1
|
Muangkaew W, Thanomsridetchai N, Tangwattanachuleeporn M, Ampawong S, Sukphopetch P. Unveiling Lodderomyces elongisporus as an Emerging Yeast Pathogen: A Holistic Approach to Microbiological Diagnostic Strategies. Mycopathologia 2024; 189:94. [PMID: 39466469 PMCID: PMC11519285 DOI: 10.1007/s11046-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Lodderomyces elongisporus, first isolated in 1952, has increasingly been recognized as a significant pathogen, with a notable rise in human infections since the 1970s. Initially misidentified as Candida parapsilosis due to morphological similarities, L. elongisporus has now been conclusively established as a distinct species, largely due to advancements in molecular biology, particularly DNA sequencing. This review traces the detection history of L. elongisporus, from the earliest documented cases to the most recent reports, underscoring its role as a causative agent in human infections. It also explores therapeutic strategies that have demonstrated efficacy, alongside instances of environmental contamination reported in international literature. A critical evaluation of diagnostic methodologies essential for precise identification is provided, including culture-based techniques such as colony morphology on Sabouraud Dextrose Agar (SDA) and chromogenic media, coupled with microscopic assessments using Lactophenol Cotton Blue (LPCB) and Gram staining. The ultrastructure of L. elongisporus, as observed under Scanning Electron Microscopy (SEM), is also discussed. Furthermore, non-culture-based diagnostics, such as sugar utilization tests (API 20C AUX and the innovative in-house arabinose-based "Loddy" test) and antifungal susceptibility profiling, are reviewed, with a particular focus on molecular tools like ITS-DNA sequencing and MALDI-TOF MS, which, despite their higher costs, offer unparalleled specificity. The accurate distinction and characterization of L. elongisporus are paramount, particularly in vulnerable and immunocompromised patients, where misdiagnosis can lead to severe consequences. This review advocates for intensified research efforts to develop more accessible diagnostic tools and deepen our understanding of this emerging pathogen, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
3
|
da Silva CM, de Carvalho AMR, Macêdo DPC, Jucá MB, Amorim RDJM, Neves RP. Candidemia in Brazilian neonatal intensive care units: risk factors, epidemiology, and antifungal resistance. Braz J Microbiol 2023; 54:817-825. [PMID: 36892755 PMCID: PMC10235359 DOI: 10.1007/s42770-023-00943-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Candidemia is responsible for substantial morbidity and mortality in neonatal intensive care units and represents a challenge due to the complexity of hospitalized neonates, the deficiency in approved and precise diagnostic techniques, and the increasing number of species resistant to antifungal agents. Thus, the objective of this study was to detect candidemia among neonates evaluating the risk factors, epidemiology, and antifungal susceptibility. Blood samples were obtained from neonates with suspected septicemia, and the mycological diagnosis was based on yeast growth in culture. The fungal taxonomy was based on classic identification, automated system, and proteomic, when necessary molecular tools were used. The in vitro susceptibility tests were performed according to the broth microdilution method from Clinical and Laboratory Standards Institute. Statistical analysis was performed using the R software version R-4.2.2. The prevalence of neonatal candidemia was 10.97%. The major risk factors involved were previous use of parenteral nutrition, exposure to broad-spectrum antibiotics, prematurity, and prior use central venous catheter, but only this last was statistically associated with mortality risk. Species from Candida parapsilosis complex and C. albicans were the most frequent. All isolates were susceptible to amphotericin B, except C. haemulonii that also exhibited elevated MICs to fluconazole. C. parapsilosis complex and C. glabrata exhibit the highest MICs to echinocandins. Considering these data, we emphasize that an effective management strategy to reduce the impact of neonatal candidemia should involve the knowledge of risk factors, rapid and precise mycological diagnostic, and tests of antifungal susceptibility to help in the selection of an appropriate treatment.
Collapse
Affiliation(s)
- Carolina Maria da Silva
- Medical Course, University of Pernambuco, Gregório Ferraz Nogueira Avenue, José Tomé de Souza Ramos, Serra Talhada, PE, 56909-535, Brazil.
| | | | | | - Moacir Batista Jucá
- Neonatal Intensive Care Unit, Agamenon Magalhães Hospital, Recife, PE, Brazil
| | | | | |
Collapse
|
4
|
Yamin D, Akanmu MH, Al Mutair A, Alhumaid S, Rabaan AA, Hajissa K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:188. [PMID: 36006280 PMCID: PMC9416642 DOI: 10.3390/tropicalmed7080188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A reliable estimate of Candida parapsilosis antifungal susceptibility in candidemia patients is increasingly important to track the spread of C. parapsilosis bloodstream infections and define the true burden of the ongoing antifungal resistance. A systematic review and meta-analysis (SRMA) were conducted aiming to estimate the global prevalence and identify patterns of antifungal resistance. A systematic literature search of the PubMed, Scopus, ScienceDirect and Google Scholar electronic databases was conducted on published studies that employed antifungal susceptibility testing (AFST) on clinical C. parapsilosis isolates globally. Seventy-nine eligible studies were included. Using meta-analysis of proportions, the overall pooled prevalence of three most important antifungal drugs; Fluconazole, Amphotericin B and Voriconazole resistant C. parapsilosis were calculated as 15.2% (95% CI: 9.2-21.2), 1.3% (95% CI: 0.0-2.9) and 4.7% (95% CI: 2.2-7.3), respectively. Based on study enrolment time, country/continent and AFST method, subgroup analyses were conducted for the three studied antifungals to determine sources of heterogeneity. Timeline and regional differences in C. parapsilosis prevalence of antifungal resistance were identified with the same patterns among the three antifungal drugs. These findings highlight the need to conduct further studies to assess and monitor the growing burden of antifungal resistance, to revise treatment guidelines and to implement regional surveillance to prevent further increase in C. parapsilosis drug resistance emerging recently.
Collapse
Affiliation(s)
- Dina Yamin
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Mutiat Hammed Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| |
Collapse
|
5
|
|
6
|
Verma R, Pradhan D, Hasan Z, Singh H, Jain AK, Khan LA. A systematic review on distribution and antifungal resistance pattern of Candida species in the Indian population. Med Mycol 2021; 59:1145-1165. [PMID: 34625811 DOI: 10.1093/mmy/myab058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence of antifungal drug resistance in Candida species has led to increased morbidity and mortality in immunocompromised patients. Understanding species distribution and antifungal drug resistance patterns is an essential step for novel drug development. A systematic review was performed addressing this challenge in India with keywords inclusive of 'Candida', 'Antifungal Drug Resistance', 'Candidemia', 'Candidiasis' and 'India'. A total of 106 studies (January 1978-March 2020) from 20 Indian states were included. Of over 11,429 isolates, Candida albicans was the major species accounting for 37.95% of total isolates followed by C. tropicalis (29.40%), C. glabrata (11.68%) and C. parapsilosis (8.36%). Rates of antifungal resistance were highest in non-albicans Candida (NAC) species - C. haemuloni (47.16%), C. krusei (28.99%), C. lipolytica (28.89%) and C. glabrata (20.69%). Approximately 10.34% isolates of C. albicans were observed to be drug-resistant. Candida species were frequently resistant to certain azoles (ketoconazole-22.2%, miconazole-22.1% and fluconazole-21.8%). In conclusion, the present systematic review illustrates the overall distribution and antifungal resistance pattern of Candida species among the Indian population that could be helpful in the future for the formation of treatment recommendations for the region but also elsewhere.
Collapse
Affiliation(s)
- Rashi Verma
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Dibyabhaba Pradhan
- Indian Council of Medical Research - Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
| | - Ziaul Hasan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Harpreet Singh
- Indian Council of Medical Research - Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | | |
Collapse
|
7
|
Zheng YJ, Xie T, Wu L, Liu XY, Zhu L, Chen Y, Mao EQ, Han LZ, Chen EZ, Yang ZT. Epidemiology, species distribution, and outcome of nosocomial Candida spp. bloodstream infection in Shanghai: an 11-year retrospective analysis in a tertiary care hospital. Ann Clin Microbiol Antimicrob 2021; 20:34. [PMID: 33985505 PMCID: PMC8120712 DOI: 10.1186/s12941-021-00441-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The incidence of Candida bloodstream infections (BSIs), has increased over time. In this study, we aimed to describe the current epidemiology of Candida BSI in a large tertiary care hospital in Shanghai and to determine the risk factors of 28-day mortality and the impact of antifungal therapy on clinical outcomes. METHODS All consecutive adult inpatients with Candida BSI at Ruijin Hospital between January 1, 2008, and December 31, 2018, were enrolled. Underlying diseases, clinical severity, species distribution, antifungal therapy, and their impact on the outcomes were analyzed. RESULTS Among the 370 inpatients with 393 consecutive episodes of Candida BSI, the incidence of nosocomial Candida BSI was 0.39 episodes/1000 hospitalized patients. Of the 393 cases, 299 (76.1%) were treated with antifungal therapy (247 and 52 were treated with early appropriate and targeted antifungal therapy, respectively). The overall 28-day mortality rate was 28.5%, which was significantly lower in those who received early appropriate (25.5%) or targeted (23.1%) antifungal therapy than in those who did not (39.4%; P = 0.012 and P = 0.046, respectively). In multivariate Cox regression analysis, age, chronic renal failure, mechanical ventilation, and severe neutropenia were found to be independent risk factors of the 28-day mortality rate. Patients who received antifungal therapy had a lower mortality risk than did those who did not. CONCLUSIONS The incidence of Candida BSI has increased steadily in the past 11 years at our tertiary care hospital in Shanghai. Antifungal therapy influenced short-term survival, but no significant difference in mortality was observed between patients who received early appropriate and targeted antifungal therapy.
Collapse
Affiliation(s)
- Yan-Jun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Xie
- Emergency Center, Suining Central Hospital, Suining, 629000, Sichuan Province, China
| | - Lin Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ying Liu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Emergency, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li-Zhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Er-Zhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Tao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Pôle Sino-Français de Recherches en Science du Vivant Et Génomique, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Guo J, Zhang M, Qiao D, Shen H, Wang L, Wang D, Li L, Liu Y, Lu H, Wang C, Ding H, Zhou S, Zhou W, Wei Y, Zhang H, Xi W, Zheng Y, Wang Y, Tang R, Zeng L, Xu H, Wu W. Prevalence and Antifungal Susceptibility of Candida parapsilosis Species Complex in Eastern China: A 15-Year Retrospective Study by ECIFIG. Front Microbiol 2021; 12:644000. [PMID: 33746933 PMCID: PMC7969513 DOI: 10.3389/fmicb.2021.644000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Candida parapsilosis complex is one of the most common non-albicans Candida species that cause candidemia, especially invasive candidiasis. The purpose of this study was to evaluate the antifungal susceptibilities of both colonized and invasive clinical C. parapsilosis complex isolates to 10 drugs: amphotericin (AMB), anidulafungin (AFG), caspofungin (CAS), micafungin (MFG), fluconazole (FLZ), voriconazole (VRZ), itraconazole (ITZ), posaconazole (POZ), 5-flucytosine (FCY), and isaconazole (ISA). In total, 884 C. parapsilosis species complex isolates were gathered between January 2005 and December 2020. C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis accounted for 86.3, 8.1, and 5.5% of the cryptic species, respectively. The resistance/non-wild-type rate of bloodstream C. parapsilosis to the drugs was 3.5%, of C. metapsilosis to AFG and CAS was 7.7%, and of C. orthopsilosis to FLZ and VRZ was 15% and to CAS, MFG, and POZ was 5%. The geometric mean (GM) minimum inhibitory concentrations (MICs) of non-bloodstream C. parapsilosis for CAS (0.555 mg/L), MFG (0.853 mg/L), FLZ (0.816 mg/L), VRZ (0.017 mg/L), ITZ (0.076 mg/L), and POZ (0.042 mg/L) were significantly higher than those of bloodstream C. parapsilosis, for which the GM MICs were 0.464, 0.745, 0.704, 0.015, 0.061, and 0.033 mg/L, respectively (P < 0.05). The MIC distribution of the bloodstream C. parapsilosis strains collected from 2019 to 2020 for VRZ, POZ, and ITZ were 0.018, 0.040, and 0.073 mg/L, significantly higher than those from 2005 to 2018, which were 0.013, 0.028, and 0.052 mg/L (P < 0.05). Additionally, MIC distributions of C. parapsilosis with FLZ and the distributions of C. orthopsilosis with ITZ and POZ might be higher than those in Clinical and Laboratory Standards Institute studies. Furthermore, a total of 143 C. parapsilosis complex isolates showed great susceptibility to ISA. Overall, antifungal treatment of the non-bloodstream C. parapsilosis complex isolates should be managed and improved. The clinicians are suggested to pay more attention on azoles usage for the C. parapsilosis complex isolates. In addition, establishing the epidemiological cutoff values (ECVs) for azoles used in Eastern China may offer better guidance for clinical treatments. Although ISA acts on the same target as other azoles, it may be used as an alternative therapy for cases caused by FLZ- or VRZ-resistant C. parapsilosis complex strains.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Qiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongjiang Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Huaiwei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Chun Wang
- Department of Laboratory Medicine, Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ding
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Shuping Zhou
- Department of Laboratory Medicine, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yingjue Wei
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xi
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Lingbing Zeng,
| | - Heping Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Heping Xu,
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wenjuan Wu,
| |
Collapse
|
9
|
Cheng R, Li W, Sample KM, Xu Q, Liu L, Yu F, Nie Y, Zhang X, Luo Z. Characterization of the transcriptional response of Candida parapsilosis to the antifungal peptide MAF-1A. PeerJ 2020; 8:e9767. [PMID: 33194346 PMCID: PMC7482638 DOI: 10.7717/peerj.9767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
Candida parapsilosis is a major fungal pathogen that leads to sepsis. New and more effective antifungal agents are required due to the emergence of resistant fungal strains. MAF-1A is a cationic antifungal peptide isolated from Musca domestica that is effective against a variety of Candida species. However, the mechanism(s) of its antifungal activity remains undefined. Here, we used RNA-seq to identify differentially expressed genes (DEGs) in Candida parapsilosis following MAF-1A exposure. The early (6 h) response included 1,122 upregulated and 1,065 downregulated genes. Late (18 h) responses were associated with the increased expression of 101 genes and the decreased expression of 151 genes. Upon MAF-1A treatment for 18 h, 42 genes were upregulated and 25 genes were downregulated. KEGG enrichment showed that the DEGs in response to MAF-1A were mainly involved in amino acid synthesis and metabolism, oxidative phosphorylation, sterol synthesis, and apoptosis. These results indicate that MAF-1A exerts antifungal activity through interference with Candida parapsilosis cell membrane integrity and organelle function. This provides new insight into the interaction between Candida parapsilosis and this antimicrobial peptide and serves as a reference for future Candida parapsilosis therapies.
Collapse
Affiliation(s)
- Rong Cheng
- Guizhou University School of Medicine, Guiyang, China
| | - Wei Li
- Department of Cadiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Klarke M Sample
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiang Xu
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fuxun Yu
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yingjie Nie
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
10
|
Modiri M, Hashemi SJ, GhazvinI RD, Khodavaisy S, Ahmadi A, Ghaffari M, Rezaie S. Antifungal susceptibility pattern and biofilm-related genes expression in planktonic and biofilm cells of Candida parapsilosis species complex. Curr Med Mycol 2020; 5:35-42. [PMID: 32104742 PMCID: PMC7034785 DOI: 10.18502/cmm.5.4.1950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose: Candida parapsilosis complex isolates are mainly responsible for nosocomial catheter-related infection in immunocompromised patients. Biofilm formation is regarded as one of the most pertinent key virulence factors in the development of these emerging infections. The present study aimed to compare in vitro antifungal susceptibility patterns and biofilm-related genes expression ratio in planktonic and biofilm’s cells of clinically C. parapsilosis complex isolates. Materials and Methods: The current study was conducted on a number of 17 clinical C. parapsilosis complex (10 C. parapsilosis sensu stricto, 5 C. orthopsilosis, and 2 C. metapsilosis). The antifungal susceptibility patterns of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, and caspofungin in planktonic and biofilm forms were closely examined using CLSI M27-A3 broth microdilution method. The expression levels of biofilm-related genes (BCR1, EFG1, and FKS1) were evaluated in planktonic and biofilm’s cells using Real-time polymerase chain reaction (PCR) technique. Results: The obtained results indicated that all C. parapsilosis complex isolates were able to produce high and moderate amounts of biofilm forms. In addition, the sessile minimum inhibitory concentrations were reported to be high for fluconazole (≥ 64 µg/ml), itraconazole, voriconazole, and posaconazole (≥ 16 µg/ml), as compared to planktonic minimum inhibitory concentrations. Moreover, a significant difference was observed between antifungal susceptibility patterns for all azole antifungal agents (P<0.05). Furthermore, the BCR1 overexpression was considered significant in biofilms with regard to planktonic cells in C. parapsilosis species complex (P=0.002). Conclusion: C. parapsilosis complex isolates were found susceptible to most of the tested antifungal drugs, while biofilms demonstrated a noticeable resistant to azoles. The marked discrepancy noted in antifungal susceptibility patterns among these species should be highlighted to achieve effective therapeutic treatment.
Collapse
Affiliation(s)
- Mona Modiri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Daie GhazvinI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Ghaffari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Varamin-Pishva, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|