1
|
Zou AM, Eze B, D'Souza A, Mbah Q, Walls B, Bourgeois J, Rabany R, Rolfe N. Pulmonary Coccidioidomycosis in a Ruxolitinib-Treated Polycythemia Vera Patient: A Case Study and Literature Review. Cureus 2025; 17:e81725. [PMID: 40322414 PMCID: PMC12050121 DOI: 10.7759/cureus.81725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
This case report explores the epidemiology and clinical implications of coccidioidomycosis (Valley fever), with a focus on cases involving the immunosuppressive agent ruxolitinib (RUX) in patients with polycythemia vera (PV). The incidence of coccidioidomycosis has increased in the past decade in endemic regions, particularly in immunocompromised individuals. RUX, a Janus-associated kinase 1/2 (JAK1/2) inhibitor used in PV treatment, has been associated with various infections, but its link to coccidioidomycosis remains underexplored. We present a rare case of coccidioidomycosis in a PV patient receiving RUX, highlighting the potential risks associated with this therapy. Our analysis suggests a possible increased risk of coccidioidomycosis in RUX-treated patients, especially in endemic areas, which is supported by retrospective cohort data. This case underscores the importance of heightened vigilance and consideration of prophylactic measures in patients receiving RUX, particularly in regions where coccidioidomycosis is prevalent. Understanding these associations can inform clinical management strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Angela M Zou
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Blessing Eze
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Abigail D'Souza
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Quinta Mbah
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Brandon Walls
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Julien Bourgeois
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Romain Rabany
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Nancy Rolfe
- Internal Medicine, Creighton University School of Medicine, St. Joseph's Hospital and Medical Center, Phoenix, USA
| |
Collapse
|
2
|
Chiu CY, John TM, Matsuo T, Wurster S, Hicklen RS, Khattak RR, Ariza-Heredia EJ, Bose P, Kontoyiannis DP. Disseminated Histoplasmosis in a Patient with Myelofibrosis on Ruxolitinib: A Case Report and Review of the Literature on Ruxolitinib-Associated Invasive Fungal Infections. J Fungi (Basel) 2024; 10:264. [PMID: 38667935 PMCID: PMC11051496 DOI: 10.3390/jof10040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Ruxolitinib, a selective inhibitor of Janus kinases, is a standard treatment for intermediate/high-risk myelofibrosis (MF) but is associated with a predisposition to opportunistic infections, especially herpes zoster. However, the incidence and characteristics of invasive fungal infections (IFIs) in these patients remain uncertain. In this report, we present the case of a 59-year-old woman with MF who developed disseminated histoplasmosis after seven months of ruxolitinib use. The patient clinically improved after ten weeks of combined amphotericin B and azole therapy, and ruxolitinib was discontinued. Later, the patient received fedratinib, a relatively JAK2-selective inhibitor, without relapse of histoplasmosis. We also reviewed the literature on published cases of proven IFIs in patients with MF who received ruxolitinib. Including ours, we identified 28 such cases, most commonly due to Cryptococcus species (46%). IFIs were most commonly disseminated (39%), followed by localized lung (21%) infections. Although uncommon, a high index of suspicion for opportunistic IFIs is needed in patients receiving JAK inhibitors. Furthermore, the paucity of data regarding the optimal management of IFIs in patients treated with JAK inhibitors underscore the need for well-designed studies to evaluate the epidemiology, pathobiology, early diagnosis, and multimodal therapy of IFIs in patients with hematological malignancies receiving targeted therapies.
Collapse
Affiliation(s)
- Chia-Yu Chiu
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Teny M. John
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Takahiro Matsuo
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Rachel S. Hicklen
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Raihaan Riaz Khattak
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Ella J. Ariza-Heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| |
Collapse
|
3
|
Ogai A, Yagi K, Ito F, Domoto H, Shiomi T, Chin K. Fatal Disseminated Tuberculosis and Concurrent Disseminated Cryptococcosis in a Ruxolitinib-treated Patient with Primary Myelofibrosis: A Case Report and Literature Review. Intern Med 2022; 61:1271-1278. [PMID: 34565769 PMCID: PMC9107979 DOI: 10.2169/internalmedicine.6436-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ruxolitinib, a Janus kinase inhibitor, improves symptoms in patients with myelofibrosis. However, its association with the development of opportunistic infections has been a concern. We herein report a 71-year-old man with primary myelofibrosis who developed disseminated tuberculosis and concurrent disseminated cryptococcosis during ruxolitinib treatment. We also reviewed the literature on disseminated tuberculosis and/or cryptococcosis associated with ruxolitinib treatment. This is the first case of disseminated tuberculosis and concurrent disseminated cryptococcosis during treatment with ruxolitinib. We therefore suggest considering not only disseminated tuberculosis but also cryptococcosis in the differential diagnosis of patients with abnormal pulmonary shadows during ruxolitinib treatment.
Collapse
Affiliation(s)
- Asuka Ogai
- Department of Hematology, Department of Medicine, Keiyu Hospital, Japan
| | - Kazuma Yagi
- Department of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Japan
| | - Fumimaro Ito
- Department of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Japan
| | | | - Tetsuya Shiomi
- Department of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Japan
| | - Kenko Chin
- Department of Hematology, Department of Medicine, Keiyu Hospital, Japan
| |
Collapse
|
4
|
Abdoli A, Falahi S, Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med 2022; 22:327-346. [PMID: 34424451 PMCID: PMC8381864 DOI: 10.1007/s10238-021-00751-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Treatment of the novel Coronavirus Disease 2019 (COVID-19) remains a complicated challenge, especially among patients with severe disease. In recent studies, immunosuppressive therapy has shown promising results for control of the cytokine storm syndrome (CSS) in severe cases of COVID-19. However, it is well documented that immunosuppressive agents (e.g., corticosteroids and cytokine blockers) increase the risk of opportunistic infections. On the other hand, several opportunistic infections were reported in COVID-19 patients, including Aspergillus spp., Candida spp., Cryptococcus neoformans, Pneumocystis jiroveci (carinii), mucormycosis, Cytomegalovirus (CMV), Herpes simplex virus (HSV), Strongyloides stercoralis, Mycobacterium tuberculosis, and Toxoplasma gondii. This review is a snapshot about the main opportunistic infections that reported among COVID-19 patients. As such, we summarized information about the main immunosuppressive agents that were used in recent clinical trials for COVID-19 patients and the risk of opportunistic infections following these treatments. We also discussed about the main challenges regarding diagnosis and treatment of COVID-19-associated opportunistic infections (CAOIs).
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran ,Jahrom University of Medical Sciences, Ostad Motahari Ave, POBox 74148-46199, Jahrom, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Kasemchaiyanun A, Suwatanapongched T, Incharoen P, Plumworasawat S, Bruminhent J. Combined Pulmonary Tuberculosis with Pulmonary and Pleural Cryptococcosis in a Patient Receiving Ruxolitinib Therapy. Infect Drug Resist 2021; 14:3901-3905. [PMID: 34584433 PMCID: PMC8464323 DOI: 10.2147/idr.s327821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
With an advance in therapy, there are increasing emerging and re-emerging opportunistic infections among patients with hematologic conditions and malignancy. Herein, we present a 56-year-old woman with primary myelofibrosis who developed combined tuberculosis (TB) and cryptococcosis with extensive pulmonary, pleural, and nodal involvement during ruxolitinib therapy. Marked clinical and radiologic improvements were undoubtedly evident after receiving anti-TB and antifungal therapies and pleural drainage. Hence, the presence of atypical clinical and radiologic manifestations and incomplete responses, despite receiving adequate antimicrobial treatment, should raise concerns regarding the combined emerging and re-emerging opportunistic infections and the possibility of unusual radiologic manifestations of cryptococcosis in a ruxolitinib-treated patient.
Collapse
Affiliation(s)
- Akarawut Kasemchaiyanun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thitiporn Suwatanapongched
- Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimpin Incharoen
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirithep Plumworasawat
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Landtblom AR, Andersson TML, Dickman PW, Smedby KE, Eloranta S, Batyrbekova N, Samuelsson J, Björkholm M, Hultcrantz M. Risk of infections in patients with myeloproliferative neoplasms-a population-based cohort study of 8363 patients. Leukemia 2021; 35:476-484. [PMID: 32546727 PMCID: PMC7738400 DOI: 10.1038/s41375-020-0909-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
Infections are a common complication in patients with many hematologic malignancies, however, whether patients with myeloproliferative neoplasms (MPN) also are at an increased risk of infections is largely unknown. To assess the risk of serious infections, we performed a large population-based matched cohort study in Sweden including 8 363 MPN patients and 32,405 controls using high-quality registers between the years 1992-2013 with follow-up until 2015. The hazard ratio (HR) of any infection was 2.0 (95% confidence interval 1.9-2.0), of bacterial infections 1.9 (1.8-2.0), and of viral infections 2.1 (1.9-2.3). One of the largest risk increases was that of sepsis, HR 2.6 (2.4-2.9). The HR of any infection was highest in primary myelofibrosis 3.7 (3.2-4.1), and significantly elevated in all MPN subtypes; 1.7 (1.6-1.8) in polycythemia vera and 1.7 (1.5-1.8) in essential thrombocythemia. There was no significant difference in risk of infections between untreated patients and patients treated with hydroxyurea or interferon-α during the years 2006-2013. These novel findings of an overall increased risk of infections in MPN patients, irrespective of common cytoreductive treatments, suggest the increased risk of infection is inherent to the MPN.
Collapse
Affiliation(s)
- Anna Ravn Landtblom
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Division of Hematology, Stockholm South Hospital, Stockholm, Sweden.
| | - Therese M-L Andersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul W Dickman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Nurgul Batyrbekova
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jan Samuelsson
- Department of Hematology, University Hospital Linköping, Linköping, Sweden
| | - Magnus Björkholm
- Department of Medicine, Myeloma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Malin Hultcrantz
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Myeloma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Sayabovorn N, Chongtrakool P, Chayakulkeeree M. Cryptococcal fungemia and Mycobacterium haemophilum cellulitis in a patient receiving ruxolitinib: a case report and literature review. BMC Infect Dis 2021; 21:27. [PMID: 33413168 PMCID: PMC7792301 DOI: 10.1186/s12879-020-05703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Ruxolitinib is a novel oral Janus kinase inhibitor that is used for treatment of myeloproliferative diseases. It exhibits potent anti-inflammatory and immunosuppressive effects, and may increase the risk of opportunistic infections. Here, we report a rare case of Cryptococcus neoformans and Mycobacterium haemophilum coinfection in a myelofibrosis patient who was receiving ruxolitinib. Case presentation A 70-year-old Thai man who was diagnosed with JAK2V617F-mutation-positive primary myelofibrosis had been treated with ruxolitinib for 4 years. He presented with cellulitis at his left leg for 1 week. Physical examination revealed fever, dyspnea, desaturation, and sign of inflammation on the left leg and ulcers on the right foot. Blood cultures showed positive for C. neoformans. He was prescribed intravenous amphotericin B deoxycholate with a subsequent switch to liposomal amphotericin B due to the development of acute kidney injury. He developed new onset of fever after 1 month of antifungal treatment, and the lesion on his left leg had worsened. Biopsy of that skin lesion was sent for mycobacterial culture, and the result showed M. haemophilum. He was treated with levofloxacin, ethambutol, and rifampicin; however, the patient eventually developed septic shock and expired. Conclusions This is the first case of C. neoformans and M. haemophilum coinfection in a patient receiving ruxolitinib treatment. Although uncommon, clinicians should be aware of the potential for multiple opportunistic infections that may be caused by atypical pathogens in patients receiving ruxolitinib.
Collapse
Affiliation(s)
- Naruemit Sayabovorn
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Marr KA, Sun Y, Spec A, Lu N, Panackal A, Bennett J, Pappas P, Ostrander D, Datta K, Zhang SX, Williamson PR. A Multicenter, Longitudinal Cohort Study of Cryptococcosis in Human Immunodeficiency Virus-negative People in the United States. Clin Infect Dis 2021; 70:252-261. [PMID: 30855688 DOI: 10.1093/cid/ciz193] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cryptococcosis is increasingly recognized in people without human immunodeficiency virus (HIV). METHODS A multicenter, prospective cohort study was performed in 25 US centers. Consenting patients were prospectively followed for ≤2 years. Neurological morbidities were assessed with longitudinal event depiction and functional scores (Montreal Cognitive Assessment [MoCA]). Risks of death were analyzed using Cox regression. RESULTS One hundred forty-five subjects were enrolled. Most were male (95; 65.5%) and had immunosuppression (120; 82.8%), including solid organ transplant (SOT; 33.8%), autoimmunity (15.9%), and hematologic malignancies (11.7%). Disease involved the central nervous system (CNS) in 71 subjects (49%). Fever was uncommon, documented in 40 (27.8%) subjects, and absence was associated with diagnostic delay (mean: 48.2 vs 16.5 days; P = .007). Abnormal MoCA scores (<26) were predictive of CNS disease; low scores (<22) were associated with poor long-term cognition. Longitudinal event depiction demonstrated frequent complications in people with CNS disease; 25 subjects (35.2%) required >1 lumbar puncture and 8 (11.3%) required ventriculostomies. In multivariable models, older age (>60 years) was associated with higher risks of death (hazard ratio [HR], 2.14; 95% confidence interval [CI], 1.05-4.38; P = .036), and lower risks were noted with underlying hematologic malignancy (HR, 0.29; 95% CI, 0.09-0.98; P = .05) and prior SOT (HR, 0.153; 95% CI, 0.05-0.44; P = .001). CONCLUSIONS Despite aggressive antifungal therapies, outcomes of CNS cryptococcosis in people without HIV are characterized by substantial long-term neurological sequelae. Studies are needed to understand mechanism(s) of cognitive decline and to enable better treatment algorithms.
Collapse
Affiliation(s)
- Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Yifei Sun
- Department of Biostatistics, Columbia University, New York
| | - Andrej Spec
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Na Lu
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anil Panackal
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Bennett
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter Pappas
- Department of Medicine, University of Alabama at Birmingham
| | - Darin Ostrander
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kausik Datta
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
9
|
Sadjadian P, Wille K, Griesshammer M. Ruxolitinib-Associated Infections in Polycythemia Vera: Review of the Literature, Clinical Significance, and Recommendations. Cancers (Basel) 2020; 12:cancers12113132. [PMID: 33114733 PMCID: PMC7693745 DOI: 10.3390/cancers12113132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Polycythemia vera (PV) is a chronic blood disease characterized by elevated red blood cells and splenomegaly. About 98% of all PV patients harbor the JAK2 mutation. Ruxolitinib (RUX), a JAK1/JAK2 inhibitor, received approval as a second-line indication in PV patients who are resistant or intolerant to standard therapy hydroxyurea in both the United States (2014) and Europe (2015). In the studies relevant to approval, RUX achieved excellent PV control. Due to its mechanism of action, RUX also has immunosuppressive effects. As expected, an increased rate of infection was observed in clinical studies and in practical application. In this overview, we have compiled all previous literature references on RUX and infections in PV. However, apart from a few individual cases with special infections and an increased rate of zoster infections, there are no exceptional high infection problems. Recommendations are given on how infections in RUX treated PV patients can be avoided. Abstract Ruxolitinib (RUX), a JAK1/JAK2 inhibitor, is approved for second-line therapy in patients with polycythemia vera (PV) who are resistant or intolerant to hydroxyurea. Due to the immunomodulatory and immunosuppressive effect of RUX, there is an increased susceptibility to infections. However, an increased risk of infection is inherent to even untreated myeloproliferative neoplasms (MPN). To obtain more information on the clinical significance of RUX-associated infections in PV, we reviewed the available literature. There is no evidence-based approach to managing infection risks. Most data on RUX-associated infections are available for MF. In all studies, the infection rates in the RUX and control groups were fairly similar, with the exception of infections with the varicella zoster virus (VZV). However, individual cases of bilateral toxoplasmosis retinitis, disseminated molluscum contagiosum, or a mycobacterium tuberculosis infection or a hepatitis B reactivation are reported. A careful assessment of the risk of infection for PV patients is required at the initial presentation and before the start of RUX. Screening for hepatitis B is recommended in all patients. The risk of RUX-associated infections is lower with PV than with MF, but compared to a normal population there is an increased risk of VZV infection. However, primary VZV prophylaxis for PV patients is not recommended, while secondary prophylaxis can be considered individually. As early treatment is most effective for VZV, patients should be properly informed and trained to seek medical advice immediately if cutaneous signs of VZV develop. Vaccination against influenza, herpes zoster, and pneumococci should be considered in all PV patients at risk of infection, especially if RUX treatment is planned. Current recommendations do not support adjusting or discontinuing JAK inhibition in MPN patients to reduce the risk of COVID-19.
Collapse
|
10
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: a Paradoxical Response to a Complex Organism. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Bechman K, Galloway JB, Winthrop KL. Small-Molecule Protein Kinases Inhibitors and the Risk of Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00350-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Purpose of Review
This review discusses fungal infections associated with licenced small-molecule protein kinase inhibitors. For each major drug class, the mechanism of action and targeted pathways and the impact on host defence against fungi are described.
Recent Findings
Protein kinase inhibitors are successfully used in the treatment of malignancies and immune-mediated diseases, targeting signalling pathways for a broad spectrum of cytokines and growth-stimuli. These agents predispose to fungal infections by the suppression of integral components of the adaptive and innate immune response.
Summary
The greatest risk of fungal infections is seen with bruton tyrosine kinase inhibitors, e.g. ibrutinib. Infections are also reported with agents that target mTOR, Janus kinase and break point cluster (Bcr) gene–Abelson (Abl) tyrosine kinase (BCR-ABL). The type of fungal infection fits mechanistically with the specific pathway targeted. Infections are often disseminated and present soon after the initiation of therapy. The pharmacokinetic profile, possibility of off-target kinase inhibition, and underlying disease pathology contribute to infection risk.
Collapse
|
12
|
Zarakas MA, Desai JV, Chamilos G, Lionakis MS. Fungal Infections with Ibrutinib and Other Small-Molecule Kinase Inhibitors. CURRENT FUNGAL INFECTION REPORTS 2019; 13:86-98. [PMID: 31555394 DOI: 10.1007/s12281-019-00343-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of review Small molecule kinase inhibitors (SMKIs) have revolutionized the management of malignant and autoimmune disorders. Emerging clinical reports point toward an increased risk for invasive fungal infections (IFIs) in patients treated with certain SMKIs. In this mini-review, we highlight representative examples of SMKIs that have been associated with or are expected to give rise to IFIs. Recent findings The clinical use of the Bruton's tyrosine kinase inhibitor ibrutinib as well as other FDA-approved SMKIs has been associated with IFIs. The fungal infection susceptibility associated with the clinical use of certain SMKIs underscores their detrimental effects on innate and adaptive antifungal immune responses. Summary The unprecedented development and clinical use of SMKIs is expected to give rise to an expansion of iatrogenic immunosuppressive factors predisposing to IFIs (and other opportunistic infections). Beyond increased clinical surveillance, better understanding of the pathogenesis of SMKI-associated immune dysregulation should help devising improved risk stratification and prophylaxis strategies in vulnerable patients.
Collapse
Affiliation(s)
- Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Maschmeyer G, De Greef J, Mellinghoff SC, Nosari A, Thiebaut-Bertrand A, Bergeron A, Franquet T, Blijlevens NMA, Maertens JA. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia 2019; 33:844-862. [PMID: 30700842 PMCID: PMC6484704 DOI: 10.1038/s41375-019-0388-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/31/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
Abstract
A multitude of new agents for the treatment of hematologic malignancies has been introduced over the past decade. Hematologists, infectious disease specialists, stem cell transplant experts, pulmonologists and radiologists have met within the framework of the European Conference on Infections in Leukemia (ECIL) to provide a critical state-of-the-art on infectious complications associated with immunotherapeutic and molecular targeted agents used in clinical routine. For brentuximab vedotin, blinatumomab, CTLA4- and PD-1/PD-L1-inhibitors as well as for ibrutinib, idelalisib, HDAC inhibitors, mTOR inhibitors, ruxolitinib, and venetoclax, a detailed review of data available until August 2018 has been conducted, and specific recommendations for prophylaxis, diagnostic and differential diagnostic procedures as well as for clinical management have been developed.
Collapse
Affiliation(s)
- Georg Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Charlottenstrasse 72, 14467, Potsdam, Germany.
| | - Julien De Greef
- Department of Internal Medicine and Infectious Diseases, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Hematology, Henri Mondor Teaching Hospital, Créteil, France
| | - Sibylle C Mellinghoff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Annamaria Nosari
- Department of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Anne Bergeron
- Department of Pneumology, Université Paris Diderot, APHP Saint-Louis Hospital, Paris, France
| | - Tomas Franquet
- Department of Radiology, Hospital de Sant Pau, Barcelona, Spain
| | | | - Johan A Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Prakash K, Richman D. A case report of disseminated histoplasmosis and concurrent cryptococcal meningitis in a patient treated with ruxolitinib. BMC Infect Dis 2019; 19:287. [PMID: 30917797 PMCID: PMC6437885 DOI: 10.1186/s12879-019-3922-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background Ruxolitinib is a highly potent janus kinase inhibitor that places its users at risk for various bacterial infections and viral reactivation. However new reports are also emerging that suggest greater immunosuppression and risk for fungal disease. Case presentation We report the case of a 51 year-old veteran from Guam, treated with ruxolitinib for polycythemia vera, who developed disseminated histoplasmosis and concurrent cryptococcal meningitis. Conclusion This case draws attention to the degree of immunosuppression that may be seen with this drug and the need for heightened vigilance for opportunistic infections in those treated with inhibitors of janus kinase/signal transducers and activators of transcription (JAK/STAT) such as ruxolitinib.
Collapse
Affiliation(s)
- Katya Prakash
- Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0711, USA.
| | - Douglas Richman
- Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0711, USA.,VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| |
Collapse
|
15
|
Leopold Wager CM, Hole CR, Campuzano A, Castro-Lopez N, Cai H, Caballero Van Dyke MC, Wozniak KL, Wang Y, Wormley FL. IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007358. [PMID: 30304063 PMCID: PMC6197699 DOI: 10.1371/journal.ppat.1007358] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/22/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
Development of vaccines against opportunistic infections is difficult as patients most at risk of developing disease are deficient in aspects of the adaptive immune system. Here, we utilized an experimental immunization strategy to induce innate memory in macrophages in vivo. Unlike current trained immunity models, we present an innate memory-like phenotype in macrophages that is maintained for at least 70 days post-immunization and results in complete protection against secondary challenge in the absence of adaptive immune cells. RNA-seq analysis of in vivo IFN-γ primed macrophages revealed a rapid up-regulation of IFN-γ and STAT1 signaling pathways following secondary challenge. The enhanced cytokine recall responses appeared to be pathogen-specific, dependent on changes in histone methylation and acetylation, and correlated with increased STAT1 binding to promoter regions of genes associated with protective anti-fungal immunity. Thus, we demonstrate an alternative mechanism to induce macrophage innate memory in vivo that facilitates pathogen-specific vaccine-mediated immune responses. Fungal infections are a significant global health problem that can affect anyone, however, individuals with a weakened immune system are most at risk. Cryptococcus neoformans infections can progress to meningitis in immune compromised individuals accounting for nearly 220,000 new cases annually, resulting in 181,000 deaths. Vaccine strategies tend to target CD4+ T cells for the generation of protective memory responses. However, immune compromised individuals have decreased numbers of these adaptive cells, providing a challenge for anti-fungal vaccine design. Here, we define a cellular mechanism by which macrophages, an innate cell population, generate protective immune responses against C. neoformans following initial exposure to a C. neoformans strain that secretes IFN-γ. We determined that the macrophages primed in vivo have heightened proinflammatory cytokine responses upon secondary exposure to C. neoformans in a manner that is mTOR-independent, yet dependent on histone modification dynamics. We show that IFN-γ primed macrophages can maintain STAT1 binding to the promoter regions of key proinflammatory genes long after the initial exposure. Remarkably, our studies show long-lived, cryptococcal-specific protective immunity in vivo. The results presented herein demonstrate that innate cell populations, namely macrophages, can be utilized as vaccine targets to protect against cryptococcal infections in immune compromised populations.
Collapse
Affiliation(s)
- Chrissy M. Leopold Wager
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Camaron R. Hole
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Hong Cai
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Marley C. Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Karen L. Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Yufeng Wang
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|