary Light Reflex for Adult Postcardiac Arrest Patients: A Systematic Review and Meta-Analysis. Crit Care Med 2021; 49:1790-1799. [PMID: 34259437 DOI: 10.1097/ccm.0000000000005045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An automated infrared pupillometer measures quantitative pupillary light reflex using a calibrated light stimulus. We examined whether the timing of performing quantitative pupillary light reflex or standard pupillary light reflex may impact its neuroprognostic performance in postcardiac arrest comatose patients and whether quantitative pupillary light reflex may outperform standard pupillary light reflex in early postresuscitation phase. DATA SOURCES PubMed and Embase databases from their inception to July 2020. STUDY SELECTION We selected studies providing sufficient data of prognostic values of standard pupillary light reflex or quantitative pupillary light reflex to predict neurologic outcomes in adult postcardiac arrest comatose patients. DATA EXTRACTION Quantitative data required for building a 2 × 2 contingency table were extracted, and study quality was assessed using standard criteria. DATA SYNTHESIS We used the bivariate random-effects model to estimate the pooled sensitivity and specificity of standard pupillary light reflex or quantitative pupillary light reflex in predicting poor neurologic outcome during early (< 72 hr), middle (between 72 and 144 hr), and late (≧ 145 hr) postresuscitation periods, respectively. We included 39 studies involving 17,179 patients. For quantitative pupillary light reflex, the cut off points used in included studies to define absent pupillary light reflex ranged from 0% to 13% (median: 7%) and from zero to 2 (median: 2) for pupillary light reflex amplitude and Neurologic Pupil index, respectively. Late standard pupillary light reflex had the highest area under the receiver operating characteristic curve (0.98, 95% CI [CI], 0.97-0.99). For early standard pupillary light reflex, the area under the receiver operating characteristic curve was 0.80 (95% CI, 0.76-0.83), with a specificity of 0.91 (95% CI, 0.85-0.95). For early quantitative pupillary light reflex, the area under the receiver operating characteristic curve was 0.83 (95% CI, 0.79-0.86), with a specificity of 0.99 (95% CI, 0.91-1.00). CONCLUSIONS Timing of pupillary light reflex examination may impact neuroprognostic accuracy. The highest prognostic performance was achieved with late standard pupillary light reflex. Early quantitative pupillary light reflex had a similar specificity to late standard pupillary light reflex and had better specificity than early standard pupillary light reflex. For postresuscitation comatose patients, early quantitative pupillary light reflex may substitute for early standard pupillary light reflex in the neurologic prognostication algorithm.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Wu
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Carolyn Chia-Yu Liu
- Department for Continuing Education, The Nuffield Department of Primary Care Health Science, University of Oxford, Oxford, United Kingdom
| | - Tzu-Chun Hsu
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Michael A Liu
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI
| | - Meng-Che Wu
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shyr-Chyr Chen
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Jone Chen
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
14
|
Rosenthal ES. Seizures, Status Epilepticus, and Continuous EEG in the Intensive Care Unit. Continuum (Minneap Minn) 2021; 27:1321-1343. [PMID: 34618762 DOI: 10.1212/con.0000000000001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW This article discusses the evolving definitions of seizures and status epilepticus in the critical care environment and the role of critical care EEG in both diagnosing seizure activity and serving as a predictive biomarker of clinical trajectory. RECENT FINDINGS Initial screening EEG has been validated as a tool to predict which patients are at risk of future seizures. However, accepted definitions of seizures and nonconvulsive status epilepticus encourage a treatment trial when the diagnosis on EEG is indeterminate because of periodic or rhythmic patterns or uncertain clinical correlation. Similarly, recent data have demonstrated the diagnostic utility of intracranial EEG in increasing the yield of seizure detection. EEG has additionally been validated as a diagnostic biomarker of covert consciousness, a predictive biomarker of cerebral ischemia and impending neurologic deterioration, and a prognostic biomarker of coma recovery and status epilepticus resolution. A recent randomized trial concluded that patients allocated to continuous EEG had no difference in mortality than those undergoing intermittent EEG but could not demonstrate whether this lack of difference was because of studying heterogeneous conditions, examining a monitoring tool rather than a therapeutic approach, or examining an outcome measure (mortality) perhaps more strongly associated with early withdrawal of life-sustaining therapy than to a sustained response to pharmacotherapy. SUMMARY Seizures and status epilepticus are events of synchronous hypermetabolic activity that are either discrete and intermittent or, alternatively, continuous. Seizures and status epilepticus represent the far end of a continuum of ictal-interictal patterns that include lateralized rhythmic delta activity and periodic discharges, which not only predict future seizures but may be further classified as status epilepticus on the basis of intracranial EEG monitoring or a diagnostic trial of antiseizure medication therapy. In particularly challenging cases, neuroimaging or multimodality neuromonitoring may be a useful adjunct documenting metabolic crisis. Specialized uses of EEG as a prognostic biomarker have emerged in traumatic brain injury for predicting language function and covert consciousness, cardiac arrest for predicting coma recovery, and subarachnoid hemorrhage for predicting neurologic deterioration due to delayed cerebral ischemia.
Collapse
|
15
|
Rossetti AO, Schindler K, Sutter R, Rüegg S, Zubler F, Novy J, Oddo M, Warpelin-Decrausaz L, Alvarez V. Continuous vs Routine Electroencephalogram in Critically Ill Adults With Altered Consciousness and No Recent Seizure: A Multicenter Randomized Clinical Trial. JAMA Neurol 2021; 77:1225-1232. [PMID: 32716479 PMCID: PMC7385681 DOI: 10.1001/jamaneurol.2020.2264] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Question In patients with acute consciousness impairment and no recent seizures, does continuous electroencephalogram (cEEG) correlate with reduced mortality compared with repeated routine EEG (rEEG)? Findings In this pragmatic, multicenter randomized clinical trial analyzing 364 adults, cEEG translated into a higher rate of seizures/status epilepticus detection and antiseizure treatment modifications but did not improve mortality compared with rEEG. Meaning Pending larger studies, rEEG may represent a valid alternative to cEEG in centers with limited resources. Importance In critically ill patients with altered consciousness, continuous electroencephalogram (cEEG) improves seizure detection, but is resource-consuming compared with routine EEG (rEEG). It is also uncertain whether cEEG has an effect on outcome. Objective To assess whether cEEG is associated with reduced mortality compared with rEEG. Design, Setting, and Participants The pragmatic multicenter Continuous EEG Randomized Trial in Adults (CERTA) was conducted between 2017 and 2018, with follow-up of 6 months. Outcomes were assessed by interviewers blinded to interventions.The study took place at 4 tertiary hospitals in Switzerland (intensive and intermediate care units). Depending on investigators’ availability, we pragmatically recruited critically ill adults having Glasgow Coma Scale scores of 11 or less or Full Outline of Responsiveness score of 12 or less, without recent seizures or status epilepticus. They had cerebral (eg, brain trauma, cardiac arrest, hemorrhage, or stroke) or noncerebral conditions (eg, toxic-metabolic or unknown etiology), and EEG was requested as part of standard care. An independent physician provided emergency informed consent. Interventions Participants were randomized 1:1 to cEEG for 30 to 48 hours vs 2 rEEGs (20 minutes each), interpreted according to standardized American Clinical Neurophysiology Society guidelines. Main Outcomes and Measures Mortality at 6 months represented the primary outcome. Secondary outcomes included interictal and ictal features detection and change in therapy. Results We analyzed 364 patients (33% women; mean [SD] age, 63 [15] years). At 6 months, mortality was 89 of 182 in those with cEEG and 88 of 182 in those with rEEG (adjusted relative risk [RR], 1.02; 95% CI, 0.83-1.26; P = .85). Exploratory comparisons within subgroups stratifying patients according to age, premorbid disability, comorbidities on admission, deeper consciousness reduction, and underlying diagnoses revealed no significant effect modification. Continuous EEG was associated with increased detection of interictal features and seizures (adjusted RR, 1.26; 95% CI, 1.08-1.15; P = .004 and 3.37; 95% CI, 1.63-7.00; P = .001, respectively) and more frequent adaptations in antiseizure therapy (RR, 1.84; 95% CI, 1.12-3.00; P = .01). Conclusions and Relevance This pragmatic trial shows that in critically ill adults with impaired consciousness and no recent seizure, cEEG leads to increased seizure detection and modification of antiseizure treatment but is not related to improved outcome compared with repeated rEEG. Pending larger studies, rEEG may represent a valid alternative to cEEG in centers with limited resources. Trial Registration ClinicalTrials.gov Identifier: NCT03129438
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Raoul Sutter
- Clinic for Intensive Care Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Frédéric Zubler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Loane Warpelin-Decrausaz
- Clinical Trial Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Alvarez
- Department of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Department of Neurology, Hôpital du Valais, Sion, Switzerland
| |
Collapse
|
16
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Li F, Huang L, Yan Y, Wang X, Hu Y. A novel nomogram for early prediction of death in severe neurological disease patients with electroencephalographic periodic discharges. Clin Neurophysiol 2021; 132:1304-1311. [PMID: 33867264 DOI: 10.1016/j.clinph.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate death-related factors in patients with electroencephalographic (EEG) periodic discharges (PDs) and to construct a model for death prediction. METHODS This case-control study enrolled a total of 80 severe neurological disease patients with EEG PDs within 72 h of admission to the neuroscience intensive care unit (NICU). According to modified Rankin scale (mRS) scores half a year after discharge, patients were divided into a survival group (<6 points) and a death group (6 points). Their relevant clinical and biochemical indicators as well as EEG characteristics were retrospectively analyzed. Logistic regression analysis was used to identify the risk factors associated with the death of patients with EEG PDs. A death risk prediction model and an individualized nomogram prediction model were constructed, and the prediction performance and concordance of the models were evaluated. RESULTS Multivariate logistic regression analysis showed that the involvement of both gray and white matter in imaging, disappearance of EEG reactivity, occurrence of stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and an interval time of 0.5-4 s were independent risk factors for death. A regression model was established according to the multivariate logistic regression analysis, and the area under the curve of this model was 0.9135. The accuracy of the model was 87.01%, the sensitivity was 87.17%, and the specificity was 89.17%. A nomogram model was constructed, and a concordance index of 0.914 was obtained after internal validation. CONCLUSION The regression model based on risk factors has high accuracy in predicting the risk of death of patients with EEG PDs. SIGNIFICANCE This model can help clinicians in the early assessment of the prognosis of severe neurological disease patients with EEG PDs.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lihong Huang
- Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yin Yan
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Yida Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
18
|
Kim YM, Jeung KW, Kim WY, Park YS, Oh JS, You YH, Lee DH, Chae MK, Jeong YJ, Kim MC, Ha EJ, Hwang KJ, Kim WS, Lee JM, Cha KC, Chung SP, Park JD, Kim HS, Lee MJ, Na SH, Kim ARE, Hwang SO. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 5. Post-cardiac arrest care. Clin Exp Emerg Med 2021; 8:S41-S64. [PMID: 34034449 PMCID: PMC8171174 DOI: 10.15441/ceem.21.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Young-Min Kim
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yeon Ho You
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Hoon Lee
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minjung Kathy Chae
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
| | - Yoo Jin Jeong
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Min Chul Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Hwang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Myung Lee
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jin Lee
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
| | - Sang-Hoon Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ai-Rhan Ellen Kim
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - on behalf of the Steering Committee of 2020 Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 568] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
20
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
21
|
Abstract
Continuous video-EEG (cEEG, lasting hours to several days) is increasingly used in ICU patients, as it is more sensitive than routine video-EEG (rEEG, lasting 20-30 min) to detect seizures or status epilepticus, and allows more frequent changes in therapeutic regimens. However, cEEG is more resource-consuming, and its relationship to outcome compared to repeated rEEG has only been formally assessed very recently in a randomized controlled trial, which did not show any significant difference in terms of long-term mortality or functional outcome. Awaiting more refined trials, it seems therefore that using repeated rEEG in ICU patients may represent a reasonable alternative in resource-limited settings. Prolonged EEG has been used recently in patients with severe COVID-19 infection, the proportion of seizures seems albeit relatively low, and similar to ICU patients with medical conditions. As in any case a timely EEG recording is recommended in the ICU, r ecent technical developments may ease its use in clinical practice.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland -
| | - Jong W Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Randomized controlled trials investigating the initial pharmacological treatment of status epilepticus have been recently published. Furthermore, status epilepticus arising in comatose survivors after cardiac arrest has received increasing attention in the last years. This review offers an updated assessment of status epilepticus treatment in these different scenarios. RECENT FINDINGS Initial benzodiazepines underdosing is common and correlates with development of status epilepticus refractoriness. The recently published ESETT trial provides high-level evidence regarding the equivalence of fosphenytoin, valproate, and levetiracetam as a second-line option. Myoclonus or epileptiform transients on electroencephalography occur in up to 1/3 of patients surviving a cardiac arrest. Contrary to previous assumptions regarding an almost invariable association with death, at least 1/10 of them may awaken with reasonably good prognosis, if treated. Multimodal prognostication including clinical examination, EEG, somatosensory evoked potentials, biochemical markers, and neuroimaging help identifying patients with a chance to recover consciousness, in whom a trial with antimyoclonic compounds and at times general anesthetics is indicated. SUMMARY There is a continuous, albeit relatively slow progress in knowledge regarding different aspect of status epilepticus; recent findings refine some treatment strategies and help improving patients' outcomes. Further high-quality studies are clearly needed to further improve the management of these patients, especially those with severe, refractory status epilepticus forms.
Collapse
|
23
|
Soar J, Berg KM, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D'Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CWE, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O'Neil BJ, Otto Q, de Paiva EF, Parr MJA, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2020; 156:A80-A119. [PMID: 33099419 PMCID: PMC7576326 DOI: 10.1016/j.resuscitation.2020.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
24
|
Berg KM, Soar J, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D’Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CW, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O’Neil BJ, Otto Q, de Paiva EF, Parr MJ, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP, Issa M, Kleinman ME, Ristagno G, Arafeh J, Benoit JL, Chase M, Fischberg BL, Flores GE, Link MS, Ornato JP, Perman SM, Sasson C, Zelop CM. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020; 142:S92-S139. [DOI: 10.1161/cir.0000000000000893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This
2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
25
|
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM, Arafeh J, Benoit JL, Chase M, Fernandez A, de Paiva EF, Fischberg BL, Flores GE, Fromm P, Gazmuri R, Gibson BC, Hoadley T, Hsu CH, Issa M, Kessler A, Link MS, Magid DJ, Marrill K, Nicholson T, Ornato JP, Pacheco G, Parr M, Pawar R, Jaxton J, Perman SM, Pribble J, Robinett D, Rolston D, Sasson C, Satyapriya SV, Sharkey T, Soar J, Torman D, Von Schweinitz B, Uzendu A, Zelop CM, Magid DJ. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 142:S366-S468. [DOI: 10.1161/cir.0000000000000916] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO. Brain injury after cardiac arrest: from prognostication of comatose patients to rehabilitation. Lancet Neurol 2020; 19:611-622. [PMID: 32562686 DOI: 10.1016/s1474-4422(20)30117-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
More patients are surviving cardiac arrest than ever before; however, the burden now lies with estimating neurological prognoses in a large number of patients who were initially comatose, in whom the ultimate outcome is unclear. Neurologists, neurointensivists, and clinical neurophysiologists must accurately balance the concern that overly conservative prognostication could leave patients in a severely disabled state, with the possibility that inaccurately pessimistic prognostication could lead to the withdrawal of life-sustaining treatment in patients who might otherwise have a good functional outcome. Prognostic tools have improved greatly, including electrophysiological tests, neuroimaging, and chemical biomarkers. Conclusions about the prognosis should be delayed at least 72 h after arrest to allow for the clearance of sedative drugs. Cognitive impairments, emotional problems, and fatigue are common among patients who have survived cardiac arrest, and often go unrecognised despite being related to caregiver burden and a decreased participation in society. Through simple screening, these problems can be identified, and patients can be provided with adequate information and rehabilitation.
Collapse
Affiliation(s)
- Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden.
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Gisela Lilja
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique Moulaert
- Department of Rehabilitation Medicine, University of Groningen, University Medical Centre Groningen, Netherlands
| | | | - Andrea O Rossetti
- Department of Clinical Neurosciences, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
28
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
29
|
Elmer J, Coppler PJ, Solanki P, Westover MB, Struck AF, Baldwin ME, Kurz MC, Callaway CW. Sensitivity of Continuous Electroencephalography to Detect Ictal Activity After Cardiac Arrest. JAMA Netw Open 2020; 3:e203751. [PMID: 32343353 PMCID: PMC7189220 DOI: 10.1001/jamanetworkopen.2020.3751] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Epileptiform electroencephalographic (EEG) patterns are common after resuscitation from cardiac arrest, are associated with patient outcome, and may require treatment. It is unknown whether continuous EEG monitoring is needed to detect these patterns or if brief intermittent monitoring is sufficient. If continuous monitoring is required, the necessary duration of observation is unknown. OBJECTIVE To quantify the time-dependent sensitivity of continuous EEG for epileptiform event detection, and to compare continuous EEG to several alternative EEG-monitoring strategies for post-cardiac arrest outcome prediction. DESIGN, SETTING, AND PARTICIPANTS This observational cohort study was conducted in 2 academic medical centers between September 2010 and January 2018. Participants included 759 adults who were comatose after being resuscitated from cardiac arrest and who underwent 24 hours or more of EEG monitoring. MAIN OUTCOMES AND MEASURES Epileptiform EEG patterns associated with neurological outcome at hospital discharge, such as seizures likely to cause secondary injury. RESULTS Overall, 759 patients were included in the analysis; 281 (37.0%) were female, and the mean (SD) age was 58 (17) years. Epileptiform EEG activity was observed in 414 participants (54.5%), of whom only 26 (3.4%) developed potentially treatable seizures. Brief intermittent EEG had an estimated 66% (95% CI, 62%-69%) to 68% (95% CI, 66%-70%) sensitivity for detection of prognostic epileptiform events. Depending on initial continuity of the EEG background, 0 to 51 hours of monitoring were needed to achieve 95% sensitivity for the detection of prognostic epileptiform events. Brief intermittent EEG had a sensitivity of 7% (95% CI, 4%-12%) to 8% (95% CI, 4%-12%) for the detection of potentially treatable seizures, and 0 to 53 hours of continuous monitoring were needed to achieve 95% sensitivity for the detection of potentially treatable seizures. Brief intermittent EEG results yielded similar information compared with continuous EEG results when added to multivariable models predicting neurological outcome. CONCLUSIONS AND RELEVANCE Compared with continuous EEG monitoring, brief intermittent monitoring was insensitive for detection of epileptiform events. Monitoring EEG results significantly improved multimodality prediction of neurological outcome, but continuous monitoring appeared to add little additional information compared with brief intermittent monitoring.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J. Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pawan Solanki
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Maria E. Baldwin
- Department of Neurology, Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania
| | - Michael C. Kurz
- Department of Emergency Medicine, University of Alabama at Birmingham School of Medicine
| | - Clifton W. Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Added value of somato-sensory evoked potentials amplitude for prognostication after cardiac arrest. Resuscitation 2020; 149:17-23. [DOI: 10.1016/j.resuscitation.2020.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
|
31
|
Barbella G, Lee JW, Alvarez V, Novy J, Oddo M, Beers L, Rossetti AO. Prediction of regaining consciousness despite an early epileptiform EEG after cardiac arrest. Neurology 2020; 94:e1675-e1683. [DOI: 10.1212/wnl.0000000000009283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/16/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveAfter cardiac arrest (CA), epileptiform EEG, occurring in about 1/3 of patients, often but not invariably heralds poor prognosis. We tested the hypothesis that a combination of specific EEG features identifies patients who may regain consciousness despite early epileptiform patterns.MethodsWe retrospectively analyzed a registry of comatose patients post-CA (2 Swiss centers), including those with epileptiform EEG. Background and epileptiform features in EEGs 12–36 hours or 36–72 hours from CA were scored according to the American Clinical Neurophysiology Society nomenclature. Best Cerebral Performance Category (CPC) score within 3 months (CPC 1–3 vs 4–5) was the primary outcome. Significant EEG variables were combined in a score assessed with receiver operating characteristic curves, and independently validated in a US cohort; its correlation with serum neuron-specific enolase (NSE) was also tested.ResultsOf 488 patients, 107 (21.9%) had epileptiform EEG <72 hours; 18 (17%) reached CPC 1–3. EEG 12–36 hours background continuity ≥50%, absence of epileptiform abnormalities (p< 0.00001 each), 12–36 and 36–72 hours reactivity (p< 0.0001 each), 36–72 hours normal background amplitude (p= 0.0004), and stimulus-induced discharges (p= 0.0001) correlated with favorable outcome. The combined 6-point score cutoff ≥2 was 100% sensitive (95% confidence interval [CI], 78%–100%) and 70% specific (95% CI, 59%–80%) for CPC 1–3 (area under the curve [AUC], 0.98; 95% CI, 0.94–1.00). Increasing score correlated with NSE (ρ = −0.46,p= 0.0001). In the validation cohort (41 patients), the score was 100% sensitive (95% CI, 60%–100%) and 88% specific (95% CI, 73%–97%) for CPC 1–3 (AUC, 0.96; 95% CI, 0.91–1.00).ConclusionPrognostic value of early epileptiform EEG after CA can be estimated combining timing, continuity, reactivity, and amplitude features in a score that correlates with neuronal damage.
Collapse
|
32
|
Nobile L, Pognuz ER, Rossetti AO, Franchi F, Verginella F, Mavroudakis N, Creteur J, Berlot G, Oddo M, Taccone FS. The characteristics of patients with bilateral absent evoked potentials after post-anoxic brain damage: A multicentric cohort study. Resuscitation 2020; 149:134-140. [PMID: 32114066 DOI: 10.1016/j.resuscitation.2020.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Patients with bilateral absence of cortical response (N20ABS) to somatosensory evoked potentials (SSEPs) have poor neurological outcome after cardiac arrest (CA). However, SSEPs are not available in all centers. The aim of this study was to identify predictors of N20ABS. METHODS Retrospective analysis of institutional databases (2008-2015) in three ICUs including all adult admitted comatose patients undergoing SSEPs between 48 and 72 h after CA. We collected clinical (i.e. absence of pupillary reflexes, PLR, myoclonus and absent or posturing motor response and myoclonus on day 2-3), electroencephalographic (EEG; i.e. unreactive to painful stimuli; presence of a highly malignant patterns, such as burst-suppression or flat tracings) findings during the first 48 h, and the highest NSE levels on the first 3 days after CA. Unfavorable neurological outcome (UO) was assessed at 3 months using the Cerebral Performance Categories of 3-5. RESULTS We studied 532 patients with SSEPs, including 143 (27%) without N20ABS; UO was observed in 334 (63%) patients. Median time to SSEPs was 72 [48-72] h after CA. No patient with absent PLR and myoclonus during the ICU stay had N20 present; similar results were observed with the combination of absent PLR, myoclonus and any EEG pattern (i.e. unreactive or highly malignant). Similar results were observed in the subgroup of patients where NSE was available (n = 303). In a multivariate logistic regression, non-cardiac etiology of arrest, unreactive EEG to painful stimuli, absence of pupillary reflexes and posturing motor response, were independent predictors of N20ABS. When available, the highest NSE was also an independent predictor of N20ABS. CONCLUSIONS Clinical and EEG findings predicting patients with N20ABS, confirm that N20ABS reflects a severe and permanent cerebral damage after CA.
Collapse
Affiliation(s)
- Leda Nobile
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Erik Roman Pognuz
- Department of Anesthesia and Intensive Care, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITs), Italy
| | - Andrea O Rossetti
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Federico Franchi
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesca Verginella
- Department of Anesthesia and Intensive Care, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITs), Italy
| | - Nicolas Mavroudakis
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Giorgio Berlot
- Department of Anesthesia and Intensive Care, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITs), Italy
| | - Mauro Oddo
- Department of Intensive Care Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
33
|
Barbella G, Novy J, Marques-Vidal P, Oddo M, Rossetti AO. Prognostic role of EEG identical bursts in patients after cardiac arrest: Multimodal correlation. Resuscitation 2020; 148:140-144. [PMID: 32004660 DOI: 10.1016/j.resuscitation.2020.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022]
Abstract
AIMS EEG burst-suppression (BS) heralds poor outcome after cardiac arrest (CA). Within this pattern, identical bursts (IB) have been suggested to be absolutely specific, in isolation. We assessed IB prevalence and their added predictive value for poor outcome in a multimodal prognostic approach. METHODS We retrospectively analyzed a registry of comatose adults with CA (April 2011-February 2019), undergoing EEG at 5-36 h and 36-72 h. SB and IB were visually assessed. Cerebral Performance Categories (CPC) at 3 months were dichotomized as "good" (CPC 1-2), or "poor" (CPC 3-5). Sensitivity, specificity, positive, negative predictive values of BS and IB for poor outcome were calculated. A multimodal prognostic score was created assigning one point each to unreactive and epileptiform EEG, pupillary light reflex and SSEPs absence, NSE > 75 μg/l. In a second score, IB were added; predictive performances were compared using Receiver Operating Characteristic (ROC) curves. RESULTS Of 522 patients, 147 (28%) had BS in any EEG (10 [7%] had good outcome and 129 [88%] died). Of them, 53/147 (36%, 10% of total) showed IB, 47/53 (89%) of which within 36 h. IB were 100% specific for poor outcome, and associated with higher serum NSE than BS. However, there was no significant difference between the scores with and without IB for CPC 3-5 (p = 0.116). CONCLUSION IB occur in 10% of patients after CA. In our multimodal context, IB, albeit being very specific for poor outcome, seem redundant with other predictors.
Collapse
Affiliation(s)
- Giuseppina Barbella
- Neurology Unit, San Gerardo Hospital, Monza, Italy; School of Medicine and Surgery and Milan-Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Jan Novy
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Mauro Oddo
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland.
| |
Collapse
|
34
|
Electroencephalographic monitoring in the critically ill patient: What useful information can it contribute? Med Intensiva 2019; 44:301-309. [PMID: 31164247 DOI: 10.1016/j.medin.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/03/2023]
Abstract
Monitoring is a crucial part of the care of the critically ill patient. It detects organ dysfunction and provides guidance on the therapeutic approach. Intensivists closely monitor the function of various organ systems, and the brain is no exception. Continuous EEG monitoring is a noninvasive and uninterrupted way of assessing cerebral cortical activity with good spatial and excellent temporal resolution. The diagnostic effectiveness of non-convulsive status epilepticus as a cause of unexplained consciousness disorder has increased the use of continuous EEG monitoring in the neurocritical care setting. However, non-convulsive status epilepticus is not the only indication for the assessment of cerebral cortical activity. This study summarizes the indications, usage and methodology of continuous EEG monitoring in the intensive care unit, with the aim of allowing practitioners to become familiarized the technique.
Collapse
|
35
|
Assessing brain injury after cardiac arrest, towards a quantitative approach. Curr Opin Crit Care 2019; 25:211-217. [DOI: 10.1097/mcc.0000000000000611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
May TL, Riker RR, Seder DB. Do we need continuous electroencephalography after cardiac arrest? Resuscitation 2019; 136:136-137. [PMID: 30716428 DOI: 10.1016/j.resuscitation.2019.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Teresa L May
- Maine Medical Center Department of Critical Care Services and Neuroscience Institute, Portland, Maine, USA
| | - Richard R Riker
- Maine Medical Center Department of Critical Care Services and Neuroscience Institute, Portland, Maine, USA
| | - David B Seder
- Maine Medical Center Department of Critical Care Services and Neuroscience Institute, Portland, Maine, USA.
| |
Collapse
|
37
|
Ben-Hamouda N, Oddo M. Monitorage cérébral après arrêt cardiaque : techniques et utilité clinique potentielle. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L’arrêt cardiaque cause une hypoxie-ischémie globale, suivi de reperfusion, qui est susceptible d’engendrer des effets délétères sur la perfusion et l’oxygénation cérébrales, ainsi que le métabolisme cellulaire. Dans ce contexte, et en l’absence de thérapies spcéfiques de l’ischémie-reperfusion globale, le traitement est essentiellement de soutien, visant à optimiser la perfusion et l’oxygénation cérébrale, dans le but de prévenir ou atténuer les dégâts secondaires sur la fonction cérébrale. Dans ce contexte, le monitorage cérébral multimodal, notamment les techniques non-invasives, ont une utilité potentielle à la phase agiuë de l’arrêt cardiaque. Le but prinicpal de cette revue est de décrire les techniques actuellement dipsonibles, en nous focalisant surtout sur les outils noninvasifs (doppler transcranien, spectrospcope de proche infrarouge, électroencéphalographie, pupillométrie automatisée proche infrarouge), leur utilité clinique potentielle ainsi que leurs limitations, dans la prise en charge aiguë (optimisation de la perfusion et de l’oxygénation cérébrales) ainsi que pour la détermination du pronostic précoce après arrêt cardiaque.
Collapse
|