1
|
Zhong Z, Zhang C, Zhao L, Zhao Y, Xia S. Inhaled tobramycin in non-cystic fibrosis bronchiectasis: A meta-analysis of randomized controlled trials. Respir Med 2025; 243:108136. [PMID: 40339664 DOI: 10.1016/j.rmed.2025.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Non-cystic fibrosis bronchiectasis (NCFB) is often complicated by chronic Pseudomonas aeruginosa infection. Inhaled antibiotics, such as tobramycin, have been explored for their efficacy in managing these infections, but their efficacy and safety in NCFB remains uncertain. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the efficacy and safety of inhaled tobramycin in NCFB patients. PubMed, EMBASE, Cochrane Library, and ISI Web of Science databases were searched up to June 2024 using predefined keywords. Studies comparing inhaled tobramycin versus placebo were included if they reported outcomes related to P. aeruginosa eradication, sputum density, exacerbations, hospital admissions, and adverse events. RESULTS Nine RCTs involving 772 patients met the inclusion criteria. Inhaled tobramycin significantly increased P. aeruginosa eradication rates compared to placebo (I2 = 22.0 %, P = 0.255; RR 2.422, 95 % CI 1.570 to 3.738, P < 0.001). There was a marked reduction in hospital admissions (I2 = 27.9 %, P = 0.250; WMD -0.523, 95 % CI -0.879 to -0.167, P = 0.004) but no significant difference in exacerbation rates (I2 = 31.9 %, P = 0.196; RR 0.837, 95 % CI 0.519 to 1.349, P = 0.464). Adverse events leading to trial discontinuation were higher in the tobramycin group (I2 = 0.0 %, P = 0.634; RR 1.968, 95 % CI 1.197 to 3.236, P = 0.008). CONCLUSIONS Inhaled tobramycin therapy demonstrated efficacy in eradicating P. aeruginosa and reducing hospital admissions in patients with NCFB. However, no significant impact on exacerbation rates was observed, and the higher incidence of adverse events necessitates careful consideration in clinical practice.
Collapse
Affiliation(s)
- Zhaoshuang Zhong
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China.
| | - Chunyang Zhang
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China.
| | - Long Zhao
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China.
| | - Yan Zhao
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China.
| | - Shuyue Xia
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
2
|
Tanaka S, Ryuko T, Tomioka Y, Shien K, Suzawa K, Miyoshi K, Hagiya H, Okazaki M, Sugimoto S, Toyooka S. Recurrent Diffuse Panbronchiolitis After Lung Transplantation: Off-Label Use of Inhaled Tobramycin for Pseudomonas aeruginosa Control in a Transplant Recipient. Int J Infect Dis 2025:107913. [PMID: 40280231 DOI: 10.1016/j.ijid.2025.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Diffuse panbronchiolitis (DPB) is a chronic inflammatory disease predominantly affecting East Asians. It is characterized by persistent Pseudomonas aeruginosa colonization and progressive respiratory failure. Lung transplantation (LTx) serves as a definitive treatment option for advanced cases, but post-transplant recurrence poses significant challenges. This report describes a Japanese woman who experienced DPB recurrence after bilateral LTx. Persistent P. aeruginosa colonization and recurrent respiratory symptoms were managed with off-label tobramycin solution for inhalation (TSI), which is commonly used in cystic fibrosis. TSI treatment led to significant clinical and radiological improvements, clearance of P. aeruginosa from sputum cultures, and no further hospitalizations during six months of therapy. This case suggests the potential of TSI as a therapeutic approach for managing recurrent DPB and indicates its role in stabilizing post-transplant outcomes. Further studies may clarify its efficacy and expand its application in broader DPB management strategies.
Collapse
Affiliation(s)
- Shin Tanaka
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, Okayama, Japan.
| | - Tuyoshi Ryuko
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Yasuaki Tomioka
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Dallal Bashi YH, Mairs R, Murtadha R, Kett V. Pulmonary Delivery of Antibiotics to the Lungs: Current State and Future Prospects. Pharmaceutics 2025; 17:111. [PMID: 39861758 PMCID: PMC11768398 DOI: 10.3390/pharmaceutics17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect. Side effects, safety concerns, and disappointing clinical trial results remain barriers to regulatory approval. In this review, we describe some possible approaches to address these issues and highlight prospects in this area.
Collapse
Affiliation(s)
- Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
- College Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rachel Mairs
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rand Murtadha
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
5
|
Pangeni R, Poudel S, Momin MAM, Farkas D, Dalton C, Hall F, Kang JD, Hylemon P, Longest W, Hindle M, Xu Q. Inhalable tobramycin EEG powder formulation for treating Pseudomonas aeruginosa-induced lung infection. Int J Pharm 2024; 662:124504. [PMID: 39053676 PMCID: PMC11344668 DOI: 10.1016/j.ijpharm.2024.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Pulmonary delivery of antibiotics is an effective strategy in treating bacterial lung infection for cystic fibrosis patients, by achieving high local drug concentrations and reducing overall systemic exposure compared to systemic administration. However, the inherent anatomical lung defense mechanisms, formulation characteristics, and drug-device combination determine the treatment efficacy of the aerosol delivery approach. In this study, we prepared a new tobramycin (Tobi) dry powder aerosol using excipient enhanced growth (EEG) technology and evaluated the in vitro and in vivo aerosol performance. We further established a Pseudomonas aeruginosa-induced lung infection rat model using an in-house designed novel liquid aerosolizer device. Notably, novel liquid aerosolizer yields comparable lung infection profiles despite administering 3-times lower P. aeruginosa CFU per rat in comparison to the conventional intratracheal administration. Dry powder insufflator (e.g. Penn-Century DP-4) to administer small powder masses to experimental animals is no longer commercially available. To address this gap, we developed a novel rat air-jet dry powder insufflator (Rat AJ DPI) that can emit 68-70 % of the loaded mass for 2 mg and 5 mg of Tobi-EEG powder formulations, achieving a high rat lung deposition efficiency of 79 % and 86 %, respectively. Rat AJ DPI can achieve homogenous distribution of Tobi EEG powder formulations at both loaded mass (2 mg and 5 mg) over all five lung lobes in rats. We then demonstrated that Tobi EEG formulation delivered by Rat AJ DPI can significantly decrease CFU counts in both trachea and lung lobes at 2 mg (p < 0.05) and 5 mg (p < 0.001) loaded mass compared to the untreated P. aeruginosa-infected group. Tobi EEG powder formulation delivered by the novel Rat AJ DPI showed excellent efficiencies in substantially reducing the P. aeruginosa-induced lung infection in rats.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Surendra Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Caleb Dalton
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Felicia Hall
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason D Kang
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Phillip Hylemon
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Ando K. Intravenous Tobramycin Inhalation for Patients With Advanced Bronchiectasis With Pseudomonas aeruginosa Infection in Home Medical Care: A Report of Two Cases. Cureus 2024; 16:e62726. [PMID: 38898897 PMCID: PMC11186675 DOI: 10.7759/cureus.62726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/21/2024] Open
Abstract
Home medical care faces limitations in the number of doctor and nurse visits, availability of medical devices, and economic factors, making daily injections difficult for in-home patients. We describe two cases of advanced bronchiectasis with Pseudomonas aeruginosa infection treated with inhaled tobramycin in a home setting, demonstrating clinical effectiveness. Using commercially available empty eye drop containers to prepare an aseptic inhalation solution and nebulizers easily usable at home, our experience suggests that this could be a viable therapeutic alternative in home medical care.
Collapse
|
7
|
Khosravi A, Chen Q, Echterhof A, Koff JL, Bollyky PL. Phage Therapy for Respiratory Infections: Opportunities and Challenges. Lung 2024; 202:223-232. [PMID: 38772946 PMCID: PMC11570333 DOI: 10.1007/s00408-024-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
We are entering the post-antibiotic era. Antimicrobial resistance (AMR) is a critical problem in chronic lung infections resulting in progressive respiratory failure and increased mortality. In the absence of emerging novel antibiotics to counter AMR infections, bacteriophages (phages), viruses that infect bacteria, have become a promising option for chronic respiratory infections. However, while personalized phage therapy is associated with improved outcomes in individual cases, clinical trials demonstrating treatment efficacy are lacking, limiting the therapeutic potential of this approach for respiratory infections. In this review, we address the current state of phage therapy for managing chronic respiratory diseases. We then discuss how phage therapy may address major microbiologic obstacles which hinder disease resolution of chronic lung infections with current antibiotic-based treatment practices. Finally, we highlight the challenges that must be addressed for successful phage therapy clinical trials. Through this discussion, we hope to expand on the potential of phages as an adjuvant therapy in chronic lung infections, as well as the microbiologic challenges that need to be addressed for phage therapy to expand beyond personalized salvage therapy.
Collapse
Affiliation(s)
- Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Stanford University, 279 Campus Drive, Beckman Center, Room B237, Stanford, CA, 94305, USA.
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care & Sleep Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Zhang XX, Chen ZM, He ZF, Guan WJ. Advances in pharmacotherapy for bronchiectasis in adults. Expert Opin Pharmacother 2023; 24:1075-1089. [PMID: 37161410 DOI: 10.1080/14656566.2023.2210763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Bronchiectasis has become a growing concern of chronic airway disease because of the enormous socioeconomic burden. Four cardinal interdependent components - impaired airway defense, recurrent airway infections, inflammatory response, and airway damage, in conjunction with the underlying etiology, have collectively played a role in modulating the vicious vortex of the pathogenesis and progression of bronchiectasis. Current pharmacotherapy aims to target at these aspects to break the vicious vortex. AREAS COVERED The authors retrieve and review, in MEDLINE, Web of Science and ClinicalTrials.gov registry, the studies about pharmacotherapy for bronchiectasis from these aspects: antibiotics, mucoactive medications, bronchodilators, anti-inflammatory drug, and etiological treatment. EXPERT OPINION Future drug development and clinical trials of bronchiectasis need to pay more attention to the different phenotypes or endotypes of bronchiectasis. There is a need for the development of novel inhaled antibiotics that could reduce bacterial loads, improve quality-of-life, and decrease exacerbation risks. More efforts are needed to explore the next-generation neutrophil-targeted therapeutic drugs that are expected to ameliorate respiratory symptom burden, reduce exacerbation risks, and hinder airway destruction in bronchiectasis.
Collapse
Affiliation(s)
- Xiao-Xian Zhang
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Ming Chen
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Feng He
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory Centre, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
9
|
Guan WJ, Xu JF, Luo H, Xu XX, Song YL, Ma WL, Liang ZA, Liu XD, Zhang GJ, Zhang XJ, Li RK, Zhu SY, Zhang YJ, Cai XJ, Wei LP, Tian DB, Zhao H, Chen PY, Qu JM, Zhong NS. A Double-Blind Randomized Placebo-Controlled Phase 3 Trial of Tobramycin Inhalation Solution in Adults With Bronchiectasis With Pseudomonas aeruginosa Infection. Chest 2023; 163:64-76. [PMID: 35863486 DOI: 10.1016/j.chest.2022.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Few large-scale studies have demonstrated the efficacy of tobramycin nebulization in bronchiectasis. We evaluated the efficacy and safety of nebulized tobramycin inhalation solution (TIS) in adults with bronchiectasis with Pseudomonas aeruginosa infection. RESEARCH QUESTION Can TIS effectively reduce sputum P aeruginosa density and improve the bronchiectasis-specific quality of life in patients with bronchiectasis with P aeruginosa infection? STUDY DESIGN AND METHODS This was a phase 3, 16-week, multicenter, randomized, double-blind, placebo-controlled trial. Eligible adults with bronchiectasis were recruited from October 2018 to July 2021. On the basis of usual care, patients nebulized TIS (300 mg/5 mL twice daily) or normal saline (5 mL twice daily) via vibrating-mesh nebulizer. Treatment consisted of two cycles, each consisting of 28 days on-treatment and 28 days off-treatment. The coprimary end points included changes from baseline in P aeruginosa density and Quality-of-Life Bronchiectasis Respiratory Symptoms score on day 29. RESULTS The modified intention-to-treat population consisted of 167 patients in the tobramycin group and 172 patients in the placebo group. Compared with placebo, TIS resulted in a significantly greater reduction in P aeruginosa density (adjusted mean difference, 1.74 log10 colony-forming units/g; 95% CI, 1.12-2.35; P < .001) and greater improvement in Quality-of-Life Bronchiectasis Respiratory Symptoms score (adjusted mean difference, 7.91; 95% CI, 5.72-10.11; P < .001) on day 29. Similar findings were observed on day 85. TIS resulted in a significant reduction in 24-h sputum volume and sputum purulence score on days 29, 57, and 85. More patients became culture negative for P aeruginosa in the tobramycin group than in the placebo group on day 29 (29.3% vs 10.6%). The incidence of adverse events and serious adverse events were comparable between the two groups. INTERPRETATION TIS is an effective treatment option and has an acceptable safety profile in patients with bronchiectasis with P aeruginosa infection. TRIAL REGISTRATION ClinicalTrials.gov; No. NCT03715322; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Yuan-Lin Song
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wan-Li Ma
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zong-An Liang
- Affiliated West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue-Dong Liu
- Tsingtao Municipal Hospital, Qingdao, Shandong, China
| | - Guo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Ju Zhang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Rong-Kai Li
- Xinxiang First People's Hospital, Xinxiang, Henan, China
| | - Shu-Yang Zhu
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi-Jie Zhang
- Affiliated Huaihe Hospital of Henan University, Huaihe, Henan, China
| | | | - Li-Ping Wei
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong-Bo Tian
- Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Hui Zhao
- Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ping-Yan Chen
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University
| | - Jie-Ming Qu
- Affiliated Ruijin Hospital, School of Medicine, Shanghai Jiaotong University
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | | |
Collapse
|
10
|
Inchingolo R, Pierandrei C, Montemurro G, Smargiassi A, Lohmeyer FM, Rizzi A. Antimicrobial Resistance in Common Respiratory Pathogens of Chronic Bronchiectasis Patients: A Literature Review. Antibiotics (Basel) 2021; 10:326. [PMID: 33804631 PMCID: PMC8003644 DOI: 10.3390/antibiotics10030326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-cystic fibrosis bronchiectasis is a chronic disorder in which immune system dysregulation and impaired airway clearance cause mucus accumulation and consequent increased susceptibility to lung infections. The presence of pathogens in the lower respiratory tract causes a vicious circle resulting in impaired mucociliary function, bronchial inflammation, and progressive lung injury. In current guidelines, antibiotic therapy has a key role in bronchiectasis management to treat acute exacerbations and chronic infection and to eradicate bacterial colonization. Contrastingly, antimicrobial resistance, with the risk of multidrug-resistant pathogen development, causes nowadays great concern. The aim of this literature review was to assess the role of antibiotic therapy in bronchiectasis patient management and possible concerns regarding antimicrobial resistance based on current evidence. The authors of this review stress the need to expand research regarding bronchiectasis with the aim to assess measures to reduce the rate of antimicrobial resistance worldwide.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- UOC Pneumologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (G.M.); (A.S.)
| | - Chiara Pierandrei
- UOC Pneumologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (G.M.); (A.S.)
| | - Giuliano Montemurro
- UOC Pneumologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (G.M.); (A.S.)
| | - Andrea Smargiassi
- UOC Pneumologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (G.M.); (A.S.)
| | | | - Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|