1
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
2
|
Bae BS, Jung JW, Jo GO, Kim SA, Go EJ, Cho ML, Shetty AA, Kim SJ. Treatment of osteoarthritic knee with high tibial osteotomy and allogeneic human umbilical cord blood-derived mesenchymal stem cells combined with hyaluronate hydrogel composite. Stem Cell Res Ther 2025; 16:211. [PMID: 40296133 PMCID: PMC12038988 DOI: 10.1186/s13287-025-04356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Delaying total knee arthroplasty is crucial for middle-aged patients with severe osteoarthritis. The long-term outcomes of high tibial osteotomy (HTO) remain uncertain. Recently, mesenchymal stem cells (MSCs) have shown promising potential in enhancing cartilage regeneration. Therefore, this study aimed to assess cartilage regeneration following the implantation of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with HTO. METHODS In this case series, ten patients underwent hUCB-MSC implantation with HTO. The median age was 58.50 (range: 57.00-60.00) years, and the mean body mass index was 27.81 (range: 24.42-32.24) kg/m2. Clinical outcomes, including the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), visual analog scale (VAS), Physical Component Score (PCS) and Mental Component Score (MCS) from the 36-Item Short-Form Health Survey (SF-36), were evaluated 6 months, 1 year, and 2 years postoperatively. Cartilage status of the medial femoral condyle (MFC) was assessed during hardware removal surgery, at least 2 years after the initial procedure, and compared with preoperative MFC cartilage status regarding lesion size and International Cartilage Repair Society (ICRS) grade. Radiological assessments included the Kellgren-Lawrence (KL) grading system for medial compartment osteoarthritis and hip-knee-ankle (HKA) angle. RESULTS Significant improvements were observed in WOMAC scores (preoperative: 57.00 (range: 44.75-63.00), postoperative: 27.50 (range: 22.25-28.75)), VAS scores (preoperative: 66.25 (range: 48.00-74.25), postoperative: 26.25 (range: 14.50-31.13)), SF-36 PCS (preoperative: 27.97 (range: 26.64-31.25), postoperative: 55.31 (range: 51.64-62.50)), and SF-36 MCS (preoperative: 41.04 (range: 29.95-50.96), postoperative: 63.18 (range: 53.83-65.16)) 2 years postoperatively (p = 0.002, 0.002, 0.002, and 0.020, respectively). The MFC chondral lesion demonstrated significant improvement in both lesion size (preoperative: 7.00 cm² (range: 4.38-10.50 cm²), postoperative: 0.16 cm² (range: 0.00-1.75 cm²), p = 0.002) and ICRS grade (preoperative: 4 (range: 4-4), postoperative: 1 (range: 1-2.25), p = 0.002). Additionally, the KL grade significantly decreased from 3 (range: 3-3) preoperatively to 2 (range: 2-2) postoperatively, while the HKA angle was corrected from 7.50° (range: 7.00-10.25°) preoperatively to -1.00° (range: -3.5-0.00°) postoperatively. CONCLUSIONS hUCB-MSC implantation with HTO is an effective treatment for medial compartment osteoarthritis and varus deformities, resulting in significant improvements in cartilage regeneration and overall clinical outcomes. TRIAL REGISTRATION NCT04234412.
Collapse
Affiliation(s)
- Bo Seung Bae
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Woong Jung
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyeong Ok Jo
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Asode Ananthram Shetty
- Institute of Medical Sciences, Faculty of Health and Social Care, Canterbury Christ Church University, Canterbury, UK
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Holiuk Y, Birsa R, Bukreieva T, Nemtinov P, Kyryk V, Ustymenko A, Mazevych V, Sokolov M, Lobyntseva G, Shablii V. Effectiveness and safety of multiple injections of human placenta-derived MSCs for knee osteoarthritis: a nonrandomized phase I trial. BMC Musculoskelet Disord 2025; 26:418. [PMID: 40281581 PMCID: PMC12032682 DOI: 10.1186/s12891-025-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study investigates the safety and efficacy of three intra-articular (IA) injections of cryopreserved human placenta-derived mesenchymal stem cells (hP-MSCs) for knee osteoarthritis (KOA) over a 1-year follow-up period. METHODS A total of 26 patients with stage II-III KOA were enrolled in this non-randomized, open-label study. Patients received either conventional therapy with hyaluronic acid (HA) alone (Control group, n = 11) or in combination with hP-MSCs (MSC group, n = 15) via three intra-articular injections with 4-week intervals. Clinical outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analogue Scale (VAS), and magnetic resonance imaging (MRI) at 6 and 12 months following the first injection. Blood samples were analyzed for cytokine levels. RESULTS Three injections of hP-MSCs combined with HA were well-tolerated, with no severe adverse events observed. Significant improvements in WOMAC and VAS scores were noted in the MSC group compared to the Control group at both 6 and 12 months. MRI analysis revealed no significant differences in cartilage thickness or optical density index between the groups. Additionally, serum cytokine analysis showed a significant decrease in interleukin-2 (IL-2) levels in the MSC group, indicating an anti-inflammatory effect of hP-MSCs. However, no significant changes were observed in other cytokines. CONCLUSION This study demonstrates that three intra-articular injections of cryopreserved hP-MSCs in combination with HA are safe and effective for treating KOA, providing sustained clinical improvement at the 1-year follow-up. TRIAL REGISTRATION NCT04453111, #7/09.26.2018. Registered 02 January 2020, https://www. CLINICALTRIALS gov/study/NCT04453111 .
Collapse
Affiliation(s)
- Yevhen Holiuk
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Roman Birsa
- Department of Traumatology, Kyiv City Clinical Hospital, #6, 3 Guzara Ave, Kyiv, 03680, Ukraine
| | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, Kyiv, 03143, Ukraine
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine
| | - Petro Nemtinov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | - Vitalii Kyryk
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Vadym Mazevych
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Mykola Sokolov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | | | - Volodymyr Shablii
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine.
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, 03143, Kyiv, Ukraine.
| |
Collapse
|
4
|
Park HS, Yoon JH, Oh JK. Impact of Resistance Exercise and Nitrate Supplementation on Muscle Function and Clinical Outcomes After Knee Osteoarthritis Surgery in Middle-Aged Women with Sarcopenia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Clin Med 2025; 14:615. [PMID: 39860619 PMCID: PMC11765574 DOI: 10.3390/jcm14020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by reduced muscle mass and strength, is associated with osteoarthritis (OA), particularly in middle-aged women, and may worsen postoperatively. Resistance exercise (RE) can resolve sarcopenia; however, recovery is often suboptimal. Nitrate (NO3-) supplementation may enhance muscle recovery and complement RE. We investigated whether NO3- supplementation combined with RE improves thigh muscle mass and strength in middle-aged women during postoperative rehabilitation. Methods: We conducted a prospective randomized placebo-controlled double-blind study including 36 middle-aged women with sarcopenia and cartilage defects undergoing mesenchymal stem cell implantation. Participants were assigned to RE with NO3- supplementation (NG, n = 18) or with placebo (PG, n = 18) groups. Both groups underwent 12 weeks of supervised RE. The primary outcomes were thigh muscle cross-sectional area (CSA) and knee strength, whereas functional and clinical measures, including the Short Physical Performance Battery (SPPB), skeletal muscle index (SMI), International Knee Documentation Committee (IKDC), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, were secondary outcomes. Results: Thigh muscle CSA decreased in the PG but was maintained in the NG. Knee extension strength improved significantly in the NG compared with that in the PG at 6 and 12 weeks. Knee flexion strength also improved rapidly in the NG, with a significant increase at 6 weeks. SPPB and IKDC scores improved significantly in the NG. However, similar improvements were observed for WOMAC scores in both groups. Conclusions: NO3- supplementation combined with RE effectively prevented muscle atrophy and enhanced muscle strength in our study participants, indicating potential for improving postoperative recovery.
Collapse
Affiliation(s)
| | | | - Jae-Keun Oh
- Sports Medicine Laboratory, Korea National Sport University, 1239 Yangjae-daero, Songpa-gu, Seoul 05541, Republic of Korea; (H.-S.P.); (J.-H.Y.)
| |
Collapse
|
5
|
Lin J, Huang J, Jiao Z, Nian M, Li C, Dai Y, Jia S, Zhang X. Mesenchymal stem cells for osteoarthritis: Recent advances in related cell therapy. Bioeng Transl Med 2025; 10:e10701. [PMID: 39801757 PMCID: PMC11711223 DOI: 10.1002/btm2.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 01/06/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a huge burden on the health care system worldwide. Although traditional therapy and targeted cartilage cell therapy have made significant progress in the treatment of OA and cartilage regeneration, there are still many problems. Mesenchymal stem cells from various tissues are the most studied cell type and have been used in preclinical and clinical studies of OA, because they are more widely available, have a greater capacity for in vitro expansion, and have anti-inflammatory and immunomodulatory properties compared to autologous chondrocytes. This article will systematically review the latest developments in these areas. It may provide new insights for improving OA and cartilage regeneration.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Jingtao Huang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Zilu Jiao
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Mengyuan Nian
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Canfeng Li
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Yali Dai
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Shicheng Jia
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Xintao Zhang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
6
|
Jung SH, Lee HS, Jung M, Chung K, Kim S, Choi J, Choi CH, Kim SH. Anterior-to-Central Cartilage Defects of Arthritic Knee Showed Better Cartilage Regeneration Than Posterior Cartilage Defects Using Mesenchymal Stem Cell Implantation. Arthroscopy 2024:S0749-8063(24)01013-2. [PMID: 39631476 DOI: 10.1016/j.arthro.2024.11.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To analyze cartilage regeneration and clinical outcomes after human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSCs) implantation on the basis of the distribution and location of medial femoral condyle (MFC) cartilage defects. METHODS Patients who underwent hUCB-MSC implantation for MFC cartilage defects involved in isolated medial compartment osteoarthritis were included. The patients were divided into 2 groups, those with MFC defects located within the anterior-central portion (group A) and those with MFC defects extending to the posterior portion (group P). Cartilage regeneration was assessed using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) 2.0 scores. MFC cartilage defects were subdivided into anterior, central, and posterior regions. The total, regional MOCART scores, and patient-reported outcomes (PROs) were evaluated. RESULTS Overall, 43 patients were included in this study (group A: 31 patients, group P: 12 patients), with 30 of 43 undergoing combined high tibial osteotomy. Cartilage defect size was significantly larger in group P than in group A (7.8 ± 1.9 cm2 vs 5.7 ± 2.4 cm2, P = .009). Group A demonstrated a significantly greater total MOCART score compared with group P (55.0 ± 12.3 vs 40.4 ± 9.2, P = .001). PROs at final follow-up showed significant improvement compared with preoperative values in both groups (all P < .001), with no significant differences in PROs between groups. The mean follow-ups for each group were 29.7 and 32.5 months, respectively. Defect size were significantly associated with the total MOCART score (P = .026) and unsatisfactory outcome (MOCART < 60) (P = .012, odds ratio 2.674). The cut-off value for defect size was 6.3 cm2 (area under the curve, 0.905; P < .001). In the comparison of regional MOCART scores within each patient, the anterior MOCART score was significantly greater than the central and posterior MOCART scores (P < .001 and P = .004, respectively). CONCLUSIONS Cartilage defects with osteoarthritis, which is smaller and primarily limited to the anterior-to-central portion showed better MOCART scores after hUCB-MSC implantation. LEVEL OF EVIDENCE Level III, retrospective cohort study.
Collapse
Affiliation(s)
- Se-Han Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong Seon Lee
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Sungjun Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeehoon Choi
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chong Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
8
|
Zhang X, Cui C, Lin F. Efficacy and safety of mesenchymal stem cell injections for knee osteoarthritis: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:55. [PMID: 39629035 PMCID: PMC11613985 DOI: 10.4103/jrms.jrms_515_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 12/06/2024]
Abstract
Background There have not been any clear studies on the use of mesenchymal stem cells (MSCs) to treat osteoarthritis (OA) in the knee. Materials and Methods This study investigates the effects of different MSC dosages on pain alleviation in individuals with OA in the knee by conducting a meta-analysis of existing randomized controlled trials. Electronic resources such as Google Scholar, PubMed, Cochrane Library, and Web of Science were searched up until June 2023. Treatment effect sizes were computed using the knee osteoarthritis outcome score (KOOS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Knee Society Score (KSS). Random or fixed effect models were applied to aggregate the data. We performed a subgroup analysis according to dosage level. The heterogeneity of the research was investigated using the Chi-square test and the I2 index. Results The meta-analysis included 26 studies with a total sample size of 739 patients. A significant reduction in pain was observed 1 year and 2 years following the injection of MSCs into the injured joint, as indicated by the Visual Analogue Scale, WOMAC, KOOS, and KSS indexes (P < 0.05). Patients on MSCs reported much reduced pain after 1 and 2 years compared to the control group (P < 0.05). Subgroup and meta-regression analyses revealed no statistically significant variations in the effectiveness of MSC dosage (P < 0.05). The studies did not report any adverse effects. Conclusion Different dosages of MSCs had the same pain-relieving effects on patients with OA in the knee. MSC injections were safe and beneficial in such cases.
Collapse
Affiliation(s)
- Xinguang Zhang
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cunbao Cui
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Lin
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Jung SH, Park H, Jung M, Chung K, Kim S, Moon HS, Park J, Lee JH, Choi CH, Kim SH. Implantation of hUCB-MSCs generates greater hyaline-type cartilage than microdrilling combined with high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2024; 32:829-842. [PMID: 38426617 DOI: 10.1002/ksa.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To compare the outcomes of treating large cartilage defects in knee osteoarthritis using human allogeneic umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) implantation or arthroscopic microdrilling as a supplementary cartilage regenerative procedure combined with high tibial osteotomy (HTO). METHODS This 1-year prospective comparative study included 25 patients with large, near full-thickness cartilage defects (International Cartilage Repair Society grade ≥ IIIB) in the medial femoral condyles and varus malalignment. Defects were treated with hUCB-MSC implantation or arthroscopic microdrilling combined with HTO. The primary outcomes were pain visual analogue scale and International Knee Documentation Committee subjective scores at 12, 24 and 48 weeks. Secondary outcomes included arthroscopic, histological and magnetic resonance imaging assessments at 1 year. RESULTS Fifteen and 10 patients were treated via hUCB-MSC implantation and microdrilling, respectively. Baseline demographics, limb alignment and clinical outcomes did not significantly differ between the groups. Cartilage defects and total restored areas were significantly larger in the hUCB-MSC group (7.2 ± 1.9 vs. 5.2 ± 2.1 cm2, p = 0.023; 4.5 ± 1.4 vs. 3.0 ± 1.6 cm2, p = 0.035). The proportion of moderate-to-strong positive type II collagen staining was significantly higher in the hUCB-MSC group compared to that in the microdrilled group (93.3% vs. 60%, respectively). Rigidity upon probing resembled that of normal cartilage tissue more in the hUCB-MSC group (86.7% vs. 50.0%, p = 0.075). Histological findings revealed a higher proportion of hyaline cartilage in the group with implanted hUCB-MSC (p = 0.041). CONCLUSION hUCB-MSC implantation showed comparable clinical outcomes to those of microdrilling as supplementary cartilage procedures combined with HTO in the short term, despite the significantly larger cartilage defect in the hUCB-MSC group. The repaired cartilage after hUCB-MSC implantation showed greater hyaline-type cartilage with rigidity than that after microdrilling. LEVEL OF EVIDENCE Level II, Prospective Comparative Cohort Study.
Collapse
Affiliation(s)
- Se-Han Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Sungjun Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Moon
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jisoo Park
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hyung Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chong-Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Razak HRBA, Corona K, Totlis T, Chan LYT, Salreta JF, Sleiman O, Vasso M, Baums MH. Mesenchymal stem cell implantation provides short-term clinical improvement and satisfactory cartilage restoration in patients with knee osteoarthritis but the evidence is limited: a systematic review performed by the early-osteoarthritis group of ESSKA-European knee associates section. Knee Surg Sports Traumatol Arthrosc 2023; 31:5306-5318. [PMID: 37737920 PMCID: PMC10719133 DOI: 10.1007/s00167-023-07575-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Implantation of mesenchymal stem cells (MSCs) is a potential cell-based modality for cartilage repair. Currently, its clinical use largely surrounds focal cartilage defect repair and intra-articular injections in knee osteoarthritis. The MSCs' implantation efficacy as a treatment option for osteoarthritis remains contentious. This systematic review aims to evaluate studies that focused on MSCs implantation in patients with knee OA to provide a summary of this treatment option outcomes. METHODS A systematic search was performed in PubMed (Medline), Scopus, Cinahl, and the Cochrane Library. Original studies investigating outcomes of MSCs implantations in patients with knee OA were included. Data on clinical outcomes using subjective scores, radiological outcomes, and second-look arthroscopy gradings were extracted. RESULTS Nine studies were included in this review. In all included studies, clinical outcome scores revealed significantly improved functionality and better postoperative pain scores at 2-3 years follow-up. Improved cartilage volume and quality at the lesion site was observed in five studies that included a postoperative magnetic resonance imaging assessment and studies that performed second-look arthroscopy. No major complications or tumorigenesis occurred. Outcomes were consistent in both single MSCs implantation and concurrent HTO with MSCs implantation in cases with excessive varus deformity. CONCLUSION According to the available literature, MSCs implantation in patients with mild to moderate knee osteoarthritis is safe and provides short-term clinical improvement and satisfactory cartilage restoration, either as a standalone procedure or combined with HTO in cases with axial deformity. However, the evidence is limited due to the high heterogeneity among studies and the insufficient number of studies including a control group and mid-term outcomes. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
| | - Katia Corona
- Orthopedics and Traumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS-Sacred Heart Catholic University, Rome, Italy
| | - Trifon Totlis
- Thessaloniki Minimally Invasive Surgery (The-MIS) Orthopaedic Centre, St. Luke's Hospital, Thessaloniki, Greece.
- Department of Anatomy and Surgical Anatomy, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Li Yi Tammy Chan
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Jose Filipe Salreta
- Orthopaedic and Traumatology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Obeida Sleiman
- Department of Orthopedics, Trauma Surgery and Sports Traumatology, Catholic Clinical Center Ruhr North (KKRN), Dorsten, Germany
| | - Michele Vasso
- Department of Medicine and Health Sciences, University of Molise, Via Francesco De Sanctis, 86100, Campobasso, Italy
| | - Mike H Baums
- Department of Orthopedics, Trauma Surgery and Sports Traumatology, Catholic Clinical Center Ruhr North (KKRN), Dorsten, Germany
| |
Collapse
|
11
|
Ao Y, Duan J, Xiong N, Qian N, Zhang R, Yang L, Yu S, Wang F. Repeated intra-articular injections of umbilical cord-derived mesenchymal stem cells for knee osteoarthritis: a phase I, single-arm study. BMC Musculoskelet Disord 2023; 24:488. [PMID: 37312112 DOI: 10.1186/s12891-023-06555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION Stem cell therapy has emerged as an effective treatment for multiple diseases, and some studies also demonstrate that it may be a promising treatment for osteoarthritis (OA). However, few studies have clarified the safety of repeated intra-articular injection of human umbilical cord-derived mesenchymal stem cells (UC-MSCs). To promote its application in treating OA, we conducted an open-label trial to investigate the safety of repeated intra-articular injections of UC-MSCs. METHODS Fourteen patients with OA (Kellgrene-Lawrence grade 2 or 3) who received repeated intra-articular injections of UC-MSCs were evaluated in three months of follow-up. The primary outcomes were the adverse events, and the second outcomes included visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scores and SF-12 quality of life score. RESULTS A total of 5 of 14 patients (35.7%) experienced transient adverse reactions, which resolved spontaneously. All patients showed some improvement in knee function limitation and pain after receiving stem cell therapy. VAS score 6.0 to 3.5, WOMAC score 26.0 to 8.5, MOCART score 42.0 to 58.0, SF-12 score 39.0 to 46.0. CONCLUSION Repeated intra-articular injection of UC-MSCs demonstrates safety in treating OA and does not induce serious adverse events. This treatment may transiently improve symptoms in patients with knee OA and may be a potential therapeutic option for OA.
Collapse
Affiliation(s)
- Yunong Ao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Na Xiong
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Nannan Qian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Rui Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
12
|
Shang Z, Wanyan P, Zhang B, Wang M, Wang X. A systematic review, umbrella review, and quality assessment on clinical translation of stem cell therapy for knee osteoarthritis: Are we there yet? Stem Cell Res Ther 2023; 14:91. [PMID: 37061744 PMCID: PMC10105961 DOI: 10.1186/s13287-023-03332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The success of stem cell therapy for knee osteoarthritis (KOA) in preclinical animal models has accelerated the pace of clinical translation. However, it remains uncertain whether the current scientific evidence supports the clinical application of stem cells in treating KOA. A comprehensive evaluation of the safety and efficacy of stem cell therapies and scientific evidence quality is necessary. METHODS Using "stem cells" and "knee osteoarthritis" as the search terms, several databases, including PubMed, Web of Science, Cochrane, Embase, and Clinicaltrials.gov, were searched on August 25, 2022, and updated on February 27, 2023. Clinical studies that reported adverse reactions (ARs) of stem cell therapy in KOA patients were included without limiting the type of studies. Quantitative systematic reviews of stem cell therapy for KOA that conducted meta-analysis were included. Two researchers conducted literature screening and data extraction independently, and the evidence quality was evaluated according to the Institute of Health Economics and AMSTAR 2 criteria. RESULTS Fifty clinical studies and 13 systematic reviews/meta-analyses (SRs/MAs) were included. Nineteen ARs were reported in 50 studies, including five knee-related ARs, seven common ARs, and seven other ARs. Some studies reported over 10% prevalence of knee pain (24.5%; 95% CI [14.7%, 35.7%]), knee effusion (12.5%; 95% CI [4.8%, 22.5%]), and knee swelling (11.9%; 95% CI [3.5%, 23.5%]). Additionally, two studies have reported cases of prostate cancer and breast tumors, respectively. However, these two studies suggest that stem cell therapy does not bring significant ARs to patients. SRs/MAs results revealed that stem cell therapy relieved pain in patients over time but did not improve knee function. However, current clinical studies have limited evidence regarding study objectives, test designs, and patient populations. Similarly, SRs/MAs have inadequate evidence regarding study design, risk of bias assessment, outcome description, comprehensive discussion, and potential conflicts of interest. CONCLUSIONS The inefficacy of stem cells, the risk of potential complications, and the limited quality of evidence from current studies precluded any recommendation for using stem cell products in patients with KOA. Clinical translation of stem cell therapies remains baseless and should be cautiously approached until more robust evidence is available. PROSPERO registration number: CRD42022355875.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
13
|
Song JS, Hong KT, Kim NM, Hwangbo BH, Yang BS, Victoroff BN, Choi NH. Clinical and Magnetic Resonance Imaging Outcomes After Human Cord Blood-Derived Mesenchymal Stem Cell Implantation for Chondral Defects of the Knee. Orthop J Sports Med 2023; 11:23259671231158391. [PMID: 37123990 PMCID: PMC10134134 DOI: 10.1177/23259671231158391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 05/02/2023] Open
Abstract
Background There is a paucity of literature reporting clinical and magnetic resonance imaging (MRI) outcomes after allogeneic umbilical cord blood-derived mesenchymal stem cell (UCB-MSC) implantation for chondral defects of the knee. Purpose To report clinical and MRI outcomes after UCB-MSC implantation for chondral lesions of the knee. Study Design Case series; Level of evidence, 4. Methods Inclusion criteria were patients aged between 40 and 70 years with focal chondral lesions of grade 3 or 4 on the medial femoral condyle, defect sizes >4 cm2, and intact ligaments. Exclusion criteria were patients who required realignment osteotomy or who had a meniscal deficiency, ligamentous instability, or a concomitant full-thickness chondral defect in the lateral or patellofemoral compartment. A mixture of human UCB-MSCs and sodium hyaluronate was implanted into the chondral defect through mini-arthrotomy. MRI at 1-year follow-up was performed to evaluate repaired cartilage hypertrophy. Repaired cartilage thickness was measured, and hypertrophy was classified as grade 1 (<125%), grade 2 (<150%), or grade 3 (<200%). Patient-reported outcomes (PROs; International Knee Documentation Committee, visual analog scale for pain, and Western Ontario and McMaster Universities Osteoarthritis Index) were evaluated preoperatively and at 1, 2, and 3 years postoperatively. Repaired cartilage hypertrophy was evaluated for a correlation with PRO scores. Results Enrolled were 85 patients with a mean age of 56.8 ± 6.1 years and a mean chondral defect size of 6.7 ± 2.0 cm2. At follow-up, a significant improvement in all PRO scores was seen compared with preoperatively (P < .001 for all). MRI at 1-year follow-up demonstrated that 28 patients had grade 1 repaired cartilage hypertrophy, 41 patients had grade 2, and 16 patients had grade 3. MRI performed in 11 patients at 2 years after surgery indicated no difference in repaired cartilage hypertrophy between the 1- and 2-year time points. The grade of repaired cartilage hypertrophy did not correlate with PRO scores. Conclusion Clinical outcomes improved significantly at short-term follow-up after UCB-MSC implantation. Although all patients showed repaired cartilage hypertrophy, it did not correlate with clinical outcomes.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul, Republic of Korea
| | - Byung-Hun Hwangbo
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Bong-Seok Yang
- Department of Orthopedic Surgery, Shihwa Medical Center, Siheung, Republic of Korea
| | - Brian N. Victoroff
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nam-Hong Choi
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
- Nam-Hong Choi, MD, Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University, 280-1, Hagye-1-dong, Nowon-gu, Seoul, 139-711, Republic of Korea ()
| |
Collapse
|
14
|
Park D, Choi YH, Kang SH, Koh HS, In Y. Bone Marrow Aspirate Concentrate versus Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells for Combined Cartilage Regeneration Procedure in Patients Undergoing High Tibial Osteotomy: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:634. [PMID: 36984635 PMCID: PMC10059261 DOI: 10.3390/medicina59030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Background and objectives: Cartilage regeneration using mesenchymal stem cells (MSCs) has been attempted to improve articular cartilage regeneration in varus knee osteoarthritis (OA) patients undergoing high tibial osteotomy (HTO). Bone marrow aspirate concentrate (BMAC) and human umbilical cord blood-derived MSCs (hUCB-MSCs) have been reported to be effective. However, whether BMAC is superior to hUCB-MSCs remains unclear. This systematic review and meta-analysis aimed to determine the clinical efficacy of cartilage repair procedures with BMAC or hUCB-MSCs in patients undergoing HTO. Materials and Methods: A systematic search was conducted using three global databases, PubMed, EMBASE, and the Cochrane Library, for studies in which the clinical outcomes after BMAC or hUCB-MSCs were used in patients undergoing HTO for varus knee OA. Data extraction, quality control, and meta-analysis were performed. To compare the clinical efficacy of BMAC and hUCB-MSCs, reported clinical outcome assessments and second-look arthroscopic findings were analyzed using standardized mean differences (SMDs) with 95% confidence intervals (CIs). Results: The present review included seven studies of 499 patients who received either BMAC (BMAC group, n = 169) or hUCB-MSCs (hUCB-MSC group, n = 330). Improved clinical outcomes were found in both BMAC and hUCB-MSC groups; however, a significant difference was not observed between procedures (International Knee Documentation Committee score; p = 0.91, Western Ontario and McMaster Universities OA Index; p = 0.05, Knee Society Score (KSS) Pain; p = 0.85, KSS Function; p = 0.37). On second-look arthroscopy, the hUCB-MSC group showed better International Cartilage Repair Society Cartilage Repair Assessment grade compared with the BMAC group (p < 0.001). Conclusions: Both BMAC and hUCB-MSCs with HTO improved clinical outcomes in varus knee OA patients, and there was no difference in clinical outcomes between them. However, hUCB-MSCs were more effective in articular cartilage regeneration than BMAC augmentation.
Collapse
Affiliation(s)
- Dojoon Park
- Department of Orthopedic Surgery, St. Vincent Hospital, College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon-si 16247, Republic of Korea
| | - Youn Ho Choi
- Department of Orthopedic Surgery, St. Vincent Hospital, College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon-si 16247, Republic of Korea
| | - Se Hyun Kang
- Department of Orthopedic Surgery, St. Vincent Hospital, College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon-si 16247, Republic of Korea
| | - Hae Seok Koh
- Department of Orthopedic Surgery, St. Vincent Hospital, College of Medicine, 93, Jungbu-daero, Paldal-gu, Suwon-si 16247, Republic of Korea
| | - Yong In
- Department of Orthopaedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
15
|
Allogeneic Umbilical Cord-Blood-Derived Mesenchymal Stem Cells and Hyaluronate Composite Combined with High Tibial Osteotomy for Medial Knee Osteoarthritis with Full-Thickness Cartilage Defects. Medicina (B Aires) 2023; 59:medicina59010148. [PMID: 36676772 PMCID: PMC9866958 DOI: 10.3390/medicina59010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Background and Objectives: Although the effects of cartilage repair in patients who are undergoing high tibial osteotomy (HTO) remains controversial, cartilage repair may be required for the full-thickness cartilage defect because of a concern of lower clinical outcome. The purpose of this study was to investigate clinical outcome and cartilage repair following implantation of allogeneic umbilical cord-blood-derived MSCs (UCB-MSCs)-hyaluronate composite in patients who received HTO for medial knee osteoarthritis (OA) with full-thickness cartilage defect. Materials and Methods: Inclusion criteria were patients with a medial knee OA, a full-thickness cartilage defect (International Cartilage Repair Society (ICRS) grade IV) ≥ 3 cm2 of the medial femoral condyle, and a varus deformity ≥ 5°. The full-thickness cartilage defect was treated with implantation of an allogeneic UCB-MSCs-hyaluronate composite following medial open-wedge HTO. Visual analogue scale for pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were assessed at each follow-up. Cartilage repair was assessed by the ICRS cartilage repair assessment system at second-look arthroscopy when the plate was removed. Results: Twelve patients (mean age 56.1 years; mean defect size: 4.5 cm2) were included, and 10 patients underwent second-look arthroscopy during plate removal after a minimum of 1 year after the HTO. At the final follow-up of mean 2.9 years (range; 1-6 years), all clinical outcomes had improved. At second-look arthroscopy, repaired tissue was observed in all cases. One case (10%) showed grade I, seven (70%) cases showed grade II, and two (20%) cases showed grade III according to ICRS cartilage repair assessment system, which meant that 80% showed an overall repair assessment of "normal" or "nearly normal". Conclusion: Allogeneic UCB-MSCs-HA composite implantation combined with HTO resulted in favorable clinical outcome and cartilage repair in all cases. These findings suggest that UCB-MSCs-HA composite implantation combined with HTO would be a good therapeutic option for patients with knee OA and full-thickness cartilage defects.
Collapse
|
16
|
Lee DH, Kim SA, Song JS, Shetty AA, Kim BH, Kim SJ. Cartilage Regeneration Using Human Umbilical Cord Blood Derived Mesenchymal Stem Cells: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121801. [PMID: 36557003 PMCID: PMC9786930 DOI: 10.3390/medicina58121801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Human umbilical-cord-blood-derived mesenchymal stem cells (hUCB-MSCs) have recently been used in clinical cartilage regeneration procedures with the expectation of improved regeneration capacity. However, the number of studies using hUCB-MSCs is still insufficient, and long-term follow-up results after use are insufficient, indicating the need for additional data and research. We have attempted to prove the efficacy and safety of hUCB-MSC treatment in a comprehensive analysis by including all subjects with knee articular cartilage defect or osteoarthritis who have undergone cartilage repair surgery using hUCB-MSCs. We conducted a meta-analysis and demonstrated efficacy and safety based on a systematic review. Materials and Methods: This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. For this study, we searched the PubMed, Embase, Web of Science, Scopus, and Cochrane Library literature databases up to June 2022. A total of seven studies were included, and quality assessment was performed for each included study using the Newcastle−Ottawa Quality Assessment Scale. Statistical analysis was performed on the extracted pooled clinical outcome data, and subgroup analyses were completed. Results: A total of 570 patients were included in the analysis. In pooled analysis, the final follow-up International Knee Documentation Committee (IKDC) score showed a significant increase (mean difference (MD), −32.82; 95% confidence interval (CI), −38.32 to −27.32; p < 0.00001) with significant heterogeneity (I2 = 93%, p < 0.00001) compared to the preoperative score. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores at final follow-up were significantly decreased (MD, 30.73; 95% CI, 24.10−37.36; p < 0.00001) compared to the preoperative scores, with significant heterogeneity (I2 = 95%, p < 0.00001). The visual analog scale (VAS) score at final follow-up was significantly decreased (MD, 4.81; 95% CI, 3.17−6.46; p < 0.00001) compared to the preoperative score, with significant heterogeneity (I2 = 98%, p < 0.00001). Two studies evaluated the modified Magnetic Resonance Observation of Cartilage Repair Tissue (M-MOCART) score and confirmed sufficient improvement. In a study analyzing a group treated with bone marrow aspiration concentrate (BMAC), there was no significant difference in clinical outcome or M-MOCART score, and the post-treatment International Cartilage Repair Society (ICRS) grade increased. Conclusion: This analysis demonstrated the safety, efficacy, and quality of repaired cartilage following hUCB-MSC therapy. However, there was no clear difference in the comparison with BMAC. In the future, comparative studies with other stem cell therapies or cartilage repair procedures should be published to support the superior effect of hUCB-MSC therapy to improve treatment of cartilage defect or osteoarthritis.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Seoul 07345, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si 11765, Republic of Korea
| | - Jun-Seob Song
- Department of Orthopaedic Surgery, Gangnam JS Hospital, Seoul 06259, Republic of Korea
| | - Asode Ananthram Shetty
- Institute of Medical Sciences, Faculty of Health and Wellbeing, Chatham Maritime, Canterbury Christ Church University, Kent ME4 4UF, UK
| | - Bo-Hyoung Kim
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Seoul 07345, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si 11765, Republic of Korea
- Correspondence: ; Tel.: +82-31-820-3654; Fax: +82-31-847-3671
| |
Collapse
|
17
|
Song JS, Hong KT, Song KJ, Kim SJ. Repair of a large patellar cartilage defect using human umbilical cord blood-derived mesenchymal stem cells: A case report. World J Clin Cases 2022; 10:12665-12670. [PMID: 36579106 PMCID: PMC9791508 DOI: 10.12998/wjcc.v10.i34.12665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Patellar dislocation may cause cartilage defects of various sizes. Large defects commonly require surgical treatment; however, conventional treatments are problematic.
CASE SUMMARY A 15-year-old male with a large patellar cartilage defect due to patellar dislocation was treated via human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) implantation. To our knowledge, this is the first report of this treatment for this purpose. The patient recovered well as indicated by good visual analog scale, International Knee Documentation Committee and McMaster Universities Osteoarthritis Index scores. Magnetic resonance imaging showed cartilage regeneration 18 mo postoperatively.
CONCLUSION Umbilical cord blood-derived hUCB-MSCs may be a useful treatment option for the repair of large patellar cartilage defects.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Ki Jeon Song
- Department of Orthopedic Surgery, Uijeongbu Street Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Gyeonggi-do, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu Street Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Gyeonggi-do, South Korea
| |
Collapse
|
18
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
19
|
The Effectiveness and Safety of Mesenchymal Stem Cells in the Treatment of Osteoarthritis: A Systematic Review and Meta-analysis of 28 Randomized Controlled Trials. Stem Cells Int 2022; 2022:6151866. [PMID: 36277037 PMCID: PMC9581629 DOI: 10.1155/2022/6151866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To evaluate the effectiveness and safety of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA). Methods Chinese databases (such as CNKI and SinoMed) and English databases (such as PubMed and Embase) were searched to collect randomized controlled trials (RCTs) of MSCs in the treatment of OA. The retrieval time is from inception to October 10, 2021. The literature was strictly selected according to the inclusion and exclusion criteria, data was extracted, and the quality was evaluated. RevMan 5.3 software was used for meta-analysis. STATA was used to evaluate publication bias. The registration number of this systematic review and meta-analysis is CRD42021277145. Results A total of 28 RCTs involving 1494 participants were included. The primary outcomes showed that MSCs may reduce WOMAC pain and VAS at the 3rd-month follow-up [WOMAC pain: -3.81 (-6.95, -0.68), P = 0.02. VAS: -1.11 (-1.53, -0.68), P < 0.00001], and the effect lasts for at least 12 months [WOMAC pain: -4.29 (-7.12, -1.47), P = 0.003. VAS: -1.77 (-2.43, -1.12), P < 0.00001]. MSCs may also reduce WOMAC stiffness and physical function at the 6th-month follow-up [WOMAC stiffness: -1.12 (-2.09, -0.14), P = 0.03. WOMAC physical function: -4.40 (-6.84, -1.96), P = 0.0004], and the effect lasts for at least 12 months [WOMAC stiffness: -0.99 (-1.95, -0.03), P = 0.04. WOMAC physical function: -3.26 (-5.91, -0.61), P = 0.02]. The improvement of WOMAC pain, VAS, WOMAC stiffness, and WOMAC physical function may be clinically significant. Meanwhile, after the MSC injection, Lequesne had been reduced compared with the control group [-4.49 (-8.21, -0.77), P = 0.002]. For adverse events, there is no significant difference in the safety of MSC injection and the control group [1.20 (0.97, 1.48), P = 0.09]. The quality of WOMAC physical function and adverse events were moderate. Conclusion Based on current evidence, MSCs may be a safety therapy that have a good curative effect in the treatment of OA, the onset time is no later than 3 months, and the time to maintain the curative effect is no less than 12 months. However, these results should be generalized with caution due to the generally low quality of evidence and RCTs.
Collapse
|
20
|
Günay AE, Karaman I, Guney A, Karaman ZF, Demirpolat E, Gonen ZB, Dogan S, Yerer MB. Assessment of clinical, biochemical, and radiological outcomes following intra-articular injection of Wharton jelly-derived mesenchymal stromal cells in patients with knee osteoarthritis: A prospective clinical study. Medicine (Baltimore) 2022; 101:e30628. [PMID: 36123928 PMCID: PMC9478323 DOI: 10.1097/md.0000000000030628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to perform clinical, biochemical, and radiological evaluation of the efficacy of mesenchymal stem cells derived from Wharton jelly (WJ) present within the human umbilical cord in the treatment of knee osteoarthritis. Between 2018 and 2019, 10 patients with knee osteoarthritis for whom the conservative treatment was not beneficial were included in the study. Patients were clinically, radiologically, and biochemically evaluated before treatment initiation. Thereafter, the patients were intra-articularly injected using a solution containing 1 × 108 WJ-derived MSCs. Evaluations were performed on day 21 (V1) and 42 (V2) and month 3 (V3), 6 (V4), and 12 (V5) after the procedure. At 1-year post-injection, visual analogue scale, Western Ontario and McMaster Universities Osteoarthritis Index, and Lequesne scores of patients were lower than those observed during the initial evaluation, whereas the mean 36-Item Short Form Health Survey score was higher. Cartilage thicknesses were found to be increased in all regions except in the medial femur, medial posterior femur, lateral posterior femur, and lateral posterior tibia regions in magnetic resonance imaging. A significant increase was observed in tumor necrosis factor-alpha, interleukin-1β, adiponectin, resistin, and interleukin-6 levels compared with pre-injection values. The leptin levels at 6-month and 1-year controls were lower than the pre-injection levels, and the decrease observed at 6 months was significant. In patients with knee osteoarthritis, intra-articular WJ-derived MSC injection causes significant pain reduction, satisfactory functional improvement, and increased patient satisfaction following a 1-year follow-up. These clinical improvements were supported by magnetic resonance images, along with changes in adiponectin and leptin levels in synovial fluid. Level of evidence: IV.
Collapse
Affiliation(s)
- Ali Eray Günay
- Department of Orthopedics and Traumatology, City Hospital, Kayseri, Turkey
- *Correspondence: Ali Eray Günay, Kayseri City Education and Research Hospital Orthopaedics Clinic, TR-38080 Kayseri, Turkey (e-mail: )
| | - Ibrahim Karaman
- Departments of Orthopedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ahmet Guney
- Departments of Orthopedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | | | - Eren Demirpolat
- Department of Pharmacology, Erciyes University, Pharmacy Faculty, Kayseri, Turkey
| | - Zeynep Burcin Gonen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Serap Dogan
- Radiology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Erciyes University, Pharmacy Faculty, Kayseri, Turkey
| |
Collapse
|
21
|
Kim YS, Guilak F. Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis. Int J Mol Sci 2022; 23:8662. [PMID: 35955795 PMCID: PMC9369020 DOI: 10.3390/ijms23158662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing down disease progression and focus mainly on pain management. The field of tissue engineering has therefore been focusing on developing strategies that could be used not only to alleviate symptoms of OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention and controlled drug release. This review summarizes recent advances in developing HA-based hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could be further improved to maximize their potential as a viable treatment option for OA.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
22
|
Dhillon J, Kraeutler MJ, Belk JW, Scillia AJ. Umbilical Cord-Derived Stem Cells for the Treatment of Knee Osteoarthritis: A Systematic Review. Orthop J Sports Med 2022; 10:23259671221104409. [PMID: 35859650 PMCID: PMC9289921 DOI: 10.1177/23259671221104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The use of mesenchymal stem cells (MSCs) for the treatment of knee
osteoarthritis (OA) has gained recent interest in the orthopaedics
community. Purpose: To review the literature to evaluate the efficacy of umbilical cord–derived
MSCs in the treatment of OA of the knee joint. Study Design: Systematic review; Level of evidence, 4. Methods: We searched the PubMed, Cochrane Library, and Embase databases to identify
studies with evidence levels from 1 to 4 that evaluated the clinical
efficacy of human umbilical cord–derived MSC (hUC-MSC) injections for knee
OA. The search phrase used was “umbilical cord knee osteoarthritis.” In the
studies reviewed, patients were assessed based on the macroscopic
International Cartilage Regeneration & Joint Preservation Society (ICRS)
score, Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC), visual analog scale (VAS) for pain, and the subjective
International Knee Documentation Committee (IKDC) score. Results: A total of 7 studies met inclusion criteria, including 385 patients
undergoing injection of hUC-MSCs (mean age, 59.7 years). The mean follow-up
was 23.4 months. Weighted averages of the WOMAC, macroscopic ICRS,
subjective IKDC, and VAS scores all showed improvement from before to after
treatment. No severe adverse reactions were recorded. Conclusion: Patients undergoing treatment of knee OA with hUC-MSCs might be expected to
experience improvements in clinical outcomes. Additional high-quality
randomized studies are needed to better determine the efficacy of hUC-MSC
for the treatment of knee OA.
Collapse
Affiliation(s)
- Jaydeep Dhillon
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Matthew J Kraeutler
- Department of Orthopaedic Surgery, St. Joseph's University Medical Center, Paterson, New Jersey, USA
| | - J Wilson Belk
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anthony J Scillia
- Department of Orthopaedic Surgery, St. Joseph's University Medical Center, Paterson, New Jersey, USA.,Academy Orthopaedics, Wayne, New Jersey, USA
| |
Collapse
|
23
|
Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23084360. [PMID: 35457176 PMCID: PMC9025567 DOI: 10.3390/ijms23084360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) causes persistent pain, joint dysfunction, and physical disability. It is the most prevalent type of degenerative arthritis, affecting millions of people worldwide. OA is currently treated with a focus on pain relief, inflammation control, and artificial joint surgery. Hence, a therapeutic agent capable of preventing or delaying the progression of OA is needed. OA is strongly associated with the degeneration of the articular cartilage and changes in the ECM, which are primarily associated with a decrease in proteoglycan and collagen. In the progress of articular cartilage degradation, catabolic enzymes, such as matrix metalloproteinases (MMPs), are activated by IL-1β stimulation. Given the tight relationship between IL-1β and ECM (extra-cellular matrix) degradation, this study examined the effects of Chaenomeles Fructus (CF) on IL-1β-induced OA in rat chondrocytes. The CF treatment reduced IL-1β-induced MMP3/13 and ADAMTS-5 production at the mRNA and protein levels. Similarly, CF enhanced col2a and aggrecan accumulation and chondrocyte proliferation. CF inhibited NF-κB (nuclear factor kappa B) activation, nuclear translocation induced by IL-1β, reactive oxygen species (ROS) production, and ERK phosphorylation. CF demonstrated anti-OA and articular regeneration effects on rat chondrocytes, thus, suggesting that CF is a viable and fundamental therapeutic option for OA.
Collapse
|
24
|
Methodological Flaws in Meta-Analyses of Clinical Studies on the Management of Knee Osteoarthritis with Stem Cells: A Systematic Review. Cells 2022; 11:cells11060965. [PMID: 35326416 PMCID: PMC8946093 DOI: 10.3390/cells11060965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Conclusions of meta-analyses of clinical studies may substantially influence opinions of prospective patients and stakeholders in healthcare. Nineteen meta-analyses of clinical studies on the management of primary knee osteoarthritis (pkOA) with stem cells, published between January 2020 and July 2021, came to inconsistent conclusions regarding the efficacy of this treatment modality. It is possible that a separate meta-analysis based on an independent, systematic assessment of clinical studies on the management of pkOA with stem cells may reach a different conclusion. (2) Methods: PubMed, Web of Science, and the Cochrane Library were systematically searched for clinical studies and meta-analyses of clinical studies on the management of pkOA with stem cells. All clinical studies and meta-analyses identified were evaluated in detail, as were all sub-analyses included in the meta-analyses. (3) Results: The inconsistent conclusions regarding the efficacy of treating pkOA with stem cells in the 19 assessed meta-analyses were most probably based on substantial differences in literature search strategies among different authors, misconceptions about meta-analyses themselves, and misconceptions about the comparability of different types of stem cells with regard to their safety and regenerative potential. An independent, systematic review of the literature yielded a total of 183 studies, of which 33 were randomized clinical trials, including a total of 6860 patients with pkOA. However, it was not possible to perform a scientifically sound meta-analysis. (4) Conclusions: Clinicians should interpret the results of the 19 assessed meta-analyses of clinical studies on the management of pkOA with stem cells with caution and should be cautious of the conclusions drawn therein. Clinicians and researchers should strive to participate in FDA and/or EMA reviewed and approved clinical trials to provide clinically and statistically valid efficacy.
Collapse
|
25
|
Wang G, Xing D, Liu W, Zhu Y, Liu H, Yan L, Fan K, Liu P, Yu B, Li JJ, Wang B. Preclinical studies and clinical trials on mesenchymal stem cell therapy for knee osteoarthritis: A systematic review on models and cell doses. Int J Rheum Dis 2022; 25:532-562. [PMID: 35244339 DOI: 10.1111/1756-185x.14306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
AIM To provide a systematic analysis of the study design in knee osteoarthritis (OA) preclinical studies, focusing on the characteristics of animal models and cell doses, and to compare these to the characteristics of clinical trials using mesenchymal stem cells (MSCs) for the treatment of knee OA. METHOD A systematic and comprehensive search was conducted using the PubMed, Web of Science, Ovid, and Embase electronic databases for research papers published in 2009-2020 on testing MSC treatment in OA animal models. The PubMed database and ClinicalTrials.gov website were used to search for published studies reporting clinical trials of MSC therapy for knee OA. RESULTS In total, 9234 articles and two additional records were retrieved, of which 120 studies comprising preclinical and clinical studies were included for analysis. Among the preclinical studies, rats were the most commonly used species for modeling knee OA, and anterior cruciate ligament transection was the most commonly used method for inducing OA. There was a correlation between the cell dose and body weight of the animal. In clinical trials, there was large variation in the dose of MSCs used to treat knee OA, ranging from 1 × 106 to 200 × 106 cells with an average of 37.91 × 106 cells. CONCLUSION Mesenchymal stem cells have shown great potential in improving pain relief and tissue protection in both preclinical and clinical studies of knee OA. Further high-quality preclinical and clinical studies are needed to explore the dose effectiveness relationship of MSC therapy and to translate the findings from preclinical studies to humans.
Collapse
Affiliation(s)
- Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China.,Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Kenan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peidong Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiao Jiao Li
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bin Wang
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Pandey V, Madi S, Gupta P. The promising role of autologous and allogeneic mesenchymal stromal cells in managing knee osteoarthritis. What is beyond Mesenchymal stromal cells? J Clin Orthop Trauma 2022; 26:101804. [PMID: 35242531 PMCID: PMC8857498 DOI: 10.1016/j.jcot.2022.101804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) express a wide range of properties anticipated to be beneficial for treating genetic, mechanical, and age-related degeneration in diseases such as osteoarthritis (OA). Although contemporary conservative management of OA is successful in many patients with mild-moderate OA, it often fails to improve symptoms in many patients who are not a candidate for any surgical management. Further, existing conservative treatment strategies do not prevent the progression of the disease and therefore fail to provide a long-term pain-free life. On the other hand, tremendous progress has been taking place in the exciting field of regenerative medicine involving MSCs (autologous and allogeneic), with promising translation taking place from basic science to the bedside. In this review, we comprehensively discuss the potential role of MSCs in treating OA, both autologous and off-the-shelf, allogeneic stem cells. Further, newer therapies are in the offing to treat OA, such as exosomes and growth factors.
Collapse
Affiliation(s)
- Vivek Pandey
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India,Corresponding author. Sports injury and arthroscopy division, Orthopaedics, Kasturba medical college, Manipal. Manipal academy of Higher education, Manipal, 576104, India.
| | - Sandesh Madi
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Pawan Gupta
- Stempeutics Research Pvt. Ltd, Manipal Hospital, Whitefield, Banaglore, 560048, India
| |
Collapse
|
27
|
Kim M, Ahn J, Lee J, Song S, Lee S, Lee S, Kang KS. Combined Mesenchymal Stem Cells and Cartilage Acellular Matrix Injection Therapy for Osteoarthritis in Goats. Tissue Eng Regen Med 2022; 19:177-187. [PMID: 35023025 PMCID: PMC8782990 DOI: 10.1007/s13770-021-00407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human umbilical cord blood-derived MSCs (hUCB-MSCs) have been studied in osteoarthritis (OA) and cartilage regeneration. Our previous study demonstrated that hUCB-MSCs combined with cartilage acellular matrix injection (CAM Inj.) represent potential therapeutic agents for structural improvement and anti-inflammatory effects in a rabbit model of OA. METHODS Based on a previous study, this study has evaluated the safety and efficacy of hUCB-MSCs combined with CAM Inj. in an anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx) in a goat model. In this study, 27 goats were divided into 5 groups: normal (n = 3), OA (n = 6), OA + CAM Inj. (n = 6), OA + hUCB-MSCs (n = 6), and OA + hUCB-MSCs + CAM Inj. (n = 6). Lameness and radiographic parameters were assessed 6 months after administration, and macroscopic and histological evaluations of the goat articular cartilage were performed 6 months after intervention. RESULTS The results showed significant improvement in lameness score only in the OA + hUCB-MSCs group at 5 months after treatment (*p < 0.05), whereas the K&L score showed significant improvement only in the OA + hUCB-MSCs + CAM Inj. group 6 months after intervention (*p < 0.05). In addition, the gross findings showed significance in OA + CAM Inj. and OA + hUCB-MSCs + CAM Inj. groups 6 months after treatment (*p < 0.05 and **p < 0.01). CONCLUSION In conclusion, treatment with a combination of hUCB-MSCs and CAM Inj. reduced OA symptoms and induced effective cartilage tissue repair in a goat model. We suggest the combination of hUCB-MSCs and CAM Inj. as an alternative therapy for OA.
Collapse
Affiliation(s)
- Mijin Kim
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Jongchan Ahn
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Jusik Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seongsoo Song
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea.
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Lee DH, Kim SJ, Kim SA, Ju GI. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg Relat Res 2022; 34:1. [PMID: 35090574 PMCID: PMC8800252 DOI: 10.1186/s43019-022-00132-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteoarthritis, one of the most common joint diseases, is characterized by the loss of joint function due to articular cartilage destruction. Herein, we review current and previous research involving the clinical applications of arthritis therapy and suggest potential therapeutic options for osteoarthritis in the future. PAST, PRESENT, AND FUTURE TREATMENT The arthroscopic cartilage regeneration procedure or realignment osteotomy has been performed as a joint-conserving procedure in cases where conservative treatment for damaged articular cartilage and early osteoarthritis failed. If cartilage regeneration is ineffective or if the joint damage progresses, arthroplasty is the main treatment option. The need for biological arthritis treatment has expanded as the healthy lifespan of the global population has increased. Accordingly, minimally invasive surgical treatment has been developed for the treatment of damaged cartilage and early osteoarthritis. However, patients generally prefer to avoid all types of surgery, including minimally invasive surgery. Therefore, in the future, the treatment of osteoarthritis will likely involve injection or medication. CONCLUSION Currently, arthritis management primarily involves the surgical application of therapeutic agents to the joints. However, nonsurgical or prophylactic methods are expected to become mainstream arthritis therapies in the future.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea.
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| | - Gang-Ik Ju
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| |
Collapse
|
29
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
30
|
Yang HY, Song EK, Kang SJ, Kwak WK, Kang JK, Seon JK. Allogenic umbilical cord blood-derived mesenchymal stromal cell implantation was superior to bone marrow aspirate concentrate augmentation for cartilage regeneration despite similar clinical outcomes. Knee Surg Sports Traumatol Arthrosc 2022; 30:208-218. [PMID: 33492407 DOI: 10.1007/s00167-021-06450-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to compare clinical and second-look arthroscopic outcomes between bone marrow aspirate concentrate (BMAC) augmentation and human umbilical cord blood-derived mesenchymal stromal cell (hUCB-MSC) implantation in high tibial osteotomy (HTO) for medial compartmental knee osteoarthritis and identify the relationship between articular cartilage regeneration and HTO outcomes. METHODS A total of 176 patients who underwent HTO combined with a BMAC or hUCB-MSC procedure for medial compartment osteoarthritis (Kellgren-Lawrence grade 3) between June 2014 and September 2018 with a minimum follow-up of 2 years were reviewed. After HTO, multiple holes were drilled at cartilage defect sites of the medial femoral condyle (MFC), and then prepared BMAC or hUCB-MSCs in combination with scaffolds were implanted in the MFC lesions. After propensity score matching based on sex, age, body mass index, and lesion size, 55 patients in each of the BMAC and hUCB-MSC groups were successfully matched. Second-look arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system and Koshino staging system. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS), Short-Form 36 (SF-36), and Tegner activity scores. RESULTS At a mean follow-up of 33 months, clinical outcomes including IKDC, KOOS, SF-36, and Tegner activity scores were significantly improved in both groups (p < 0.001); however, there were no differences between the two groups. Second-look arthroscopy showed better healing of regenerated cartilage in the hUCB-MSC group (Grade I [4 cases, 9.1%]; Grade II [30 cases, 68.2%]; Grade III [11 cases, 22.7%]) than in the BMAC group (Grade I [1 case, 2.7%]; Grade II [20 cases, 54.1%]; Grade III [11 cases, 29.7%]; Grade IV [5 cases, 13.5%]) according to the ICRS CRA grading system (p = 0.040). There was no significant intergroup difference in terms of defect coverage based on the Koshino staging system (p = 0.057). Moreover, ICRS CRA grades at second-look arthroscopy were significantly correlated with clinical outcomes (r = - 0.337; p = 0.002). CONCLUSION There were no significant differences in the clinical outcomes between the two groups. Both treatments provided similar, reliable outcomes in terms of pain relief, functional scores, and quality of life at a mean follow-up of 33 months. However, hUCB-MSC implantation was more effective than BMAC augmentation for articular cartilage regeneration.
Collapse
Affiliation(s)
- Hong-Yeol Yang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea
| | - Eun-Kyoo Song
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea
| | - Sung-Ju Kang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea
| | - Woo-Kyoung Kwak
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea
| | - Joon-Kyoo Kang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea
| | - Jong-Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun, Chonnam, 58128, Republic of Korea.
| |
Collapse
|
31
|
Oh SM, Kwon HN. Dry arthroscopy with a simple retraction technique for knee joint cartilage repair using allogenic human umbilical cord blood-derived mesenchymal stem cells. Arthrosc Tech 2021; 10:e2747-e2752. [PMID: 35004157 PMCID: PMC8719264 DOI: 10.1016/j.eats.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023] Open
Abstract
Mesenchymal stem cell treatment has become more widely available and has shown promising potential for the repair of knee articular cartilage defects. More recently, open arthrotomy has been performed via a para-patellar incision for cartilage repair using allogenic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). However, arthroscopy allows better visualization and leads to earlier gain of the range of motion and less scar formation than open arthrotomy, especially in the knee joint. In this study, we present an easy and effective technique for arthroscopic hUCB-MSCs implantation without any special equipment.
Collapse
Affiliation(s)
- Sung-Mok Oh
- Barun Hospital, Department of Orthopedic Surgery, Seoul, Republic of Korea
| | - Hyeok-Nam Kwon
- Bon Seobu Hospital, Department of Orthopedic Surgery, Seoul, Republic of Korea
- Address correspondence to Hyeok-Nam Kwon, M.D., Bon Seobu Hospital, Department of Orthopedic Surgery, 133, Eunpyeong-ro, Eunpyeong-gu, Seoul 03460, Republic of Korea.
| |
Collapse
|
32
|
Urlić I, Ivković A. Cell Sources for Cartilage Repair-Biological and Clinical Perspective. Cells 2021; 10:cells10092496. [PMID: 34572145 PMCID: PMC8468484 DOI: 10.3390/cells10092496] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
Cell-based therapy represents a promising treatment strategy for cartilage defects. Alone or in combination with scaffolds/biological signals, these strategies open many new avenues for cartilage tissue engineering. However, the choice of the optimal cell source is not that straightforward. Currently, various types of differentiated cells (articular and nasal chondrocytes) and stem cells (mesenchymal stem cells, induced pluripotent stem cells) are being researched to objectively assess their merits and disadvantages with respect to the ability to repair damaged articular cartilage. In this paper, we focus on the different cell types used in cartilage treatment, first from a biological scientist’s perspective and then from a clinician’s standpoint. We compare and analyze the advantages and disadvantages of these cell types and offer a potential outlook for future research and clinical application.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (I.U.); (A.I.)
| | - Alan Ivković
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Clinical Medicine, University of Applied Health Sciences, 10000 Zagreb, Croatia
- Correspondence: (I.U.); (A.I.)
| |
Collapse
|
33
|
Aldrich ED, Cui X, Murphy CA, Lim KS, Hooper GJ, McIlwraith CW, Woodfield TBF. Allogeneic mesenchymal stromal cells for cartilage regeneration: A review of in vitro evaluation, clinical experience, and translational opportunities. Stem Cells Transl Med 2021; 10:1500-1515. [PMID: 34387402 PMCID: PMC8550704 DOI: 10.1002/sctm.20-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The paracrine signaling, immunogenic properties and possible applications of mesenchymal stromal cells (MSCs) for cartilage tissue engineering and regenerative medicine therapies have been investigated through numerous in vitro, animal model and clinical studies. The emerging knowledge largely supports the concept of MSCs as signaling and modulatory cells, exerting their influence through trophic and immune mediation rather than as a cell replacement therapy. The virtues of allogeneic cells as a ready‐to‐use product with well‐defined characteristics of cell surface marker expression, proliferative ability, and differentiation capacity are well established. With clinical applications in mind, a greater focus on allogeneic cell sources is evident, and this review summarizes the latest published and upcoming clinical trials focused on cartilage regeneration adopting allogeneic and autologous cell sources. Moreover, we review the current understanding of immune modulatory mechanisms and the role of trophic factors in articular chondrocyte‐MSC interactions that offer feasible targets for evaluating MSC activity in vivo within the intra‐articular environment. Furthermore, bringing labeling and tracking techniques to the clinical setting, while inherently challenging, will be extremely informative as clinicians and researchers seek to bolster the case for the safety and efficacy of allogeneic MSCs. We therefore review multiple promising approaches for cell tracking and labeling, including both chimerism studies and imaging‐based techniques, that have been widely explored in vitro and in animal models. Understanding the distribution and persistence of transplanted MSCs is necessary to fully realize their potential in cartilage regeneration techniques and tissue engineering applications.
Collapse
Affiliation(s)
- Ellison D Aldrich
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - C Wayne McIlwraith
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
34
|
Lee NH, Na SM, Ahn HW, Kang JK, Seon JK, Song EK. Allogenic Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Are More Effective Than Bone Marrow Aspiration Concentrate for Cartilage Regeneration After High Tibial Osteotomy in Medial Unicompartmental Osteoarthritis of Knee. Arthroscopy 2021; 37:2521-2530. [PMID: 33621649 DOI: 10.1016/j.arthro.2021.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to compare the outcome of cartilage regeneration between bone marrow aspirate concentrate (BMAC) augmentation and allogeneic human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSCs) transplantation in high tibial osteotomy (HTO) with microfracture (MFX) for medial unicompartmental osteoarthritis (OA) of the knee in the young and active patient. METHODS Between January 2015 and December 2019, the patients who underwent HTO and arthroscopy with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA with kissing lesion, which was shown full-thickness cartilage defect (≥ International Cartilage Repair Society [ICRS] grade 3B) in medial femoral cartilage and medial tibial cartilage, were include in this study. Retrospectively we compared clinical outcomes, including Hospital for Special Surgery score, Knee Society Score (KSS) pain and function, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score between BMAC and hUCB-MSCs group at minimum of 1-year follow-up. Also, second-look arthroscopy was performed simultaneously with removal of the plate after complete bone union. Cartilage regeneration was graded by the ICRS grading system at second-look arthroscopy. Radiological measurement including hip-knee-ankle (HKA) angle, posterior tibial slope angle, and correction angle were assessed. RESULTS Of 150 cases that underwent HTO with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA, 123 cases underwent plate removal and second-look arthroscopy after a minimum of 1 year after the HTO surgery. Seventy-four cases were kissing lesion in medial femoral cartilage and medial tibial cartilage during initial HTO surgery. Finally, the BMAC group composed of 42 cases and hUCB-MSCs group composed of 32 cases were retrospectively identified in patients who had kissing lesions and second-look arthroscopies with a minimum of 1 year of follow-up. At the final follow-up of mean 18.7 months (standard deviation = 4.6 months), clinical outcomes in both groups had improved. However, there were no significant differences between the IKDC, WOMAC, or KSS pain and function scores in the 2 groups (P > .05). At second-look arthroscopy, the ICRS grade was significantly better in the hUCB-MSC group than in the BMAC group in both medial femoral and medial tibial cartilage (P = .001 for both). The average ICRS grade of the BMAC group improved from 3.9 before surgery to 2.8 after surgery. The average ICRS grade of the hUBC-MSC group improved from 3.9 before surgery to 2.0 after surgery. Radiological findings comparing postoperative HKA angle, posterior tibial slope angle, and correction angle showed no significant differences between the groups (P > .05). Therefore it was found that the postoperative correction amount did not affect the postoperative cartilage regeneration results. CONCLUSIONS We found that the hUCB-MSC procedure was more effective than the BMAC procedure for cartilage regeneration in medial unicompartmental knee OA even though the clinical outcomes improved regardless of which treatment was administered. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Nam-Hun Lee
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Seung-Min Na
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Hyeon-Wook Ahn
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Joon-Kyoo Kang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Jong-Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea.
| | - Eun-Kyoo Song
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| |
Collapse
|
35
|
Zheng W, Li H, Hu K, Li L, Bei M. Chondromalacia patellae: current options and emerging cell therapies. Stem Cell Res Ther 2021; 12:412. [PMID: 34275494 PMCID: PMC8287755 DOI: 10.1186/s13287-021-02478-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023] Open
Abstract
Chondromalacia patellae (CMP), also known as runner’s knee, typically occurs in young patients, which is characterized by anterior knee pain (AKP) that is associated with visible changes in patellar cartilage. The initial pathological changes include cartilage softening, swelling, and edema. CMP is caused by several factors, including trauma, increased cartilage vulnerability, patellofemoral instability, bony anatomic variations, abnormal patellar kinematics, and occupation hazards. CMP may be reversible or may progress to develop patellofemoral osteoarthritis. Quadriceps wasting, patellofemoral crepitus, and effusion are obvious clinical indications. Additionally, radiological examinations are also necessary for diagnosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic method, which holds a promise in having the unique ability to potentially identify cartilage lesions. Modalities are conventionally proposed to treat cartilage lesions in the PF joint, but none have emerged as a gold standard, neither to alleviated symptoms and function nor to prevent OA degeneration. Recently, researchers have been focused on cartilage-targeted therapy. Various efforts including cell therapy and tissue emerge for cartilage regeneration exhibit as the promising regime, especially in the application of mesenchymal stem cells (MSCs). Intra-articular injections of variously sourced MSC are found safe and beneficial for treating CMP with improved clinical parameters, less invasiveness, symptomatic relief, and reduced inflammation. The mechanism of MSC injection remains further clinical investigation and is tremendously promising for CMP treatment. In this short review, etiology, MRI diagnosis, and treatment in CMP, especially the treatment of the cell-based therapies, are reviewed.
Collapse
Affiliation(s)
- Weitao Zheng
- Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.,Shanxi Yinmei Technology Co., Taiyuan Economic and Technological Development Zone, Room 301, No. 8, East Street, Taiyuan, China
| | - Hanluo Li
- Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Kanghong Hu
- Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Liming Li
- Shanxi Yinmei Technology Co., Taiyuan Economic and Technological Development Zone, Room 301, No. 8, East Street, Taiyuan, China
| | - Mingjian Bei
- Department of Orthopedic Surgery, Emergency General Hospital, Xibahenanli29, Chaoyang dis, Beijing, 100028, China.
| |
Collapse
|
36
|
Chung MJ, Son JY, Park S, Park SS, Hur K, Lee SH, Lee EJ, Park JK, Hong IH, Kim TH, Jeong KS. Mesenchymal Stem Cell and MicroRNA Therapy of Musculoskeletal Diseases. Int J Stem Cells 2021; 14:150-167. [PMID: 33377459 PMCID: PMC8138662 DOI: 10.15283/ijsc20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.
Collapse
Affiliation(s)
- Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Soon-Seok Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Keun Hur
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Tae-Hwan Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
37
|
Research Progress on Stem Cell Therapies for Articular Cartilage Regeneration. Stem Cells Int 2021; 2021:8882505. [PMID: 33628274 PMCID: PMC7895563 DOI: 10.1155/2021/8882505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately, current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.
Collapse
|
38
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:6. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
Affiliation(s)
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n, 28041 Madrid, Spain;
| |
Collapse
|
39
|
Chung YW, Yang HY, Kang SJ, Song EK, Seon JK. Allogeneic umbilical cord blood-derived mesenchymal stem cells combined with high tibial osteotomy: a retrospective study on safety and early results. INTERNATIONAL ORTHOPAEDICS 2020; 45:481-488. [PMID: 33068146 DOI: 10.1007/s00264-020-04852-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/09/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cartilage repair performed as a single-stage procedure is an important advancement in the treatment of full-thickness cartilage injury and has potential for widespread clinical use. PURPOSE To investigate the short-term outcomes and cartilage regeneration after implantation of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in patients who received high tibial osteotomy (HTO) for symptomatic medial knee osteoarthritis. METHODS Patients underwent treatment of full-thickness chondral injury in the osteoarthritic knee with HTO and implantation of hUCB-MSCs and were followed prospectively for a minimum of one year. Ninety-three patients were followed for a mean 1.7 years (range, 1.0-3.5). Median cartilage lesion size was 6.5 cm2 (range, 2.0-12.8). Clinical outcomes were examined with patient-reported scoring instruments that consisted of the International Knee Documentation Committee (IKDC) subjective score, Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score, Knee Society Score (KSS), and Hospital for Special Surgery (HSS) score. Cartilage regeneration was evaluated using the International Cartilage Repair Society (ICRS) cartilage repair assessment grading (CRA) system and the Koshino regeneration staging system in 49 patients who underwent second look arthroscopic assessment when their HTO plates were removed. RESULTS At final follow-up, the median IKDC subjective score had significantly improved from 39.0 to 71.3; the WOMAC score from 44.5 to 11.0; the KSS pain and function scores from 29.8 to 43.2 and 61.0 to 81.2, respectively; and the HSS from 61.6 to 82.7 (p < 0.05). Pre-operative examination showed ICRS grade IV cartilage injury in all knees, and cartilage regeneration at 2nd look arthroscopy showed improvements (8.2% of patients improved to ICRS grade I, 69.3% to grade II, and 22.5% to grade III). Moreover, Koshino stage was B in 24.5% and C in 75.5% of patients (p < 0.05). CONCLUSION Allogeneic hUCB-MSC implantation combined with HTO for medial knee osteoarthritis was safe and showed signs of cartilage status improvement. Furthermore, randomized controlled studies with a control group are necessary to determine the real effectiveness and indications of this new combined procedure for patients with osteoarthritis.
Collapse
Affiliation(s)
- Young-Woo Chung
- Department of Orthopedic Surgery, Gwangju Veterans Hospital, Gwangju, Republic of Korea
| | - Hong-Yeol Yang
- Center for Joint Disease, Chonnam National University Bitgoeul Hospital, 80, Deoknamgil, Nam-gu, Gwangju, Republic of Korea
| | - Sung-Ju Kang
- Center for Joint Disease, Chonnam National University Bitgoeul Hospital, 80, Deoknamgil, Nam-gu, Gwangju, Republic of Korea
| | - Eun-Kyoo Song
- Center for Joint Disease, Chonnam National University Bitgoeul Hospital, 80, Deoknamgil, Nam-gu, Gwangju, Republic of Korea
| | - Jong-Keun Seon
- Center for Joint Disease, Chonnam National University Bitgoeul Hospital, 80, Deoknamgil, Nam-gu, Gwangju, Republic of Korea.
| |
Collapse
|
40
|
Pham PV, Vu NB. Off-the-shelf mesenchymal stem cells from human umbilical cord tissue can significantly improve symptoms in COVID-19 patients: An analysis of evidential relations. World J Stem Cells 2020; 12:721-730. [PMID: 32952854 PMCID: PMC7477657 DOI: 10.4252/wjsc.v12.i8.721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients.
Collapse
Affiliation(s)
- Phuc Van Pham
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| | - Ngoc Bich Vu
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| |
Collapse
|
41
|
Song JS, Hong KT, Kong CG, Kim NM, Jung JY, Park HS, Kim YJ, Chang KB, Kim SJ. High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration. World J Stem Cells 2020; 12:514-526. [PMID: 32742568 PMCID: PMC7360989 DOI: 10.4252/wjsc.v12.i6.514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High tibial osteotomy (HTO) is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity. However, HTO alone cannot adequately repair the arthritic joint, necessitating cartilage regeneration therapy. Cartilage regeneration procedures with concomitant HTO are used to improve the clinical outcome in patients with varus deformity.
AIM To evaluate cartilage regeneration after implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with concomitant HTO.
METHODS Data for patients who underwent implantation of hUCB-MSCs with concomitant HTO were evaluated. The patients included in this study were over 40 years old, had a varus deformity of more than 5°, and a full-thickness International Cartilage Repair Society (ICRS) grade IV articular cartilage lesion of more than 4 cm2 in the medial compartment of the knee. All patients underwent second-look arthroscopy during hardware removal. Cartilage regeneration was evaluated macroscopically using the ICRS grading system in second-look arthroscopy. We also assessed the effects of patient characteristics, such as trochlear lesions, age, and lesion size, using patient medical records.
RESULTS A total of 125 patients were included in the study, with an average age of 58.3 ± 6.8 years (range: 43-74 years old); 95 (76%) were female and 30 (24%) were male. The average hip-knee-ankle (HKA) angle for measuring varus deformity was 7.6° ± 2.4° (range: 5.0-14.2°). In second-look arthroscopy, the status of medial femoral condyle (MFC) cartilage was as follows: 73 (58.4%) patients with ICRS grade I, 37 (29.6%) with ICRS grade II, and 15 (12%) with ICRS grade III. No patients were staged with ICRS grade IV. Additionally, the scores [except International Knee Documentation Committee (IKDC) at 1 year] of the ICRS grade I group improved more significantly than those of the ICRS grade II and III groups.
CONCLUSION Implantation of hUCB-MSCs with concomitant HTO is an effective treatment for patients with medial compartment osteoarthritis and varus deformity. Regeneration of cartilage improves the clinical outcomes for the patients.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Chae-Gwan Kong
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Jae-Yub Jung
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Han-Soo Park
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Young Ju Kim
- Department of Nursing Education & Administration, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Ki Bong Chang
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| |
Collapse
|
42
|
Arrigoni C, D’Arrigo D, Rossella V, Candrian C, Albertini V, Moretti M. Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells 2020; 9:cells9061343. [PMID: 32481562 PMCID: PMC7348802 DOI: 10.3390/cells9061343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of arthritic diseases is increasing in developed countries, but effective treatments are currently lacking. The injection of mesenchymal stem cells (MSCs) represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA). However, the majority of clinical approaches based on MSCs are used within an autologous paradigm, with important limitations. For this reason, allogeneic MSCs isolated from cord blood (cbMSCs) and Wharton’s jelly (wjMSCs) gained increasing interest, demonstrating promising results in this field. Moreover, recent evidences shows that MSCs beneficial effects can be related to their secretome rather than to the presence of cells themselves. Among the trophic factors secreted by MSCs, extracellular vesicles (EVs) are emerging as a promising candidate for the treatment of arthritic joints. In the present review, the application of umbilical cord MSCs and their secretome as innovative therapeutic approaches in the treatment of arthritic joints will be examined. With the prospective of routine clinical applications, umbilical cord MSCs and EVs will be discussed also within an industrial and regulatory perspective.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
| | - Daniele D’Arrigo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
| | - Valeria Rossella
- Swiss Stem Cells Biotech, Via Pizzamiglio 12, 6833 Vacallo, Switzerland; (V.R.); (V.A.)
| | - Christian Candrian
- Unità di Ortopedia e Traumatologia, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via Buffi 13, 6900 Lugano, Switzerland
| | - Veronica Albertini
- Swiss Stem Cells Biotech, Via Pizzamiglio 12, 6833 Vacallo, Switzerland; (V.R.); (V.A.)
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900 Lugano, Switzerland; (C.A.); (D.D.)
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, via R. Galeazzi 4., 20161 Milano, Italy
- Correspondence: ; Tel.: +41-91-811-7076
| |
Collapse
|