1
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Song G, Zhang Y, Gao H, Fu Y, Chen Y, Yin Y, Xu K. Differences in Immune Characteristics and Related Gene Expression in Spleen among Ningxiang, Berkshire Breeds and Their Hybrid Pigs. Genes (Basel) 2024; 15:205. [PMID: 38397195 PMCID: PMC10888219 DOI: 10.3390/genes15020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
To investigate the differential immunology in Ningxiang and Berkshire pigs and their F1 offspring (F1 offspring), physiological and biochemical indicators in the plasma and spleen were analyzed. Then, transcriptomic analysis of the spleen identified 1348, 408, and 207 differentially expressed genes (DEGs) in comparisons of Ningxiang vs. Berkshire, Berkshire vs. F1 offspring, and Ningxiang vs. F1 offspring, respectively. In Ningxiang vs. Berkshire pigs, the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs included CD163, MARCO, CXCL14, CCL19, and PPBP, which are associated with immunity. GO and KEGG analyses were also conducted comparing F1 offspring and their parents. The DEGs, including BPIFB1, HAVCR2, CD163, DDX3X, CCR5, and ITGB3, were enriched in immune-related pathways. Protein-protein interaction (PPI) analysis indicated that the EGFR and ITGA2 genes were key hub genes. In conclusion, this study identifies significant immune DEGs in different pig breeds, providing data to support the exploration of breeding strategies for disease resistance in local and crossbred pig populations.
Collapse
Affiliation(s)
- Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Yue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Yulong Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kang Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
3
|
Hidalgo-Gajardo A, Gutiérrez N, Lamazares E, Espinoza F, Escobar-Riquelme F, Leiva MJ, Villavicencio C, Mena-Ulecia K, Montesino R, Altamirano C, Sánchez O, Rivas CI, Ruíz Á, Toledo JR. Co-Formulation of Recombinant Porcine IL-18 Enhances the Onset of Immune Response in a New Lawsonia intracellularis Vaccine. Vaccines (Basel) 2023; 11:1788. [PMID: 38140192 PMCID: PMC10747595 DOI: 10.3390/vaccines11121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Pig is one of the most consumed meats worldwide. One of the main conditions for pig production is Porcine Enteropathy caused by Lawsonia intracellularis. Among the effects of this disease is chronic mild diarrhea, which affects the weight gain of pigs, generating economic losses. Vaccines available to prevent this condition do not have the desired effect, but this limitation can be overcome using adjuvants. Pro-inflammatory cytokines, such as interleukin 18 (IL-18), can improve an immune response, reducing the immune window of protection. In this study, recombinant porcine IL-18 was produced and expressed in Escherichia coli and Pichia pastoris. The protein's biological activity was assessed in vitro and in vivo, and we determined that the P. pastoris protein had better immunostimulatory activity. A vaccine candidate against L. intracellularis, formulated with and without IL-18, was used to determine the pigs' cellular and humoral immune responses. Animals injected with the candidate vaccine co-formulated with IL-18 showed a significant increase of Th1 immune response markers and an earlier increase of antibodies than those vaccinated without the cytokine. This suggests that IL-18 acts as an immunostimulant and vaccine adjuvant to boost the immune response against the antigens, reducing the therapeutic window of recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Angela Hidalgo-Gajardo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
- Centro de Desarrollo e Innovación Biovacuvet SpA, VIII Región, Concepción 4090838, Chile
| | - Nicolás Gutiérrez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
- Centro de Desarrollo e Innovación Biovacuvet SpA, VIII Región, Concepción 4090838, Chile
| | - Emilio Lamazares
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Felipe Espinoza
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
- Centro de Desarrollo e Innovación Biovacuvet SpA, VIII Región, Concepción 4090838, Chile
| | - Fernanda Escobar-Riquelme
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - María J. Leiva
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Carla Villavicencio
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Karel Mena-Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, IX Región, Temuco 4813302, Chile;
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, V Región, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Coralia I. Rivas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| | - Álvaro Ruíz
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, XVI Región, Chillán 3812120, Chile;
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, VIII Región, Concepción 4070386, Chile; (A.H.-G.); (M.J.L.); (C.V.); (C.I.R.)
| |
Collapse
|
4
|
Zhao G, Zhang J, Sun W, Xie C, Zhang H, Gao Y, Wen S, Ha Z, Nan F, Zhu X, Feng S, Cao X, Zhang Y, Zhu Y, Jin N, Lu H. Immunological evaluation of recombination PRRSV GP3 and GP5 DNA vaccines in vivo. Front Cell Infect Microbiol 2022; 12:1016897. [PMID: 36275018 PMCID: PMC9582230 DOI: 10.3389/fcimb.2022.1016897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is a threat to the health of pigs worldwide, but commercially available vaccines offer limited protection against PRRSV infection. It is necessary to develop a more effective DNA vaccine. The immunological effects of DNA vaccines with three adjuvants were examined in pigs (Susscrofa domestica) challenged with PRRSV. These DNA vaccines, which encoded PRRSV GP3 and GP5, were formulated with A1, A2, and A3. Serum specific and neutralizing antibodies, IL-4, IFN-γ, IL-2, IL-10, CD4+ and CD8+T-lymphocytes, health status, histopathology, and viral loads were determined. The results showed that the use of adjuvant A3 led to higher levels of neutralizing antibodies and a lower viral load in pigs compared to the other adjuvants. The neutralizing antibody titers of the pVAX-GP35+A1 and pVAX-GP35+A3 groups reached a peak of 1:19 at 35 dpi. The maximum concentration of IL-4 was 136.77 pg/mL in the pVAX-GP35+A3 group. At 35 dpi, the IFN-γ concentration in the pVAX-GP35+A1 group was 227.4 pg/mL. pVAX-GP35+A3 group shows the highest IL-2 and IL-10 expression to the peak of 597.6 pg/mL and 189.1 pg/mL, respectively. We found a formulation demonstrated beneficial immune outcomes. This study provides an alternative vaccine to protect pigs from PRRSV.
Collapse
Affiliation(s)
- Guanyu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Changzhan Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shubo Wen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyu Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Jilin Agriculture Science and Technology University, Jilin, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Ningyi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ying Zhang, ; Yanzhu Zhu, ; Ningyi Jin, ; Huijun Lu,
| |
Collapse
|
5
|
Xie C, Ha Z, Sun W, Nan F, Zhang P, Han J, Zhao G, Zhang H, Zhuang X, Lu H, Jin N. Construction and immunological evaluation of recombinant adenovirus vaccines co-expressing GP3 and GP5 of EU-type porcine reproductive and respiratory syndrome virus in pigs. J Vet Med Sci 2019; 81:1879-1886. [PMID: 31694992 PMCID: PMC6943305 DOI: 10.1292/jvms.19-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) keeps causing economic
damages in the swine sector across the globe. There has been emergence of the European
(EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) in
China in recent years. The presently available vaccines cannot unable to provide safeguard
against PRRSV infection completely. This study was aimed to construct recombinant
adenovirus expressing the ORF3 and ORF5 genes of the EU-type PRRSV strain. Then, the
recombinant adenovirus vaccines for EU-type PRRSV (rAd-E3518, rAd-E35, rAd-E3 and rAd-E5)
which we constructed and evaluated were constructed and identified by western blot and
PCR. All recombinant adenovirus vaccines were evaluated for humoral and cellular responses
and EU-type PRRSV challenge in pigs. The results showed that the group of rAd-E3518+Quil A
developed higher GP3 and GP5 specific antibody responses compared to the group of
rAd-E3518. The majority of the neutralizing antibody titers were higher than 1:16
(P<0.05), the fusion of IL-18 has increased significantly
PRRSV-stimulated secretion of IFN-γ and IL-4 in porcine serum, the group of rAd-E3518+Quil
A produced highest T-lymphocytes (CD3+CD4+ and
CD3+CD8+ T cells) proliferative in peripheral blood of pigs. The
animals were challenged with the EU-type PRRSV strain and the viral load was detected in
the several tissues, the viral load of rAd-E3518 and rAd-E3518+Quil A were lower than the
wild-type adenovirus group. Our findings provide evidence to confirm that the recombinant
adenovirus vaccine can protect pigs from EU-PRRSV infection.
Collapse
Affiliation(s)
- Changzhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Wenchao Sun
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Fulong Nan
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of specialty, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jicheng Han
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Guanyu Zhao
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Huijun Lu
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ningyi Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
6
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Gai W, Zheng W, Wang C, Wong G, Song Y, Zheng X. Immunization with recombinant rabies virus expressing Interleukin-18 exhibits enhanced immunogenicity and protection in mice. Oncotarget 2017; 8:91505-91515. [PMID: 29207661 PMCID: PMC5710941 DOI: 10.18632/oncotarget.21065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that interleukin-18 (IL-18) plays an important role in both innate and adaptive immune responses. In this study, we investigated the pathogenicity and immunogenicity of recombinant rabies virus expressing IL-18 (rHEP-IL18). Experimental results showed that Institute of Cancer Research (ICR) mice that received a single intramuscular immunization with rHEP-IL18 elicited the highest titers of serum neutralizing antibodies and the strongest cell-mediated immune responses to prevent the development of rabies disease, compared with immunization with the parent virus HEP-Flury. Mice inoculated with rHEP-IL18 developed significantly higher IFN-γ responses, increased percentages of CD4+ and CD8+ T-lymphocytes compared to HEP-Flury. Flow cytometry results show that rHEP-IL18 recruited more activated T- and B-cells in lymph nodes or peripheral blood, which is beneficial for virus clearance in the early stages of infection. A higher percentage of mice immunized with rHEP-IL18 survived wild-type rabies virus (RABV) challenge, compared to HEP-Flury mice. Our results show that rHEP-IL18 is promising as a novel vaccine for RABV prevention and control.
Collapse
Affiliation(s)
- Weiwei Gai
- College of Veterinary Medicine, Jilin University, Changchun, China
- School of Public Health, Shandong University, Jinan, China
| | - Wenwen Zheng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gary Wong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuexing Zheng
- School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
8
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015; 33:3065-72. [PMID: 25980425 DOI: 10.1016/j.vaccine.2015.04.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virology Swine Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
9
|
Zheng LL, Guo XQ, Zhu QL, Chao AJ, Fu PF, Wei ZY, Wang SJ, Chen HY, Cui BA. Construction and immunogenicity of a recombinant pseudorabies virus co-expressing porcine circovirus type 2 capsid protein and interleukin 18. Virus Res 2015; 201:8-15. [DOI: 10.1016/j.virusres.2015.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
10
|
Yan Y, Niu L, Deng J, Wang Q, Yu J, Zhang Y, Wang J, Chen J, Wei C, Tan X. Adjuvant effects of recombinant giant panda (Ailuropoda melanoleuca) IL-18 on the canine distemper disease vaccine in mice. J Vet Med Sci 2014; 77:187-92. [PMID: 25399820 PMCID: PMC4363021 DOI: 10.1292/jvms.14-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Canine distemper virus (CDV) is a morbillivirus known to cause morbidity and mortality in a broad range of animals. Giant pandas (Ailuropoda melanoleuca), especially captive ones, are susceptible to natural infection with CDV. Interleukin-18 (IL-18) is a powerful adjuvant molecule that can enhance the development of antigen-specific immunity and vaccine efficacy. In this study, a giant panda IL-18 gene eukaryotic expression plasmid (pcAmIL-18) was constructed. Female BALB/c mice were muscularly inoculated with the plasmids pcAmIL-18, pcDNA3.1 and PBS, respectively. They were subsequently injected with an attenuated CDV vaccine for dogs, and the induced humoral and cellular responses were evaluated. The results showed that pcAmIL-18 remarkably improved the level of specific antibody, IFN-γ and IL-2 in mice sera, the T lymphocyte proliferation index and the percentage of CD4+ and CD8+ cells. These data indicated that pcAmIL-18 is a
potential adjuvant that promotes specific immunity.
Collapse
Affiliation(s)
- Yue Yan
- College of Life Sciences, Sichuan University, Key Laboratory for Bio-Resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu 610064, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang M, Xiang Q, Zhang X, Li X, Sylla S, Ding Z. RNA interference targeting nucleocapsid protein inhibits porcine reproductive and respiratory syndrome virus replication in Marc-145 cells. J Microbiol 2014; 52:333-9. [PMID: 24682995 PMCID: PMC7090845 DOI: 10.1007/s12275-014-3419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/28/2014] [Accepted: 03/12/2014] [Indexed: 01/16/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important disease, which leads to severe economic losses in swine-producing areas of the world. However, current antiviral strategies cannot provide highly effective protection. In this study, three theoretically effective interference target sites (71–91, 144–164, 218–238) targeting the nucleocapsid (N) gene of PRRSV were designed and selected, and then three siRNA-expressing plasmids were constructed, respectively named p2.1-N71, p2.1-N144, and p2.1-N218. The recombinant siRNA-expressing plasmids were transfected into Marc-145 cells; then the cells were infected with PRRSV (JL07SW strain); finally, after incubation for 48 h, the antiviral activity of those siRNA-expressing plasmids in Marc-145 cells was assessed by cytopathic effects, virus titers, indirect immunofluorescence, and quantitative real-time PCR. Experimental results demonstrated that these three siRNA-expressing plasmids could effectively and significantly inhibit the replication of PRRSV by 93.2%, 83.6%, and 89.2% in Marc-145 cells, respectively. Among these three siRNA-expressing plasmids, p2.1-N71 was found to be most effective, while p2.1-N144 and p2.1-N218 displayed relatively weak inhibition of virus replication. The results indicated that siRNA-expressing plasmids targeting the N gene of PRRSV could significantly inhibit PRRSV replication in Marc-145 cells. Based on our experimental results and previous reports, the 71–91, 179–197, and 234–252 sites of the N gene are good choices to effectively inhibit the replication of PRRSV, and this RNA interference technique can be a potential anti-PRRSV strategy.
Collapse
Affiliation(s)
- Minnan Yang
- College of Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, P. R. China
| | | | | | | | | | | |
Collapse
|
12
|
Tang D, Liu J, Li C, Zhang H, Ma P, Luo X, Zeng Z, Hong N, Liu X, Wang B, Wang F, Gan Z, Hao F. Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine. J Vet Sci 2013; 15:99-109. [PMID: 24136204 PMCID: PMC3973771 DOI: 10.4142/jvs.2014.15.1.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 07/09/2013] [Indexed: 01/24/2023] Open
Abstract
The purpose of this study was to investigate the effects of porcine interleukin (IL)-2 and IL-4 genes on enhancing the immunogenicity of a porcine reproductive and respiratory syndrome virus ORF5 DNA vaccine in piglets. Eukaryotic expression plasmids pcDNA-ORF5, pcDNA-IL-2, and pcDNA-IL-4 were constructed and then expressed in Marc-145 cells. The effects of these genes were detected using an indirect immunofluorescent assay and reverse transcription polymerase chain reaction (RT-PCR). Characteristic fluorescence was observed at different times after pcDNA-ORF5 was expressed in the Marc-145 cells, and PCR products corresponding to ORF5, IL-2, and IL-4 genes were detected at 48 h. Based on these data, healthy piglets were injected intramuscularly with different combinations of the purified plasmids: pcDNA-ORF5 alone, pcDNA-ORF5 + pcDNA-IL-2, pcDNA-ORF5 + pcDNA-IL-4, and pcDNA-ORF5 + pcDNAIL-4 + pcDNA-IL-2. The ensuing humoral immune responses, percentages of CD4+ and CD8+ T lymphocytes, proliferation indices, and interferon-γ expression were analyzed. Results revealed that the piglets co-immunized with pcDNA-ORF5 + pcDNA-IL-4 + pcDNA-IL-2 plasmids developed significantly higher antibody titers and neutralizing antibody levels, had significantly increased levels of specific T lymphocyte proliferation, elevated percentages of CD4+ and CD8+ T lymphocytes, and significantly higher IFN-γ production than the other inoculated pigs (p < 0.05).
Collapse
Affiliation(s)
- Deyuan Tang
- Department of Animal Science, Guizhou University, Guiyang 550025,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Evaluation of Different DNA Vaccines against Porcine Reproductive and Respiratory Syndrome (PRRS) in Pigs. Vaccines (Basel) 2013; 1:463-80. [PMID: 26344342 PMCID: PMC4494207 DOI: 10.3390/vaccines1040463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 01/16/2023] Open
Abstract
In veterinary medicine, there have been different experiences with the plasmid DNA vaccination. In this area and with the hypothesis to demonstrate the effectiveness of different plasmids encoding porcine respiratory and reproductive syndrome (PRRS), five DNA vaccines against PRRS were evaluated for their innocuity and efficacy in pigs. Eighteen animals were divided into five groups which were injected with five (A, B, C, D, E) different DNA vaccines. Albeit, none of the proposed vaccines were able to protect the animals against PRRS virus. Only vaccines A and B were able to reduce the clinical signs of the infection. ELISA IgM were detected 30 days after the first vaccination in the pigs injected by Vaccine A or B. ELISA IgG were detected 90 days after the first vaccination in the pigs injected by Vaccine B or C. Neutralizing antibody were detected Post Challenge Days 61 (PCD) in all groups. In the pigs inoculated with Vaccine C, IFN-g were detected 90 days after first vaccination, and after challenge exposure they increased. In the other groups, the IFN-g were detected after challenge infection. Pigs injected with each of the vaccines A, B, C, D and E showed a significantly higher level of CD4(-)CD8⁺ lymphocytes (p < 0.001) after infection in comparison with their controls.
Collapse
|