1
|
Kwak HS, Kim HC, Koo HJ, Lee SW, Lee PH, Kim TO. Incidence and clinical impact of coronary artery disease confirmed by coronary CT angiography in patients with interstitial lung disease. BMC Pulm Med 2025; 25:88. [PMID: 39987066 PMCID: PMC11847390 DOI: 10.1186/s12890-025-03554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Patients with interstitial lung disease (ILD) who undergo routine chest computed tomography (CT) often have findings suggestive of coronary artery disease (CAD). However, the incidence and prognostic impact of significant CAD, confirmed by coronary CT angiography (CCTA), are not well established. METHODS From January 2013 to February 2024, we evaluated 215 patients from a retrospective ILD registry at our institute, who underwent CCTA as part of ILD management. Using the CAD-Reporting and Data System, we investigated the incidence of significant CAD and evaluated its impact on 5-year mortality and rehospitalization for respiratory or cardiovascular causes through multivariable Cox proportional hazards regression. RESULTS During a median follow-up of 2.3 years, CCTA was performed at a median of 5 months postdiagnosis of ILD in the cohort. Significant CAD was identified in 92 patients (42.8%), with 27 (12.6%) undergoing coronary revascularization. The presence of significant CAD was significantly associated with an increased risk of mortality (adjusted hazard ratio [HR]: 2.31; 95% confidence interval [CI]: 1.07 - 5.01; P = 0.03) and a higher risk of rehospitalization (adjusted HR: 2.03; 95% CI: 1.23 - 3.34; P = 0.01). Key clinical variables associated with significant CAD included older age (≥ 63 years), hypertension, and coronary calcification observed on non-gated chest CT. CONCLUSIONS CCTA-identified CAD was associated with a worse clinical prognosis in patients with ILD, with significant risk factors including older age, hypertension, and coronary calcification observed on non-gated chest CT. These findings suggest that obtaining CCTA may be beneficial for managing patients with ILD, particularly those with identified risk factors.
Collapse
Affiliation(s)
- Hyun Seok Kwak
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Whan Lee
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Pil Hyung Lee
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Tae Oh Kim
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zheng Z, Peng F, Zhou Y. Biomarkers in idiopathic pulmonary fibrosis: Current insight and future direction. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:72-79. [PMID: 38962100 PMCID: PMC11221783 DOI: 10.1016/j.pccm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a dismal prognosis. Early diagnosis, accurate prognosis, and personalized therapeutic interventions are essential for improving patient outcomes. Biomarkers, as measurable indicators of biological processes or disease states, hold significant promise in IPF management. In recent years, there has been a growing interest in identifying and validating biomarkers for IPF, encompassing various molecular, imaging, and clinical approaches. This review provides an in-depth examination of the current landscape of IPF biomarker research, highlighting their potential applications in disease diagnosis, prognosis, and treatment response. Additionally, the challenges and future perspectives of biomarker integration into clinical practice for precision medicine in IPF are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fei Peng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Zhou
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Choi B, Liu GY, Sheng Q, Amancherla K, Perry A, Huang X, San José Estépar R, Ash SY, Guan W, Jacobs DR, Martinez FJ, Rosas IO, Bowler RP, Kropski JA, Banovich NE, Khan SS, San José Estépar R, Shah R, Thyagarajan B, Kalhan R, Washko GR. Proteomic Biomarkers of Quantitative Interstitial Abnormalities in COPDGene and CARDIA Lung Study. Am J Respir Crit Care Med 2024; 209:1091-1100. [PMID: 38285918 PMCID: PMC11092953 DOI: 10.1164/rccm.202307-1129oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024] Open
Abstract
Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.
Collapse
Affiliation(s)
- Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Applied Chest Imaging Laboratory, and
| | - Gabrielle Y. Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, California
| | | | | | | | - Xiaoning Huang
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ruben San José Estépar
- Applied Chest Imaging Laboratory, and
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Samuel Y. Ash
- Department of Critical Care, South Shore Hospital, South Weymouth, Massachusetts
| | | | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ivan O. Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Sadiya S. Khan
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, and
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine and
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Applied Chest Imaging Laboratory, and
| |
Collapse
|
5
|
Brillet PY, Tran Ba S, Nunes H. How does the MESA Lung Study sharpen blurry edges in interstitial lung abnormalities? Eur Respir J 2023; 61:2300397. [PMID: 37290811 DOI: 10.1183/13993003.00397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Pierre-Yves Brillet
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Stéphane Tran Ba
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Pneumologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| |
Collapse
|
6
|
Tamaki N, Kurosaki M, Huang DQ, Loomba R. Noninvasive assessment of liver fibrosis and its clinical significance in nonalcoholic fatty liver disease. Hepatol Res 2022; 52:497-507. [PMID: 35352460 PMCID: PMC9718363 DOI: 10.1111/hepr.13764] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/26/2023]
Abstract
Liver fibrosis is the most important prognostic factor in patients with nonalcoholic fatty liver disease (NAFLD). Several noninvasive markers for fibrosis, including blood-based markers and imaging based-markers have been developed. Indirect fibrosis markers (e.g., fibrosis-4 index and NAFLD fibrosis score) consist of standard laboratory data and clinical parameters. Given its availability and high negative predictive value for advanced fibrosis, these markers are suitable for screening at primary care. Blood-based fibrogenesis markers (enhanced liver fibrosis and N-terminal propeptide of type 3 collagen), ultrasound-based modalities (vibration-controlled transient elastography, point shear wave elastography [SWE], and two-dimensional SWE), and magnetic resonance elastography have high diagnostic accuracy for liver fibrosis and are suitable for diagnosing liver fibrosis at secondary care centers. Sequential use of these markers can increase diagnostic accuracy and reduce health care costs. Furthermore, combining noninvasive makers may assist in identifying candidates for pharmacological trials and reducing screening failure. Emerging data suggest that these noninvasive markers are associated with liver-related events (hepatocellular carcinoma and decompensation) and mortality. Furthermore, delta change in noninvasive markers over time is also associated with time-course change in fibrosis, liver-related event risk, and mortality risk. However, the association between liver fibrosis and cardiovascular disease (CVD) risk is still controversial. CVD risk may decrease in patients with decompensated liver disease and noninvasive markers may be useful for assessing CVD risk in these patients. Therefore, noninvasive markers may be utilized as measures of fibrosis as well as real-time prognostic tools, in place of liver biopsy.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Xiao ZL, Ma LP, Yang DF, Yang M, Li ZY, Chen MF. Profilin-1 is involved in macroangiopathy induced by advanced glycation end products via vascular remodeling and inflammation. World J Diabetes 2021; 12:1875-1893. [PMID: 34888013 PMCID: PMC8613658 DOI: 10.4239/wjd.v12.i11.1875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic vasculopathy. However, the role of profilin-1 as a multifunctional actin-binding protein in AGEs-induced atherosclerosis (AS) is largely unknown.
AIM To explore the potential role of profilin-1 in the pathogenesis of AS induced by AGEs, particularly in relation to the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) signaling pathway.
METHODS Eighty-nine individuals undergoing coronary angiography were enrolled in the study. Plasma cytokine levels were detected using ELISA kits. Rat aortic vascular smooth muscle cells (RASMCs) were incubated with different compounds for different times. Cell proliferation was determined by performing the MTT assay and EdU staining. An AGEs-induced vascular remodeling model was established in rats and histological and immunohistochemical analyses were performed. The mRNA and protein levels were detected using real-time PCR and Western blot analysis, respectively. In vivo, shRNA transfection was performed to verify the role of profilin-1 in AGEs-induced proatherogenic mediator release and aortic remodeling. Statistical analyses were performed using SPSS 22.0 software.
RESULTS Compared with the control group, plasma levels of profilin-1 and receptor for AGEs (RAGE) were significantly increased in patients with coronary artery disease, especially in those complicated with diabetes mellitus (P < 0.01). The levels of profilin-1 were positively correlated with the levels of RAGE (P < 0.01); additionally, the levels of both molecules were positively associated with the degree of coronary artery stenosis (P < 0.01). In vivo, tail vein injections of AGEs induced the release of proatherogenic mediators, such as asymmetric dimethylarginine, intercellular adhesion molecule-1, and the N-terminus of procollagen III peptide, concomitant with apparent aortic morphological changes and significantly upregulated expression of the profilin-1 mRNA and protein in the thoracic aorta (P < 0.05 or P < 0.01). Downregulation of profilin-1 expression with an shRNA significantly attenuated AGEs-induced proatherogenic mediator release (P < 0.05) and aortic remodeling. In vitro, incubation of vascular smooth muscle cells (VSMCs) with AGEs significantly promoted cell proliferation and upregulated the expression of the profilin-1 mRNA and protein (P < 0.05). AGEs (200 μg/mL, 24 h) significantly upregulated the expression of the STAT3 mRNA and protein and JAK2 protein, which was blocked by a JAK2 inhibitor (T3042-1) and/or STAT3 inhibitor (T6308-1) (P < 0.05). In addition, pretreatment with T3042-1 or T6308-1 significantly inhibited AGEs-induced RASMC proliferation (P < 0.05).
CONCLUSION AGEs induce proatherogenic events such as VSMC proliferation, proatherogenic mediator release, and vascular remodeling, changes that can be attenuated by silencing profilin-1 expression. These results suggest a crucial role for profilin-1 in AGEs-induced vasculopathy.
Collapse
Affiliation(s)
- Zhi-Lin Xiao
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Li-Ping Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, China
| | - Da-Feng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Mei Yang
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhen-Yu Li
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Mei-Fang Chen
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
8
|
Axelsson GT, Gudmundsson G. Interstitial lung abnormalities - current knowledge and future directions. Eur Clin Respir J 2021; 8:1994178. [PMID: 34745461 PMCID: PMC8567914 DOI: 10.1080/20018525.2021.1994178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Efforts to grasp the significance of radiologic changes similar to interstitial lung disease (ILD) in undiagnosed individuals have intensified in the recent decade. The term interstitial lung abnormalities (ILA) is an emerging definition of such changes, defined by visual examination of computed tomography scans. Substantial insights have been made in the origins and clinical consequences of these changes, as well as automated measures of early lung fibrosis, which will likely lead to increased recognition of early fibrotic lung changes among clinicians and researchers alike. Interstitial lung abnormalities have an estimated prevalence of 7–10% in elderly populations. They correlate with many ILD risk factors, both epidemiologic and genetic. Additionally, histopathological similarities with IPF exist in those with ILA. While no established blood biomarker of ILA exists, several have been suggested. Distinct imaging patterns indicating advanced fibrosis correlate with worse clinical outcomes. ILA are also linked with adverse clinical outcomes such as increased mortality and risk of lung cancer. Progression of ILA has been noted in a significant portion of those with ILA and is associated with many of the same features as ILD, including advanced fibrosis. Those with ILA progression are at risk of accelerated FVC decline and increased mortality. Radiologic changes resembling ILD have also been attained by automated measures. Such measures associate with some, but not all the same factors as ILA. ILA and similar radiologic changes are in many ways analogous to ILD and likely represent a precursor of ILD in some cases. While warranting an evaluation for ILD, they are associated with poor clinical outcomes beyond possible ILD development and thus are by themselves a significant finding. Among the present objectives of this field are the stratification of patients with regards to progression and the discovery of biomarkers with predictive value for clinical outcomes.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
9
|
Santanasto AJ, Cvejkus RK, Wojczynski MK, Marron MM, Schupf N, Christensen K, Thyagarajan B, Zmuda JM. Circulating Procollagen Type III N-Terminal Peptide and Physical Function in Adults from the Long Life Family Study. J Gerontol A Biol Sci Med Sci 2021; 76:1273-1279. [PMID: 32794566 PMCID: PMC8355442 DOI: 10.1093/gerona/glaa197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Circulating levels of procollagen type III N-terminal peptide (P3NP) may reflect increased fibrosis of skeletal muscle and other tissues with aging. Herein, we tested if P3NP was associated with baseline and 7-year change in physical function. METHOD Participants (n = 400) were from the Long Life Family Study, a study of exceptional familial longevity. Plasma P3NP concentration was measured using a sandwich enzyme-linked immunosorbent assay (inter-assay coefficient of variation <5.5%). At baseline and 7-year follow-up visits, physical function was measured using the Short Physical Performance Battery (SPPB score 0-12), which consists of gait speed, balance, and chair-rise tests. Grip strength was measured using a handheld dynamometer. The association between log-transformed P3NP and physical function was examined using generalized estimating equations adjusted for familial relatedness, age, sex, height, weight, lifestyle characteristics, liver function, kidney function, lung function, and chronic disease prevalence. RESULTS Participants were aged 73.1 ± 15.2 years (range: 39-104), 54% female, had body mass index of 26.6 ± 4.3 kg/m2, and gait speeds of 1.0 ± 0.3 m/s. One standard deviation higher log-transformed P3NP was related to worse baseline SPPB score (β = -0.9points), gait speed (β = -0.05m/s), chair-rises per-second (β = -0.46chair-rises/10 seconds), and grip strength (β = -2.0kg; all p < .001). Higher P3NP was also associated with greater declines in gait speed (β = -1.41, p < .001) and transitioning to being unable to perform chair-rises (β = 0.41, p < .001) after 7 years. CONCLUSION Plasma P3NP may be a strong, novel biomarker of current and future physical function. Future research is needed to extend our findings to other cohorts and determine mechanisms underlying these associations.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Ryan K Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Mary K Wojczynski
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine in St. Louis, Missouri
| | - Megan M Marron
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, New York
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Buendía-Roldán I, Fernandez R, Mejía M, Juarez F, Ramirez-Martinez G, Montes E, Pruneda AKS, Martinez-Espinosa K, Alarcon-Dionet A, Herrera I, Becerril C, Chavez-Galan L, Preciado M, Pardo A, Selman M. Risk factors associated with the development of interstitial lung abnormalities. Eur Respir J 2021; 58:13993003.03005-2020. [PMID: 33446609 DOI: 10.1183/13993003.03005-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Around 8-10% of individuals over 50 years of age present interstitial lung abnormalities (ILAs), but their risk factors are uncertain. METHODS From 817 individuals recruited in our lung ageing programme at the Mexican National Institute of Respiratory Diseases, 80 (9.7%) showed ILAs and were compared with 564 individuals of the same cohort with normal high-resolution computed tomography to evaluate demographic and functional differences, and with 80 individuals randomly selected from the same cohort for biomarkers. We evaluated MUC5B variant rs35705950, telomere length, and serum levels of matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, interleukin (IL)-6, surfactant protein (SP)-D, α-Klotho and resistin. RESULTS Individuals with ILAs were usually males (p<0.005), older than controls (p<0.0001), smokers (p=0.01), with a greater frequency of MUC5B rs35705950 (OR 3.5, 95% CI 1.3-9.4; p=0.01), and reduced diffusing capacity of the lung for carbon monoxide and oxygen saturation. Resistin, IL-6, SP-D, MMP-1, MMP-7 and MMP-13 were significantly increased in individuals with ILAs. Resistin (12±5 versus 9±4 ng·mL-1; p=0.0005) and MMP-13 (357±143 versus 298±116 pg·mL-1; p=0.004) were the most increased biomarkers. On follow-up (24±18 months), 18 individuals showed progression which was associated with gastro-oesophageal reflux disease (OR 4.1, 95% CI 1.2-12.9; p=0.02) and in females with diabetes mellitus (OR 5.3, 95% CI 1.0-27.4; p=0.01). CONCLUSIONS Around 10% of respiratory asymptomatic individuals enrolled in our lung ageing programme show ILAs. Increased serum concentrations of pro-inflammatory molecules and MMPs are associated with ILAs.
Collapse
Affiliation(s)
- Ivette Buendía-Roldán
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,These two authors contributed equally to this article as lead authors and supervised the work
| | - Rosario Fernandez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Mayra Mejía
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Fortunato Juarez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Eduardo Montes
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ana Karem S Pruneda
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Karen Martinez-Espinosa
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Aime Alarcon-Dionet
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Iliana Herrera
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Mario Preciado
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,These two authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
11
|
Gu C, Shi X, Dang X, Chen J, Chen C, Chen Y, Pan X, Huang T. Identification of Common Genes and Pathways in Eight Fibrosis Diseases. Front Genet 2021; 11:627396. [PMID: 33519923 PMCID: PMC7844395 DOI: 10.3389/fgene.2020.627396] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Acute and chronic inflammation often leads to fibrosis, which is also the common and final pathological outcome of chronic inflammatory diseases. To explore the common genes and pathogenic pathways among different fibrotic diseases, we collected all the reported genes of the eight fibrotic diseases: eye fibrosis, heart fibrosis, hepatic fibrosis, intestinal fibrosis, lung fibrosis, pancreas fibrosis, renal fibrosis, and skin fibrosis. We calculated the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment scores of all fibrotic disease genes. Each gene was encoded using KEGG and GO enrichment scores, which reflected how much a gene can affect this function. For each fibrotic disease, by comparing the KEGG and GO enrichment scores between reported disease genes and other genes using the Monte Carlo feature selection (MCFS) method, the key KEGG and GO features were identified. We compared the gene overlaps among eight fibrotic diseases and connective tissue growth factor (CTGF) was finally identified as the common key molecule. The key KEGG and GO features of the eight fibrotic diseases were all screened by MCFS method. Moreover, we interestingly found overlaps of pathways between renal fibrosis and skin fibrosis, such as GO:1901890-positive regulation of cell junction assembly, as well as common regulatory genes, such as CTGF, which is the key molecule regulating fibrogenesis. We hope to offer a new insight into the cellular and molecular mechanisms underlying fibrosis and therefore help leading to the development of new drugs, which specifically delay or even improve the symptoms of fibrosis.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuening Dang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Chen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Gritsenko OV, Chumakova GA, Shevlyakov IV, Veselovskaya NG. [Extracellular matrix of the heart and its changes in myocardial fibrosis]. ACTA ACUST UNITED AC 2020; 60:773. [PMID: 32720625 DOI: 10.18087/cardio.2020.6.n773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022]
Abstract
Neurohumoral changes have recently attracted much attention as a part of the pathogenesis of heart failure. Activation of neurohumoral factors triggers processes resulting in changes of extracellular matrix composition and, thus, development of myocardial fibrosis. This article addresses a number of factors that directly contribute to the development of myocardial fibrosis.
Collapse
Affiliation(s)
- O V Gritsenko
- KGBUZ "Altai regional cardiological dispensary", Barnaul, Russia
| | - G A Chumakova
- FSBEI HE "Altai state medical University" Ministry of Health of Russia, Barnaul
| | - I V Shevlyakov
- KGBUZ "Altai regional cardiological dispensary", Barnaul, Russia
| | - N G Veselovskaya
- FSBSI "Research Institute of complex problems of cardiovascular diseases", Kemerovo, Russia
| |
Collapse
|
13
|
Abstract
The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental causes (i.e., asbestosis, silicosis), in many individuals, no culprit exposure can be identified; these patients are deemed to have "idiopathic interstitial pneumonia" (IIP). Family history is now recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a syndrome termed "familial interstitial pneumonia" (FIP). Mutations in more than 10 different genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is the primary determinant of disease outcomes. Together, these FIP studies have provided unique insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the care of patients with FIP.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- U.S. Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Wai JW, Fu C, Wong VWS. Confounding factors of non-invasive tests for nonalcoholic fatty liver disease. J Gastroenterol 2020; 55:731-741. [PMID: 32451628 PMCID: PMC7376510 DOI: 10.1007/s00535-020-01686-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects at least 25% of the general adult population worldwide. Because only a fraction of the patients would develop liver-related complications, it is preferable to perform non-invasive tests as the initial assessment. This review summarizes the known and potential confounding factors that affect the performance of non-invasive tests of hepatic steatosis and fibrosis in patients with NAFLD. Clinicians may apply the knowledge and exercise caution in selecting investigations and interpreting test results when confounding factors are present.
Collapse
Affiliation(s)
- Janae Wentong Wai
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 9/F, Prince of Wales Hospital, 30-32 Ngan Shing Street, Hong Kong, China
| | - Charmaine Fu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 9/F, Prince of Wales Hospital, 30-32 Ngan Shing Street, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 9/F, Prince of Wales Hospital, 30-32 Ngan Shing Street, Hong Kong, China ,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|