1
|
Zhang H, Chen W, Zhang X, Han Y, Liu W, Li Y, Wang X, Tian D, Xu D, Wang W, YangLi J, Liu Y, Wang X. Signaling pathways underlying extracellular trap formation induced by Vibrio alginolyticus in Strongylocentrotus intermedius. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025:101547. [PMID: 40425409 DOI: 10.1016/j.cbd.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Extracellular traps (ETs), comprising a DNA-protein network, are widespread and function as an innate immune defense in many species. Notably, Strongylocentrotus intermedius solely depend on innate immunity for disease resistance. This study investigated the formation and preliminary mechanism of ETs in the coelomocytes of the S. intermedius under the stimulation of bacterium Vibrio alginolyticus. These results revealed that as the concentration of V. alginolyticus increased, the formation of ETs became more significant. Flow cytometry analysis showed that the formation process of ETs was accompanied by changes in mitochondrial indicators, suggesting that mitochondria may be involved in the formation process of V. alginolyticus-induced ETs. Transcriptome analysis indicated that the ETs production by coelomocytes of the S. intermedius was related to glycolysis and ATP synthesis. A total of 2631 differentially expressed genes (DEGs) were screened in this transcriptome. We then screened 34 immune-related DEGs from 16 signaling pathways to construct the PPI network, and defined hub proteins corresponding to genes such as ATP6, ND2, G3PDH, MAPK7 and other related genes. These genes are related to mitochondrial function, glycolytic pathways, and immune pathways. Additionally, the formation of ETs led to alterations in multiple immune regulators, such as TNF, NF-κB, MAPK, PI3K-AKT, and mTOR, implying its role in cellular immunomodulation. Quantitative real-time PCR experiment revealed that the expression changes of some DEGs identified and validated in ET-formation coelomocytes matched transcriptome analysis results. This study provided insights into S. intermedius aquaculture, elucidated marine organism immune mechanisms, and advanced invertebrate innate immunity understanding.
Collapse
Affiliation(s)
- Haoyu Zhang
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Wei Chen
- Yantai Marine Economic Research Institute, Yantai, Shandong 264003, China
| | - Xiaochen Zhang
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yijing Han
- School of fisheries, Ludong University, Yantai, Shandong 264025, China.
| | - Wan Liu
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yan Li
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xiaona Wang
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Deyang Tian
- Laizhou LiYang Aquatic Development Co., Ltd., Yantai 261441, China
| | - Dong Xu
- Shandong Blue Ocean Technology Co., Ltd., Yantai, 261413, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd., Yantai, 261413, China
| | - Junsong YangLi
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yaqiong Liu
- School of fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xiaotong Wang
- School of fisheries, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Orrego MA, Szczesniak MW, Vasquez CM, Verastegui MR, Bustos JA, Garcia HH, Nash TE. Transcriptomic analysis of subarachnoid cysts of Taenia solium reveals mechanisms for uncontrolled proliferation and adaptations to the microenvironment. Sci Rep 2024; 14:11833. [PMID: 38782926 PMCID: PMC11116493 DOI: 10.1038/s41598-024-61973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Subarachnoid neurocysticercosis (SANCC) is caused by an abnormally transformed form of the metacestode or larval form of the tapeworm Taenia solium. In contrast to vesicular parenchymal and ventricular located cysts that contain a viable scolex and are anlage of the adult tapeworm, the subarachnoid cyst proliferates to form aberrant membranous cystic masses within the subarachnoid spaces that cause mass effects and acute and chronic arachnoiditis. How subarachnoid cyst proliferates and interacts with the human host is poorly understood, but parasite stem cells (germinative cells) likely participate. RNA-seq analysis of the subarachnoid cyst bladder wall compared to the bladder wall and scolex of the vesicular cyst revealed that the subarachnoid form exhibits activation of signaling pathways that promote proliferation and increased lipid metabolism. These adaptions allow growth in a nutrient-limited cerebral spinal fluid. In addition, we identified therapeutic drug targets that would inhibit growth of the parasite, potentially increase effectiveness of treatment, and shorten its duration.
Collapse
Affiliation(s)
- Miguel A Orrego
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias e Ingenierías, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Michal W Szczesniak
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Carlos M Vasquez
- Department of Neurosurgery, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Manuela R Verastegui
- Infectious Diseases Research Laboratory, Facultad de Ciencias e Ingenierías, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Javier A Bustos
- Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hector H Garcia
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias e Ingenierías, Universidad Peruana Cayetano Heredia, Lima, Peru
- Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Theodore E Nash
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias e Ingenierías, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
3
|
Herz M, Zarowiecki M, Wessels L, Pätzel K, Herrmann R, Braun C, Holroyd N, Huckvale T, Bergmann M, Spiliotis M, Koziol U, Berriman M, Brehm K. Genome-wide transcriptome analysis of Echinococcus multilocularis larvae and germinative cell cultures reveals genes involved in parasite stem cell function. Front Cell Infect Microbiol 2024; 14:1335946. [PMID: 38333034 PMCID: PMC10850878 DOI: 10.3389/fcimb.2024.1335946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.
Collapse
Affiliation(s)
- Michaela Herz
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Leonie Wessels
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Katharina Pätzel
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ruth Herrmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Braun
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Thomas Huckvale
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Monika Bergmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Spiliotis
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Uriel Koziol
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matthew Berriman
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Klaus Brehm
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, Cui J, Wang ZQ, Zhang X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop 2022; 232:106483. [PMID: 35469749 DOI: 10.1016/j.actatropica.2022.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
The plerocercoid larvae of the tapeworm Spirometra erinaceieuropaei can parasitize humans and animals and cause serious parasitic zoonosis. However, our knowledge of the developmental process of S. erinaceieuropaei is still inadequate. To better characterize differential and specific genes and pathways associated with parasite development, a comparative transcriptomic analysis of the plerocercoid stage and the adult stage was performed using RNA-seq and de novo analysis. Approximately 13,659 differentially expressed genes (DEGs) were identified in plerocercoids versus adults, of which 6455 DEGs were upregulated and 7204 were downregulated. DEGs involved in parasite immunoevasion were more active in plerocercoid larvae than in adults, while DEGs associated with metabolic activity were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in protein phosphorylation/dephosphorylation and the Wnt signalling pathway were much more active in plerocercoid larvae. The molecular functions of upregulated unigenes in adults were mainly enriched for metabolic activities. qPCR validated that the expression levels of 10 selected DEGs were consistent with those in RNA-seq, confirming the accuracy of the RNA-seq results. Our results contributed to increasing the knowledge on the S. erinaceieuropaei gene repertoire and expression profile and also provide valuable resources for functional studies on the molecular mechanisms of S. erinaceieuropaei.
Collapse
Affiliation(s)
- Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Yi Su
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Qing Chen
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Wei Yu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Ru Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Li WH, Yang Y, Zhang NZ, Wang JK, Liu YJ, Li L, Yan HB, Jia WZ, Fu B. Comparative Transcriptome Analyses of the Developmental Stages of Taenia multiceps. Front Vet Sci 2021; 8:677045. [PMID: 34291101 PMCID: PMC8287169 DOI: 10.3389/fvets.2021.677045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Cerebral coenurosis, caused by the larvae of Taenia multiceps (Coenurus cerebralis), is a fatal central nervous system disease in sheep and other herbivores and occasionally humans. Comparative transcriptomic profiles of the developmental stages of the parasite remain unknown. In this study, RNA sequencing was used to determine the transcriptome profiles of different stages of the life cycle of T. multiceps, including Oncosphere, Coenurus cerebralis (Pro with Cyst), and Adult (Adu), as well as scolex-neck proglottids (Snp), immature–mature proglottids (Imp), and gravid proglottids (Grp) of the adult stage. A total of 42.6 Gb (average 6.1 Gb) Illumina pair-end reads with a 125-bp read length were generated for seven samples. The total number of differentially expressed genes (DEGs) in the various life stages ranged from 2,577 to 3,879; however, for the tissues of the adult worm, the range was from 1,229 to 1,939. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs mainly participated in cellular and metabolic processes, binding and catalytic activity, genetic information processing, and environmental information processing. In addition, a large number of genes related to development and parasite–host interaction were identified. Quantitative reverse transcription-polymerase chain reaction confirmed that the levels of 28 selected DEGs were consistent with those determined using RNA sequencing. The present study provides insights into the mechanisms of the development and parasitic life of T. multiceps.
Collapse
Affiliation(s)
- Wen-Hui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Yang Yang
- Wuhan Animal Disease Prevention and Control Center, Wuhan, China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jian-Kui Wang
- Center for Animal Disease Control and Prevention of Qilihe District, Lanzhou, China
| | - Yin-Ju Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Wan-Zhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
6
|
Fan J, Wu H, Li K, Liu X, Tan Q, Cao W, Liang B, Ye B. Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:287-299. [PMID: 32615742 PMCID: PMC7338903 DOI: 10.3347/kjp.2020.58.3.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Hongye Wu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xunuo Liu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qingqing Tan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Wenqiao Cao
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Bo Liang
- Chongqing No.18 Middle School, Chongqing 400016, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
- Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Development of a direct PCR assay to detect Taenia multiceps eggs isolated from dog feces. Vet Parasitol 2017; 251:7-11. [PMID: 29426480 DOI: 10.1016/j.vetpar.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023]
Abstract
Taenia multiceps is a tapeworm that leads to the death of livestock, resulting in major economic losses worldwide. The adult stage of this parasite invades the small intestine of dogs and other canids. In the present study, we developed a direct PCR assay to detect T. multiceps eggs isolated from dog feces to help curb further outbreaks. The genomic DNA was rapidly released using a lysis buffer and the PCR reaction was developed to amplify a 433-bp fragment of the T. multiceps mitochondrial gene encoding NADH dehydrogenase subunit 5 (nad5) from eggs isolated from dog feces. The procedure could be completed within 3 h, including flotation. The sensitivity of the assay was determined by detecting DNA from defined numbers of eggs, and the specificity was determined by detecting DNA from other intestinal tapeworm and roundworm species that commonly infect dogs. In addition, 14 taeniid-positive fecal samples determined by the flotation technique were collected and further evaluated by the regular PCR and our direct PCR. The results showed that the direct PCR developed herein was sensitive enough to detect the DNA from as few as 10 T. multiceps eggs and that no cross-reactions with other tapeworm and roundworm were observed, suggesting its high sensitivity and specificity for T. multiceps detection. Moreover, 14 taeniid-positive samples were screened by the regular PCR and direct PCR, with detection rates of 78.6% and 85.7%, respectively. In conclusion, the direct PCR assay developed in the present study has high sensitivity and specificity to identify T. multiceps eggs isolated from dog feces and therefore could represent an invaluable tool to identify T. multiceps outbreaks and would contribute to future clinical applications.
Collapse
|