1
|
Ujma PP, Dresler M, Bódizs R. Comparing Manual and Automatic Artifact Detection in Sleep EEG Recordings. Psychophysiology 2025; 62:e70016. [PMID: 39924460 PMCID: PMC11807946 DOI: 10.1111/psyp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Sleep electroencephalogram (EEG) recordings can be contaminated by artifacts. Visual and automatic methods have been developed to mark such erroneous segments of EEG data. Here, we systematically explored the effect of artifacts on the sleep EEG power spectrum density (PSD), and we compared gold-standard visual detections to a simple automatic detector using Hjorth parameters to identify artifacts. We found that most distortions in the all-night average PSD occur because of a small minority of highly anomalous artifacts, which mainly affect the beta and gamma frequency ranges and NREM delta. Visual and automatic detections only showed moderate agreement in which data segments are artifactual. However, the resulting all-night average PSD is highly similar across all methods, and PSDs calculated with all methods successfully recover the known correlations of PSD with age and sex. No parameter settings of the automatic detector clearly outperformed others. Additionally, we showed that accurate average PSD estimates can be recovered from just a fraction of available data epochs. Our results suggest that artifacts represent a minor and easily solvable problem in sleep EEG recordings. Most visually identified artifacts do not seriously distort estimates of mid-frequency activity in the sleep EEG spectrum, and distortions to low and high frequencies can be eliminated using a simple automatic detection method nearly as well as with visual detections. These findings show that the visual inspection of EEG data is not necessary to eliminate the effects of artifacts, which is encouraging for the expected performance of automatic preprocessing in large sleep EEG databases.
Collapse
Affiliation(s)
- Péter P. Ujma
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| | - Martin Dresler
- Donders InstituteRadboud University Medical CenterNijmegenthe Netherlands
| | - Róbert Bódizs
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
4
|
Greer JMH, Riby DM, McMullon MEG, Hamilton C, Riby LM. An EEG investigation of alpha and beta activity during resting states in adults with Williams syndrome. BMC Psychol 2021; 9:72. [PMID: 33952354 PMCID: PMC8097943 DOI: 10.1186/s40359-021-00575-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Williams syndrome (WS) is neurodevelopmental disorder characterised by executive deficits of attention and inhibitory processing. The current study examined the neural mechanisms during resting states in adults with WS in order to investigate how this subserves the attention and inhibitory deficits associated with the syndrome. Method Adopting electroencephalography (EEG) methodology, cortical electrical activity was recorded from eleven adults with WS aged 35 + years during Eyes Closed (EC) and Eyes Open (EO) resting states, and compared to that of thirteen typically developing adults matched for chronological age (CA) and ten typically developing children matched for verbal mental ability (MA). Using mixed-design analyses of variance (ANOVA), analyses focused on the full alpha (8–12.5 Hz), low-alpha (8–10 Hz), upper-alpha (10–12.5 Hz), and beta (13–29.5 Hz) bands, as these are thought to have functional significance with attentional and inhibitory processes. Results No significant difference in alpha power were found between the WS and CA groups across all analyses, however a trend for numerically lower alpha power was observed in the WS group, consistent with other developmental disorders characterised by attentional/inhibitory deficits such as Attention Deficit Hyperactivity Disorder (ADHD). In contrast, comparable beta power between the WS and CA groups during both EC/EO conditions suggests that their baseline EEG signature is commensurate with successful attentional processing, though this needs to be interpreted with caution due to the small sample size. Analyses also revealed an unusual trend for low variability in the EEG signature of the WS group, which contradicts the heterogeneity typically observed behaviourally. Conclusions This novel finding of low variability in the EEG spectra in the WS group has been previously associated with poor behavioural performance in ADHD and is highly informative, highlighting future research needs to also consider how the role of low variability in the EEG profile of WS manifests in relation to their behavioural and cognitive profiles.
Collapse
Affiliation(s)
- Joanna M H Greer
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK.
| | - Deborah M Riby
- Department of Psychology, Durham University, Durham, UK.,Centre for Developmental Disorders, Durham University, Durham, UK
| | | | - Colin Hamilton
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Leigh M Riby
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Bódizs R, Szalárdy O, Horváth C, Ujma PP, Gombos F, Simor P, Pótári A, Zeising M, Steiger A, Dresler M. A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum. Sci Rep 2021; 11:2041. [PMID: 33479280 PMCID: PMC7820008 DOI: 10.1038/s41598-021-81230-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Features of sleep were shown to reflect aging, typical sex differences and cognitive abilities of humans. However, these measures are characterized by redundancy and arbitrariness. Our present approach relies on the assumptions that the spontaneous human brain activity as reflected by the scalp-derived electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep is characterized by arrhythmic, scale-free properties and is based on the power law scaling of the Fourier spectra with the additional consideration of the rhythmic, oscillatory waves at specific frequencies, including sleep spindles. Measures derived are the spectral intercept and slope, as well as the maximal spectral peak amplitude and frequency in the sleep spindle range, effectively reducing 191 spectral measures to 4, which were efficient in characterizing known age-effects, sex-differences and cognitive correlates of sleep EEG. Future clinical and basic studies are supposed to be significantly empowered by the efficient data reduction provided by our approach.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary. .,Epilepsy Center, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csenge Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,Epilepsy Center, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary.,MTA-PPKE Adolescent Development Research Group, Budapest, Hungary
| | - Péter Simor
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary.,UR2NF, Neuropsychology and Functional Neuroimaging Research Unit At CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrián Pótári
- MTA-PPKE Adolescent Development Research Group, Budapest, Hungary.,Doctoral School of Psychology (Cognitive Science), Budapest University of Technology and Economics, Budapest, Hungary
| | - Marcel Zeising
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, Munich, Germany.,Centre of Mental Health, Klinikum Ingolstadt, Ingolstadt, Germany
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Ujma PP, Hajnal B, Bódizs R, Gombos F, Erőss L, Wittner L, Halgren E, Cash SS, Ulbert I, Fabó D. The laminar profile of sleep spindles in humans. Neuroimage 2020; 226:117587. [PMID: 33249216 PMCID: PMC9113200 DOI: 10.1016/j.neuroimage.2020.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Boglárka Hajnal
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; School of P.h.D. studies, Semmelweis University, 1085 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, 1088 Budapest, Hungary; MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, 1088 Budapest, Hungary
| | - Loránd Erőss
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Lucia Wittner
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, 92093 San Diego CA, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, 02114 Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, 02115 MA, USA
| | - István Ulbert
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| |
Collapse
|
7
|
Greiner de Magalhães C, O'Brien LM, Mervis CB. Sleep characteristics and problems of 2-year-olds with Williams syndrome: relations with language and behavior. J Neurodev Disord 2020; 12:32. [PMID: 33218304 PMCID: PMC7679988 DOI: 10.1186/s11689-020-09336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/05/2020] [Indexed: 11/23/2022] Open
Abstract
Background Sleep problems have been shown to have a negative impact on language development and behavior for both typically developing children and children with a range of neurodevelopmental disorders. The relation of sleep characteristics and problems to language and behavior for children with Williams syndrome (WS) is unclear. The goal of this study was to address these relations for 2-year-olds with WS. Associations of nonverbal reasoning ability, nighttime sleep duration, and excessive daytime sleepiness with language ability and behavior problems were considered. Method Ninety-six 2-year-olds with genetically confirmed classic-length WS deletions participated. Parents completed the Pediatric Sleep Questionnaire, which includes a Sleep-Related Breathing Disorder (SRBD) scale with a subscale measuring excessive daytime sleepiness, to assess sleep characteristics and problems. Parents also completed the Child Behavior Checklist (CBCL) and the MacArthur-Bates Communicative Development Inventory: Words and Sentences to assess behavior problems and expressive vocabulary, respectively. Children completed the Mullen Scales of Early Learning to measure nonverbal reasoning and language abilities. Results Parents indicated that children slept an average of 10.36 h per night (SD = 1.09, range 7.3–13.3), not differing significantly from the mean reported by Bell and Zimmerman (2010) for typically developing toddlers (p = .787). Sixteen percent of participants screened positive for SRBD and 30% for excessive daytime sleepiness. Children who screened positive for SRBD had significantly more behavior problems on all CBCL scales than children who screened negative. Children with excessive daytime sleepiness had significantly more attention/hyperactivity, stress, and externalizing problems than those who did not have daytime sleepiness. Individual differences in parent-reported nighttime sleep duration and directly measured nonverbal reasoning abilities accounted for unique variance in expressive language, receptive language, and internalizing problems. Individual differences in parent-reported daytime sleepiness accounted for unique variance in externalizing problems. Conclusions The relations of nighttime sleep duration, positive screens for SRBD, and excessive daytime sleepiness to language and behavior in toddlers with WS parallel prior findings for typically developing toddlers. These results highlight the importance of screening young children with WS for sleep problems. Studies investigating the efficacy of behavioral strategies for improving sleep in children with WS are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09336-z.
Collapse
Affiliation(s)
- Caroline Greiner de Magalhães
- Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Building, Louisville, KY, 40204, USA
| | - Louise M O'Brien
- Sleep Disorders Center, Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Building, Louisville, KY, 40204, USA.
| |
Collapse
|
8
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
9
|
D'Souza D, D'Souza H, Horváth K, Plunkett K, Karmiloff-Smith A. Sleep is atypical across neurodevelopmental disorders in infants and toddlers: A cross-syndrome study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 97:103549. [PMID: 31864111 DOI: 10.1016/j.ridd.2019.103549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
This cross-syndrome study focuses on sleep and its relationship with language development. Children with neurodevelopmental disorders present with language delay. Typical language development is constrained by numerous factors including sleep. Sleep is often disrupted in adolescents/adults with neurodevelopmental disorders. We therefore hypothesised that sleep may be disrupted, and correlate with language development, in infants/toddlers with neurodevelopmental disorders. To test our hypothesis, we obtained sleep and vocabulary size data from 75 infants/toddlers with one of three neurodevelopmental disorders (Down syndrome [DS], fragile X syndrome [FXS], Williams syndrome [WS]). Sleep was indeed disrupted in these children. It was also positively associated with receptive vocabulary size in the infants/toddlers with DS and WS (we could not test the relationship between sleep and language in FXS due to lack of power). We argue that disrupted sleep may be a common occurrence in very young children with neurodevelopmental disorders, and it may relate to their ability to acquire their first language.
Collapse
Affiliation(s)
- Dean D'Souza
- Faculty of Science & Engineering, Anglia Ruskin University, Cambridge, United Kingdom.
| | - Hana D'Souza
- Department of Psychology & Newnham College, University of Cambridge, Cambridge, UK; Centre for Brain & Cognitive Development, Birkbeck, University of London, London, UK; The LonDownS Consortium, London, UK
| | - Klára Horváth
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Kim Plunkett
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Annette Karmiloff-Smith
- Centre for Brain & Cognitive Development, Birkbeck, University of London, London, UK; The LonDownS Consortium, London, UK
| |
Collapse
|
10
|
Dasilva M, Navarro-Guzman A, Ortiz-Romero P, Camassa A, Muñoz-Cespedes A, Campuzano V, Sanchez-Vives MV. Altered Neocortical Dynamics in a Mouse Model of Williams-Beuren Syndrome. Mol Neurobiol 2020; 57:765-777. [PMID: 31471877 PMCID: PMC7031212 DOI: 10.1007/s12035-019-01732-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
Abstract
Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by moderate intellectual disability and learning difficulties alongside behavioral abnormalities such as hypersociability. Several structural and functional brain alterations are characteristic of this syndrome, as well as disturbed sleep and sleeping patterns. However, the detailed physiological mechanisms underlying WBS are mostly unknown. Here, we characterized the cortical dynamics in a mouse model of WBS previously reported to replicate most of the behavioral alterations described in humans. We recorded the laminar local field potential generated in the frontal cortex during deep anesthesia and characterized the properties of the emergent slow oscillation activity. Moreover, we performed micro-electrocorticogram recordings using multielectrode arrays covering the cortical surface of one hemisphere. We found significant differences between the cortical emergent activity and functional connectivity between wild-type mice and WBS model mice. Slow oscillations displayed Up states with diminished firing rate and lower high-frequency content in the gamma range. Lower firing rates were also recorded in the awake WBS animals while performing a marble burying task and could be associated with the decreased spine density and thus synaptic connectivity in this cortical area. We also found an overall increase in functional connectivity between brain areas, reflected in lower clustering and abnormally high integration, especially in the gamma range. These results expand previous findings in humans, suggesting that the cognitive deficits characterizing WBS might be associated with reduced excitability, plus an imbalance in the capacity to functionally integrate and segregate information.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Navarro-Guzman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Ortiz-Romero
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alessandra Camassa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alberto Muñoz-Cespedes
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Depatamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Benítez-Burraco A, Kimura R. Robust Candidates for Language Development and Evolution Are Significantly Dysregulated in the Blood of People With Williams Syndrome. Front Neurosci 2019; 13:258. [PMID: 30971880 PMCID: PMC6444191 DOI: 10.3389/fnins.2019.00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
Williams syndrome (WS) is a clinical condition, involving cognitive deficits and an uneven language profile, which has been the object of intense inquiry over the last decades. Although WS results from the hemideletion of around two dozen genes in chromosome 7, no gene has yet been probed to account for, or contribute significantly to, the language problems exhibited by the affected people. In this paper we have relied on gene expression profiles in the peripheral blood of WS patients obtained by microarray analysis and show that several robust candidates for language disorders and/or for language evolution in the species, all of them located outside the hemideleted region, are up- or downregulated in the blood of subjects with WS. Most of these genes play a role in the development and function of brain areas involved in language processing, which exhibit structural and functional anomalies in people with this condition. Overall, these genes emerge as robust candidates for language dysfunction in WS.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Abstract
There is overwhelming evidence that sleep is crucial for memory consolidation. Patients with schizophrenia and their unaffected relatives have a specific deficit in sleep spindles, a defining oscillation of non-rapid eye movement (NREM) Stage 2 sleep that, in coordination with other NREM oscillations, mediate memory consolidation. In schizophrenia, the spindle deficit correlates with impaired sleep-dependent memory consolidation, positive symptoms, and abnormal thalamocortical connectivity. These relations point to dysfunction of the thalamic reticular nucleus (TRN), which generates spindles, gates the relay of sensory information to the cortex, and modulates thalamocortical communication. Genetic studies are beginning to provide clues to possible neurodevelopmental origins of TRN-mediated thalamocortical circuit dysfunction and to identify novel targets for treating the related memory deficits and symptoms. By forging empirical links in causal chains from risk genes to thalamocortical circuit dysfunction, spindle deficits, memory impairment, symptoms, and diagnosis, future research can advance our mechanistic understanding, treatment, and prevention of schizophrenia.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215;
| |
Collapse
|
13
|
Use and Effectiveness of Sleep Medications by Parent Report in Individuals with Williams Syndrome. J Dev Behav Pediatr 2018; 38:765-771. [PMID: 28937452 DOI: 10.1097/dbp.0000000000000503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sleep disorders are common in individuals with Williams syndrome (WS), and sleep disturbance has a significant negative effect on attention, learning, and behavior. The use of sleep-inducing medicine in individuals with WS has not been widely investigated. The objective of this study was to evaluate the use and effectiveness of sleep medications among a large sample of individuals with WS by parent survey. METHODS A survey of the use and effectiveness of sleep medications was completed by 513 (of 2846) members of the Williams Syndrome Association. The online survey asked for the age at initiation, degree of effectiveness (helpful, somewhat helpful, and not helpful), and side effects. RESULTS One hundred thirty participants (25%) indicated that their family member with WS had taken medication to help with sleep. Melatonin was the most commonly reported medication taken for sleep, with 91% of parents reporting that it was "helpful" or "somewhat helpful" for their child with WS. Those who reported taking melatonin reported very few, if any, side effects. CONCLUSION This parent-completed survey is a preliminary study showing the positive benefit of melatonin for individuals with WS who have disrupted sleep. The findings support the need for further study of the use of melatonin, in addition to behavioral sleep aids, given evidence that sleep disturbance negatively influences cognition and behavior.
Collapse
|
14
|
Ujma PP, Konrad BN, Gombos F, Simor P, Pótári A, Genzel L, Pawlowski M, Steiger A, Bódizs R, Dresler M. The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Sci Rep 2017; 7:18070. [PMID: 29273758 PMCID: PMC5741768 DOI: 10.1038/s41598-017-18124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual "EEG fingerprint". Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like "REM beta tufts" are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary.
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary.
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| | - Ferenc Gombos
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Péter Simor
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, H-1135, Budapest, Hungary
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Adrián Pótári
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, Edinburg, United Kingdom
| | | | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Sigma frequency dependent motor learning in Williams syndrome. Sci Rep 2017; 7:16759. [PMID: 29196666 PMCID: PMC5711805 DOI: 10.1038/s41598-017-12489-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
There are two basic stages of fine motor learning: performance gain might occur during practice (online learning), and improvement might take place without any further practice (offline learning). Offline learning, also called consolidation, has a sleep-dependent stage in terms of both speed and accuracy of the learned movement. Sleep spindle or sigma band characteristics affect motor learning in typically developing individuals. Here we ask whether the earlier found, altered sigma activity in a neurodevelopmental disorder (Williams syndrome, WS) predicts motor learning. TD and WS participants practiced in a sequential finger tapping (FT) task for two days. Although WS participants started out at a lower performance level, TD and WS participants had a comparable amount of online and offline learning in terms of the accuracy of movement. Spectral analysis of WS sleep EEG recordings revealed that motor accuracy improvement is intricately related to WS-specific NREM sleep EEG features in the 8–16 Hz range profiles: higher 11–13.5 Hz z-transformed power is associated with higher offline FT accuracy improvement; and higher oscillatory peak frequencies are associated with lower offline accuracy improvements. These findings indicate a fundamental relationship between sleep spindle (or sigma band) activity and motor learning in WS.
Collapse
|
16
|
Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome. Sci Rep 2017; 7:6157. [PMID: 28733679 PMCID: PMC5522417 DOI: 10.1038/s41598-017-06280-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 11/23/2022] Open
Abstract
Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.
Collapse
|
17
|
Bódizs R, Gombos F, Ujma PP, Szakadát S, Sándor P, Simor P, Pótári A, Konrad BN, Genzel L, Steiger A, Dresler M, Kovács I. The hemispheric lateralization of sleep spindles in humans. ACTA ACUST UNITED AC 2017. [DOI: 10.1556/2053.01.2017.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter P. Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Sára Szakadát
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Piroska Sándor
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter Simor
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Adrián Pótári
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
18
|
Manoach DS, Pan JQ, Purcell SM, Stickgold R. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition? Biol Psychiatry 2016; 80:599-608. [PMID: 26602589 PMCID: PMC4833702 DOI: 10.1016/j.biopsych.2015.10.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 11/26/2022]
Abstract
Although schizophrenia (SZ) is defined by waking phenomena, abnormal sleep is a common feature. In particular, there is accumulating evidence of a sleep spindle deficit. Sleep spindles, a defining thalamocortical oscillation of non-rapid eye movement stage 2 sleep, correlate with IQ and are thought to promote long-term potentiation and enhance memory consolidation. We review evidence that reduced spindle activity in SZ is an endophenotype that impairs sleep-dependent memory consolidation, contributes to symptoms, and is a novel treatment biomarker. Studies showing that spindles can be pharmacologically enhanced in SZ and that increasing spindles improves memory in healthy individuals suggest that treating spindle deficits in patients with SZ may improve cognition. Spindle activity is highly heritable, and recent large-scale genome-wide association studies have identified SZ risk genes that may contribute to spindle deficits and illuminate their mechanisms. For example, the SZ risk gene CACNA1I encodes a calcium channel that is abundantly expressed in the thalamic spindle generator and plays a critical role in spindle activity based on a mouse knockout. Future genetic studies of animals and humans can delineate the role of this and other genes in spindles. Such cross-disciplinary research, by forging empirical links in causal chains from risk genes to proteins and cellular functions to endophenotypes, cognitive impairments, symptoms, and diagnosis, has the potential to advance the mechanistic understanding, treatment, and prevention of SZ. This review highlights the importance of deficient sleep-dependent memory consolidation among the cognitive deficits of SZ and implicates reduced sleep spindles as a potentially treatable mechanism.
Collapse
Affiliation(s)
- Dara S. Manoach
- Department of Psychiatry and Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Shaun M. Purcell
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA,Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Stickgold
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215 Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
19
|
Berencsi A, Gombos F, Kovács I. Capacity to improve fine motor skills in Williams syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2016; 60:956-968. [PMID: 27485486 DOI: 10.1111/jir.12317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Individuals with Williams syndrome (WS) are known to have difficulties in carrying out fine motor movements; however, a detailed behavioural profile of WS in this domain is still missing. It is also unknown how great the capacity to improve these skills with focused and extensive practice is. METHOD We studied initial performance and learning capacity in a sequential finger tapping (FT) task in WS and in typical development. Improvement in the FT task has been shown to be sleep dependent. WS subjects participating in the current study have also participated in earlier polysomnography studies, although not directly related to learning. RESULTS WS participants presented with great individual variability. In addition to generally poor initial performance, learning capacity was also greatly limited in WS. We found indications that reduced sleep efficiency might contribute to this limitation. CONCLUSIONS Estimating motor learning capacity and the depth of sleep disorder in a larger sample of WS individuals might reveal important relationships between sleep and learning, and contribute to efficient intervention methods improving skill acquisition in WS.
Collapse
Affiliation(s)
- A Berencsi
- Laboratory for Psychological Research, Pázmány Péter Catholic University, Budapest, Hungary.
- Bárczi Gusztáv Faculty of Special Education, Institute for Methodology of Special Education and Rehabilitation, Eötvös Loránd University, Budapest, Hungary.
| | - F Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, Budapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - I Kovács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, Budapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
20
|
Adamczyk M, Genzel L, Dresler M, Steiger A, Friess E. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform. Front Hum Neurosci 2015; 9:624. [PMID: 26635577 PMCID: PMC4652604 DOI: 10.3389/fnhum.2015.00624] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep.
Collapse
Affiliation(s)
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh Edinburgh, UK
| | - Martin Dresler
- Max Planck Institute of Psychiatry Munich, Germany ; Donders Institute for Brain, Cognition and Behaviour Nijmegen, Netherlands
| | - Axel Steiger
- Max Planck Institute of Psychiatry Munich, Germany
| | | |
Collapse
|
21
|
Santoro SD, Pinato L. Sono-vigília, aspectos de memória e melatonina em Síndrome de Williams-Beuren: uma revisão de literatura. REVISTA CEFAC 2014. [DOI: 10.1590/1982-0216201417113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Bódizs R, Gombos F, Gerván P, Szőcs K, Réthelyi JM, Kovács I. Aging and sleep in Williams syndrome: accelerated sleep deterioration and decelerated slow wave sleep decrement. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:3226-3235. [PMID: 25178705 DOI: 10.1016/j.ridd.2014.07.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Specific developmental and aging trajectories characterize sleep electroencephalogram (EEG) of typically developing (TD) subjects. Williams syndrome (WS) is marked by sleep alterations and accelerated aging of several anatomo-functional and cognitive measures. Here we test the hypothesis of a premature aging of sleep in WS. Age-related changes of home recorded sleep EEG of 42 subjects (21 WS, 21 age- and gender matched TD subjects, age: 6-29 years) were tested by Pearson correlations and homogeneity-of-slopes analysis. Typical developmental/aging effects of sleep EEGs were observed in TD subjects. Accelerated aging in WS was confirmed by overall sleep/wake measures. Specifically, premature aging was evident in accelerated age-dependent declines in WS subjects' sleep efficiency, as well as in steeper age-related rises in wakefulness and wake after sleep onset (WASO) of the WS group. In contrast, NREM sleep-related measures indicated atypical decelerations of the developmental trends of WS subjects, characterized by the slowing down of the age-related slow wave sleep (SWS) declines mirrored by the lack of age-dependent increase in Stage 2 (S2) sleep. Age-effects in sleep EEG power spectra were not different among the groups. Objectively measured sleep disruption of subjects with WS is age-dependent and increasing with age. Moreover, these data suggest atypical pre- and postpubertal neural development in WS, with sleep/wake balance and REM sleep time indicating accelerated aging while NREM sleep composition revealing signs of an as yet unidentified, perhaps compensatory developmental delay.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; Department of General Psychology, Pázmány Péter Catholic University, Mikszáth tér 1, H-1088 Budapest, Hungary.
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Mikszáth tér 1, H-1088 Budapest, Hungary.
| | - Patrícia Gerván
- Department of General Psychology, Pázmány Péter Catholic University, Mikszáth tér 1, H-1088 Budapest, Hungary.
| | - Katalin Szőcs
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6, H-1083 Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6, H-1083 Budapest, Hungary.
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic University, Mikszáth tér 1, H-1088 Budapest, Hungary.
| |
Collapse
|
23
|
Bódizs R, Gombos F, Ujma PP, Kovács I. Sleep spindling and fluid intelligence across adolescent development: sex matters. Front Hum Neurosci 2014; 8:952. [PMID: 25506322 PMCID: PMC4246682 DOI: 10.3389/fnhum.2014.00952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/08/2014] [Indexed: 12/21/2022] Open
Abstract
Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps cognitive strategy.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis UniversityBudapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Péter P. Ujma
- Institute of Behavioural Sciences, Semmelweis UniversityBudapest, Hungary
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
24
|
Cid E, Gomez-Dominguez D, Martin-Lopez D, Gal B, Laurent F, Ibarz JM, Francis F, Menendez de la Prida L. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations. Front Syst Neurosci 2014; 8:50. [PMID: 24782720 PMCID: PMC3995045 DOI: 10.3389/fnsys.2014.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.
Collapse
Affiliation(s)
- Elena Cid
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain
| | | | - David Martin-Lopez
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain ; Servicio de Neurofisiologia Clínica, Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Beatriz Gal
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain ; Universidad Europea de Madrid, Ciencias Biomédicas Básicas Madrid, Spain
| | - François Laurent
- Laboratorio de Circuitos Neuronales, Instituto Cajal, CSIC Madrid, Spain
| | - Jose M Ibarz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Fiona Francis
- Institut du Fer à Moulin Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut National de la Santé et de la Recherche Médicale UMRS 839 Paris, France
| | | |
Collapse
|
25
|
Warby SC, Wendt SL, Welinder P, Munk EGS, Carrillo O, Sorensen HBD, Jennum P, Peppard PE, Perona P, Mignot E. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods 2014; 11:385-92. [PMID: 24562424 PMCID: PMC3972193 DOI: 10.1038/nmeth.2855] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022]
Abstract
Sleep spindles are discrete, intermittent patterns of brain activity observed in human electroencephalographic data. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning and neurological disorders. We used an Internet interface to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects.
Collapse
Affiliation(s)
- Simon C Warby
- Center for Sleep Science and Medicine, Stanford University, Stanford, California, USA
| | - Sabrina L Wendt
- 1] Center for Sleep Science and Medicine, Stanford University, Stanford, California, USA. [2] Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark
| | - Peter Welinder
- Computational Vision Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Emil G S Munk
- 1] Center for Sleep Science and Medicine, Stanford University, Stanford, California, USA. [2] Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark
| | - Oscar Carrillo
- Center for Sleep Science and Medicine, Stanford University, Stanford, California, USA
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pietro Perona
- Computational Vision Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Emmanuel Mignot
- Center for Sleep Science and Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
26
|
Picchioni D, Reith RM, Nadel JL, Smith CB. Sleep, plasticity and the pathophysiology of neurodevelopmental disorders: the potential roles of protein synthesis and other cellular processes. Brain Sci 2014; 4:150-201. [PMID: 24839550 PMCID: PMC4020186 DOI: 10.3390/brainsci4010150] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022] Open
Abstract
Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dante Picchioni
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mail:
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - R. Michelle Reith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Jeffrey L. Nadel
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Carolyn B. Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| |
Collapse
|
27
|
Moore HE. Visualization of EEG activity for stimulating sleep research. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2013. [DOI: 10.1080/21681163.2013.805047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Axelsson EL, Hill CM, Sadeh A, Dimitriou D. Sleep problems and language development in toddlers with Williams syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:3988-3996. [PMID: 24029809 DOI: 10.1016/j.ridd.2013.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Sleep and related maternal beliefs were assessed in a narrow age range of 18 children with Williams syndrome (WS) and 18 typically developing (TD) children. WS is a rare genetic disorder characterised by a complex physical, cognitive and behavioural phenotype. High prevalence of sleep difficulties in older children and adults with WS have been reported. Parents completed 6 questionnaires: the Brief Infant Sleep Questionnaire, Infant Sleep Vignettes Interpretation Scale, Pittsburgh Sleep Quality Index of Parents, Child Behaviour Checklist, MacArthur Communicative Development Inventory for Infants - Words and Gestures, and the Major (ICD-10) Depression Inventory. Compared to TD children, those with WS had shorter night sleep, more night wakings and wakefulness according to parental report. Regression analyses revealed that a proportion of the variance in language development scores in WS children could be explained by night sleep duration. Compared to control parents, the mothers of the WS group were more likely to describe their child's sleep as problematic and had higher rates of involvement with child sleep, yet they had a lesser tendency to interpret sleep problems as signs of distress and a greater tendency to emphasise limit setting. Approximately half of both groups of mothers experienced poor sleep quality. This was also related to maternal mood, and night wakefulness in the children with WS. This is the first study to quantify sleep difficulties in young children with WS in a narrow age range using maternal report. The possible negative effects on maternal sleep and mood, and the link between night sleep and language development in young children with WS, requires further detailed investigation.
Collapse
Affiliation(s)
- Emma L Axelsson
- University of New South Wales, School of Psychiatry, Faculty of Medicine, Australia
| | | | | | | |
Collapse
|
29
|
Gervan P, Gombos F, Kovacs I. Perceptual learning in Williams syndrome: looking beyond averages. PLoS One 2012; 7:e40282. [PMID: 22792262 PMCID: PMC3390366 DOI: 10.1371/journal.pone.0040282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Williams Syndrome is a genetically determined neurodevelopmental disorder characterized by an uneven cognitive profile and surprisingly large neurobehavioral differences among individuals. Previous studies have already shown different forms of memory deficiencies and learning difficulties in WS. Here we studied the capacity of WS subjects to improve their performance in a basic visual task. We employed a contour integration paradigm that addresses occipital visual function, and analyzed the initial (i.e. baseline) and after-learning performance of WS individuals. Instead of pooling the very inhomogeneous results of WS subjects together, we evaluated individual performance by expressing it in terms of the deviation from the average performance of the group of typically developing subjects of similar age. This approach helped us to reveal information about the possible origins of poor performance of WS subjects in contour integration. Although the majority of WS individuals showed both reduced baseline and reduced learning performance, individual analysis also revealed a dissociation between baseline and learning capacity in several WS subjects. In spite of impaired initial contour integration performance, some WS individuals presented learning capacity comparable to learning in the typically developing population, and vice versa, poor learning was also observed in subjects with high initial performance levels. These data indicate a dissociation between factors determining initial performance and perceptual learning.
Collapse
Affiliation(s)
- Patricia Gervan
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary.
| | | | | |
Collapse
|
30
|
|