1
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2025; 14:e2400496. [PMID: 38850170 PMCID: PMC11834377 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Ciências Biomédicas Abel SalazarUniversidade do Porto – ICBASRua Jorge de Viterbo Ferreira 228Porto4050–313Portugal
| | - Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Escola Superior de SaúdeInstituto Politécnico do PortoRua Dr. António Bernardino de Almeida 400Porto4200‐072Portugal
| | - Bruno Sarmento
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Universitário de Ciências da Saúde – IUCS‐CESPURua Central de Gandra, 1317Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| |
Collapse
|
2
|
Elkhenany HA, Linardi RL, Ortved KF. Differential modulation of inflammatory cytokines by recombinant IL-10 in IL-1β and TNF-α ̶ stimulated equine chondrocytes and synoviocytes: impact of washing and timing on cytokine responses. BMC Vet Res 2024; 20:546. [PMID: 39623412 PMCID: PMC11610082 DOI: 10.1186/s12917-024-04403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) remains a challenging joint disorder necessitating effective anti-inflammatory interventions. In this study, our primary objective was to establish an in vitro protocol that replicates the clinical investigation of anti-inflammatory drugs intended for OA management. Focusing on recombinant IL-10 (r.IL-10) as a potential anti-inflammatory treatment, we designed and implemented two distinct protocols to evaluate the efficacy of r.IL-10 in modulating chondrocyte and synoviocyte inflammation.The experimental design involved sequential stimulation with IL-1β and TNF-α for 24 h, followed by washing (model 1) or not washing (model 2) the cells before r.IL-10 treatment. Samples were collected after 6-24 h of treatment. Cellular responses were evaluated by quantifying gene expression and synthesis of key inflammatory cytokines and proteases.The expression and synthesis of inflammatory cytokines and proteases was significantly affected by washing and treatment time. The expression of IL-1β, TNF-α, IL-8, MMP-13, and ADAMTS5 were effectively reduced in r.IL-10-treated chondrocytes and synoviocytes in model 2 after 24 h, particularly at concentrations of 10 and 20 ng/mL. r.IL-10 treatment significantly increased IL-6 gene expression in chondrocytes at all time points. However, in synoviocytes, IL-6 expression was significantly lower in model 2 after 24 h of r.IL-10 treatment. r.IL-10 treatment significantly decreased IL-1β and TNF-α content in synoviocyte supernatants, particularly in model 2 at concentrations of 10 and 20 ng/mL after 6 and 24 h. r.IL-10 treatment in chondrocytes led to a significant decrease in IL-1β supernatant concentrations in model 2 after 24 h only.This study demonstrated that r.IL-10 treatment effectively reduces key inflammatory markers and matrix metalloproteinase activity in both chondrocytes and synoviocytes, particularly in model 2 where cells were not washed prior to treatment. These findings highlight r.IL-10's potential as a robust anti-inflammatory agent for OA management and suggest its critical role in developing effective therapeutic strategies for OA.
Collapse
Affiliation(s)
- Hoda A Elkhenany
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA, 19348, USA
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Renata L Linardi
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA, 19348, USA
| | - Kyla F Ortved
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, 382 West Street Road, Kennett Square, PA, 19348, USA.
| |
Collapse
|
3
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Holanda FH, Ribeiro AN, Sánchez-Ortiz BL, de Souza GC, Borges SF, Ferreira AM, Florentino AC, Yoshioka SA, Moraes LS, Carvalho JCT, Ferreira IM. Anti-inflammatory potential of baicalein combined with silk fibroin protein in a zebrafish model (Danio rerio). Biotechnol Lett 2023; 45:235-253. [PMID: 36550336 PMCID: PMC9778464 DOI: 10.1007/s10529-022-03334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Arlefe N Ribeiro
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Brenda L Sánchez-Ortiz
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Gisele C de Souza
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Swanny F Borges
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Adriana M Ferreira
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Alexandro C Florentino
- Laboratório de Ictio e Genotoxidade, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Sérgio A Yoshioka
- Biochemistry and Biomaterials Laboratory, Institute of Chemistry of São Carlos, University of São Paulo, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Lienne S Moraes
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - José Carlos T Carvalho
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil.
| |
Collapse
|
5
|
Ye Y, Zhou J. The protective activity of natural flavonoids against osteoarthritis by targeting NF-κB signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1117489. [PMID: 36998478 PMCID: PMC10043491 DOI: 10.3389/fendo.2023.1117489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoarthritis (OA) is a typical joint disease associated with chronic inflammation. The nuclear factor-kappaB (NF-κB) pathway plays an important role in inflammatory activity and inhibiting NF-κB-mediated inflammation can be a potential strategy for treating OA. Flavonoids are a class of naturally occurring polyphenols with anti-inflammatory properties. Structurally, natural flavonoids can be divided into several sub-groups, including flavonols, flavones, flavanols/catechins, flavanones, anthocyanins, and isoflavones. Increasing evidence demonstrates that natural flavonoids exhibit protective activity against the pathological changes of OA by inhibiting the NF-κB signaling pathway. Potentially, natural flavonoids may suppress NF-κB signaling-mediated inflammatory responses, ECM degradation, and chondrocyte apoptosis. The different biological actions of natural flavonoids against the NF-κB signaling pathway in OA chondrocytes might be associated with the differentially substituted groups on the structures. In this review, the efficacy and action mechanism of natural flavonoids against the development of OA are discussed by targeting the NF-κB signaling pathway. Potentially, flavonoids could become useful inhibitors of the NF-κB signaling pathway for the therapeutic management of OA.
Collapse
Affiliation(s)
- Yongjun Ye
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Jianguo Zhou,
| |
Collapse
|
6
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
7
|
Intra-articular Injection of Baicalein Inhibits Cartilage Catabolism and NLRP3 Inflammasome Signaling in a Posttraumatic OA Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6116890. [PMID: 34512868 PMCID: PMC8433010 DOI: 10.1155/2021/6116890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Baicalein has been shown to have chondroprotective potential in vitro. However, its effect on disease modification in osteoarthritis (OA) is largely unknown. The present study is aimed at determining whether baicalein could slow the progression of OA and inhibit OA-related inflammation in a rat model of destabilization of the medial meniscus (DMM) and the underlying mechanisms. The rats subjected to DMM surgery were treated with baicalein (0.8, 1.6, and 3.2 μg/L, 50 μL, once a week) by intra-articular injection for 6 weeks. Dexamethasone (0.4 mg/mL, 50 μL, once a week) was used as a positive control. Histologic grading of cartilage degeneration was performed using the Osteoarthritis Research Society International (OARSI) recommended grading system (on a scale of 0-6). The expression levels of molecules associated with cartilage homeostasis and inflammatory cytokines were analyzed; moreover, the NLRP3 inflammasome activation and cartilage oxidative stress-associated molecules were determined. Baicalein treatment reduced the OARSI score and slowed OA disease progression in a dose-dependent manner within a certain range. Compared with DMM rats, intra-articular injection of baicalein led to (1) reduced levels of inflammatory mediates such as IL-1β and TNF-α, (2) reduced immunochemical staining of MMP-13 and ADAMTS-5, (3) suppressed immunochemical staining loss of type II collagen, (4) reduced expression of cartilage degradation markers including CTX-II and COMP in urine, and (5) inhibited NLRP3 inflammasome activation rather than regulated expression of SOD, GSH, and MDA. In contrast to the administration of baicalein, dexamethasone injection showed similar effects to slow OA progression, while dexamethasone inhibited NLRP3 inflammasome partly through decreasing levels of SOD, GSH, and MDA. This study indicated that baicalein may have the potential for OA prevention and exerts anti-inflammatory effects partly via suppressing NLRP3 inflammasome activation without affecting oxidative stress-associated molecules, and inhibition of cartilage catabolism enzymes in an OA rat model.
Collapse
|
8
|
Wu WT, Chen YR, Lu DH, Senatov FS, Yang KC, Wang CC. Silymarin modulates catabolic cytokine expression through Sirt1 and SOX9 in human articular chondrocytes. J Orthop Surg Res 2021; 16:147. [PMID: 33610183 PMCID: PMC7896383 DOI: 10.1186/s13018-021-02305-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Background Silymarin (SMN), a polyphenolic flavonoid, is involved in multiple bioactive functions including anti-inflammation. Pretreatment with SMN demonstrated chondroprotection against tumour necrosis factor-alpha (TNF-α) stimulation in a chondrocyte cell line. However, pre- and posttreatment with phytochemicals have varying effects on osteoarthritis (OA) chondrocytes, and the therapeutic potential of SMN after catabolic cytokine stimulation is not fully elucidated. Methods The cytotoxicity of SMN (12.5, 25, 50 and 100 μM) was evaluated in human primary chondrocytes. The chondrocytes were supplemented with SMN (25 and 50 μM) after interleukin-1beta (IL-1β) stimulation. The mRNA expression and protein production of catabolic/anabolic cytokines as well as extracellular matrix (ECM) components were evaluated. Results High-dose SMN (100 μM) impaired the mitochondrial activity in chondrocytes, and 50 μM SMN further caused cell death in IL-1β-stimulated cells. The addition of 25 μM SMN ameliorated cell senescence; downregulated the catabolic genes of inducible nitric oxide synthase, IL-1β, TNF-α, matrix metalloproteinase-3 (MMP-3), MMP-9 and MMP-13; upregulated the anabolic genes of tissue inhibitor of metalloproteinase-1 (TIMP-1) and collagen type II alpha 1; and restored the expression of chondrogenic phenotype genes SOX9 and sirtuin-1 (Sirt1). In addition, the production of IL-1β, MMP-3 and MMP-9 decreased with an increase in TIMP-1 secretion. However, the mRNA levels of IL-6, IL-8 and IL-10 and protein production remained high. The addition of nicotinamide, a Sirt1 inhibitor, downregulated SOX9 and attenuated the therapeutic effects of SMN on IL-1β-stimulated chondrocytes. Conclusion SMN regulates the chondrocyte phenotype through Sirt1 and SOX9 to improve ECM homeostasis and may serve as a complementary therapy for early-stage knee OA.
Collapse
Affiliation(s)
- Wen-Tien Wu
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan.,Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Ru Chen
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist, Taipei, 11031, Taiwan
| | - Dai-Hua Lu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist, Taipei, 11031, Taiwan
| | - Fedor Svyatoslavovich Senatov
- Researcher of the Centre for Composite Materials, National University of Science and Technology MISIS, Moscow, Russia
| | - Kai-Chiang Yang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan. .,School of Dental Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist, Taipei, 11031, Taiwan.
| | - Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan. .,Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Xu C, Fang MY, Wang K, Liu J, Tai GP, Zhang ZT, Ruan BF. Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds. Curr Top Med Chem 2020; 20:2578-2598. [PMID: 32972343 DOI: 10.2174/1568026620666200924115611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are compounds based on a 2-phenylchromonone scaffold. Flavonoids can be divided into flavonoids, flavonols, dihydroflavones, anthocyanins, chalcones and diflavones according to the oxidation degree of the central tricarbonyl chain, the connection position of B-ring (2-or 3-position), and whether the tricarbonyl chain forms a ring or not. There are a variety of biological activities about flavonoids, such as anti-inflammatory activity, anti-oxidation and anti-tumor activity, and the antiinflammatory activity is apparent. This paper reviews the anti-inflammatory activities and mechanisms of flavonoids and their derivatives reported in China and abroad from 2011 till date (2011-2020), in order to find a good drug scaffold for the study of anti-inflammatory activities.
Collapse
Affiliation(s)
- Chen Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Yuan Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ke Wang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Jing Liu
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guang-Ping Tai
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| | - Zhao-Ting Zhang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China,Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| |
Collapse
|