1
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Dataset of Phytochemical and secondary metabolite profiling of holy basil leaf (Ocimum sanctum Linn) ethanolic extract using spectrophotometry, thin layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. Data Brief 2022; 40:107774. [PMID: 35036482 PMCID: PMC8749123 DOI: 10.1016/j.dib.2021.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Holy basil (Ocimum sanctum Linn) or known also as “kemangi” in Indonesia is a plant commonly used as a herb in Asian countries. It is also medicinal with antipyretic, anti-inflammatory, anti-cancer, and neuroprotective properties. This dataset article provides broad screening of the phytochemical component of Ocimum sanctum ethanolic extract (EEOS) as well as a secondary metabolite profile of EEOS. Analyses were done qualitatively and quantitatively using a combination of spectrophotometer, thin layer chromatography, Fourier transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (1H-NMR). Results showed that Ocimum sanctum ethanolic extract contains phytochemical compounds, including flavonoids, phenols, tannins, saponins, alkaloids, steroids, and terpenoids. In addition, a secondary metabolite was found and classified into metabolite groups including alcohol, amine, carboxylic acid, alkane, alkene, aldehyde, phenol, ether, sulfur, halogen, benzene, nitrogen, sterol, amino acid, carbohydrate, and nitrogen.
Collapse
|
3
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
4
|
Kustiati U, Dewi Ratih TS, Dwi Aris Agung N, Kusindarta DL, Wihadmadyatami H. In silico molecular docking and in vitro analysis of ethanolic extract Ocimum sanctum Linn.: Inhibitory and apoptotic effects against non-small cell lung cancer. Vet World 2021; 14:3175-3187. [PMID: 35153410 PMCID: PMC8829409 DOI: 10.14202/vetworld.2021.3175-3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
Background and Aim: Lung cancer, especially non-small cell lung cancer (NSCLC), has been identified as the leading cause of cancer deaths worldwide. The mortality rate from lung cancer has been estimated to be 18.4%. Until now, conventional treatments have not yielded optimal results, thus necessitating an investigation into the use of traditional herbal plants as potential candidates for its treatment. This study aimed to determine the inhibitory and apoptotic activity of the ethanolic extract from Ocimum sanctum Linn. (EEOS) by in silico molecular docking and through in vitro studies using NSCLC cells (A549 cell line). Materials and Methods: Dried simplicia of Ocimum sanctum was converted into EEOS using the maceration method. Spectrophotometry was then employed to analyze the EEOS compound. The known main active compounds were further analyzed for inhibitory and apoptotic effects on gene signaling using in silico molecular docking involving the downloading of active compounds from PubChem and target proteins from the Protein Data Bank; the active compounds and proteins were then prepared using the Discovery Studio software v. 19.0.0 and the PyRX 0.8 program, interacted with the HEX 8.0.0 program, and visualized with the Discovery Studio Visualizer v. 19.0. Finally, an in vitro analysis was performed using an antiproliferative-cytotoxic test (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay in the NSCLC A549 cell line). Results: The analysis revealed that the active compounds in the ethanolic extract were dominated by quercetin (flavonoids) (47.23% b/b) and eugenol (phenolic) (12.14% b/b). These active compounds interacted with the active sites (residual amino acids) of the αvβ3 integrin, a5b1 integrin, caspase-3, caspase-9, and vascular endothelial growth factor. Hydrogen bonds and Pi-cation and Pi-alkyl interactions were involved in the relationships between the active compounds and the active sites and thus may reveal an antioxidant property of the extract. Furthermore, in vitro analysis showed the inhibitory and antiproliferative effects of the EEOS against non-small cell cancer (A549). Conclusion: Taken together, our data showed the ability of EEOS as an inhibitor and apoptotic agent for lung cancer; however, further research is needed to determine the exact mechanism of EEOS as an herbal medication.
Collapse
Affiliation(s)
- Ulayatul Kustiati
- Post Graduate Student of Sain Veteriner, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - T. S. Dewi Ratih
- Department of Biology, Faculty of Mathematics and Natural Sciences, and Research center of Smart Molecule of Natural Genetics Resources, Brawijaya University, Indonesia
| | - N. Dwi Aris Agung
- Department of Pharmacology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
5
|
Mataram MBA, Hening P, Harjanti FN, Karnati S, Wasityastuti W, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer's disease. J Chem Neuroanat 2020; 111:101885. [PMID: 33188864 DOI: 10.1016/j.jchemneu.2020.101885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022]
Abstract
The aim of this study was to identify the effects of Ocimum sanctum Linn. ethanolic extract (OSE) on the neurons of the CA1, CA3, and DG hippocampal areas with the use of in vivo and in vitro models of Alzheimer's diseases (AD). Twenty-one two-month-old male rats were divided into three groups: untreated (Group A, n = 3), AD rats model pretreated with OSE followed by induction for Trimethyltin (TMT) on day 7 (group B, n = 9), and AD rats model treated with OSE both as pre-TMT introduction for 7 days and post-TMT induction for 21 days (group C, n = 9). AD rats were sacrificed on days 7, 14, and 21, and brain samples were collected and analyzed for neuronal density and neuropeptide Y (NPY) immunoreactivity. To corroborate the in vivo observations, HEK-293 cells were treated with TMT and used as an in vitro model of AD. The results were then analyzed using FITC Annexin V and flow cytometry. Nuclear fragmentation was observed in cells stained with Hoechst 33342 by confocal microscopy. The results showed a significant increase in the number of neurons and NPY expression in the AD rats that were pre- and post-treated with OSE (p < 0.05). Indeed, OSE was able to retain and promote neuronal density in the rat model of AD. Further studies of an in vitro model of neurodegeneration with Ocimum sanctum Linn. ethanolic extract inhibited apoptosis in TMT-induced HEK-293 cells. Moreover, OSE prevented nuclear fragmentation, which was confirmed by staining the nuclei of HEK-293 cells. Taken together, there findings suggest that OSE has the potential as a neuroprotective agent (retaining the autobiographical memory),and the neuroproliferation of neurons in the CA1, CA3, and DG hippocampal areas in the rats¡ model of neurodegeneration was mediated by activation of NPY expression.
Collapse
Affiliation(s)
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fitria N Harjanti
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Srikanth Karnati
- Department of Anatomy and Cell Biology, Julius Maxilimilian University Wurzburg, Germany
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
6
|
Wihadmadyatami H, Hening P, Kustiati U, Kusindarta DL, Triyono T, Supriatno S. Ocimum sanctum Linn. ethanolic extract inhibits angiogenesis in human lung adenocarcinoma (a549) cells. Vet World 2020; 13:2028-2032. [PMID: 33132621 PMCID: PMC7566237 DOI: 10.14202/vetworld.2020.2028-2032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND AIM Ocimum sanctum (OS) is a herbal plant, which is easy to find and is widely used as an alternative medication. The previous studies have shown that several species of OS extract have therapeutic properties, and in some cases, antitumor properties. Furthermore, several data have shown the antiproliferative effects of OS extract in cases of breast cancer, human fibrosarcoma, and oral cancer. Lung adenocarcinoma is a major cause of male cancer worldwide; however, the effect of OS (of Indonesian origin) on the metastasis of human alveolar pulmonary adenocarcinoma A549 cells remains unclear. This study aimed to analyze the antiangiogenic effects of OS ethanolic extract in A549 lung adenocarcinoma cells. MATERIALS AND METHODS An angiogenesis assay was performed by seeding A549 cells on extracellular matrix solution and observing tube formation using an inverted microscope. Enzyme-linked immunosorbent assay for αvβ3, matrix metalloproteinase (MMP)-2, and MMP-9 was performed by analyzing the cell lysate after a given treatment. RESULTS OS ethanolic extract significantly inhibited tube formation of A549 cells and suppressed the expression of integrin αvβ3, MMP-2, and MMP-9. CONCLUSION Our findings indicate that OS ethanolic extract disrupts angiogenesis of A549 cells, which may result from the disruption of cell migration and proliferation as a consequence of downregulation of αvβ3, MMP-2, and MMP-9. Taken together, OS ethanolic extract may represent a good therapeutic candidate for the treatment of metastasis in lung adenocarcinoma. Further studies are warranted to further establish the efficacy of OS in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ulayatul Kustiati
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Triyono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Supriatno Supriatno
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta Indonesia
| |
Collapse
|
7
|
Data of The Expression of Serotonin in Alzheimer's Disease (AD) Rat Model Under Treatment of Ethanolic Extract Ocimum sanctum Linn. Data Brief 2020; 30:105654. [PMID: 32395598 PMCID: PMC7206209 DOI: 10.1016/j.dib.2020.105654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022] Open
Abstract
The article offers dataset on the expression of serotonergic nerve in the hippocampal area of Alzheimer's disease (AD) model. Since decreasing expression of serotonin linked to dementia, this data will help the neuroscientist, who work on neurodegeneration. This dataset demonstrates the potential of Ocimum sanctum Extract (OSE) as a neuroprotective and neurodegenerative agent against AD. The OSE mechanism focusing on the expression of serotonin as a therapeutic target. To acquire the dataset, we approached using two models, in vitro and in vivo. On the In vivo model, used two months old 27 male rats and divided into three groups, non-treated (Group A, n=9), AD rats model pre-treated with OSE followed induction for TMT on the days of seventh (group B, n=9) and AD rats model treated with OSE both on pre-TMT introduction for seven days and post-TMT induction for 21 days (group C, n=9). AD rats euthanised on day seventh; 14th; and 21st. The brain samples were analysed for neuronal density and serotonin immunoreactivity qualitatively. Besides, In Vitro's data were collected from HEK-293 cells which induce by TMT as of AD model. The data expression of serotonin on the in-vitro model analysed using ELISA method.
Collapse
|
8
|
Wihadmadyatami H, Karnati S, Hening P, Tjahjono Y, Rizal, Maharjanti F, Kusindarta DL, Triyono T, Supriatno. Ethanolic extract Ocimum sanctum Linn. induces an apoptosis in human lung adenocarcinoma (A549) cells. Heliyon 2019; 5:e02772. [PMID: 31844708 PMCID: PMC6895684 DOI: 10.1016/j.heliyon.2019.e02772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Ocimum sanctum (OS) is tropical herbal plant which is easy to find and widely used as a vegetable food in Indonesia. In last decade, lung adenocarcinoma was in top position as male cancer disease in Indonesia. Recently, emerging data showing the extracts of different species of Ocimum exhibiting the anti-tumor properties. Further studies on lung lewis carcinoma demonstrated pro-apoptosis effects after the treatment with Ocimum extracts. However, the effect of OS of Indonesian origin in human alveolar pulmonary adenocarcinoma A549 cells remain unclear. Therefore, we aimed to investigate effects of ethanolic extract OS (EEOS) in A549 cell culture systems. Cell adhesion and viability assays revealed that EEOS significantly decreased the attachment into extracellular matrix of A549 cells. Morphological examination AO/EB and DAPI staining indicated that EEOS induced the cells shrinkage, DNA fragmentation and condensation of A549 cells. Further, EEOS treatment induced the apoptosis rate followed by up-regulation of reactive oxygen species (ROS), caspase-3 expression and decreased anti-apoptotic protein Bcl-2. This condition also suppressed the expression of SOD2 as well as the GPx. In conclusion, our findings indicate that EEOS suppressed the viability of A549 cells, which may result from the activation of ROS promoting the apoptosis signaling via mitochondrial intrinsic pathway. Taken together, EEOS might be a good therapeutic potential to further understand its properties in the treatment of lung carcinoma.
Collapse
Affiliation(s)
- Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| | - Srikanth Karnati
- Department of Anatomy and Cell Biology, Julius Maxilimilian University Wurzburg, Germany
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia, 60265
| | - Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, Indonesia
| | - Fitriana Maharjanti
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| | - Teguh Triyono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| | - Supriatno
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
| |
Collapse
|
9
|
Monick S, Mohanty V, Khan M, Yerneni G, Kumar R, Cantu J, Ichi S, Xi G, Singh BR, Tomita T, Mayanil CS. A Phenotypic Switch of Differentiated Glial Cells to Dedifferentiated Cells Is Regulated by Folate Receptor α. Stem Cells 2019; 37:1441-1454. [PMID: 31381815 PMCID: PMC6899875 DOI: 10.1002/stem.3067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
In a previous study, we showed that folate receptor‐α (FRα) translocates to the nucleus where it acts as a transcription factor and upregulates Hes1, Oct4, Sox2, and Klf4 genes responsible for pluripotency. Here, we show that acetylation and phosphorylation of FRα favor its nuclear translocation in the presence of folate and can cause a phenotypic switch from differentiated glial cells to dedifferentiated cells. shRNA‐FRα mediated knockdown of FRα was used to confirm the role of FRα in dedifferentiation. Ocimum sanctum hydrophilic fraction‐1 treatment not only blocks the folate mediated dedifferentiation of glial cells but also promotes redifferentiation of dedifferentiated glial cells, possibly by reducing the nuclear translocation of ~38 kDa FRα and subsequent interaction with chromatin assembly factor‐1. stem cells2019;37:1441–1454
Collapse
Affiliation(s)
- Sarah Monick
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vineet Mohanty
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariam Khan
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gowtham Yerneni
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raj Kumar
- Institute of Advanced Sciences, Dartmouth, Massachusetts, USA
| | - Jorge Cantu
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Shunsuke Ichi
- Department of Neurosurgery, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Guifa Xi
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Dartmouth, Massachusetts, USA
| | - Tadanori Tomita
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chandra Shekhar Mayanil
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Institute of Advanced Sciences, Dartmouth, Massachusetts, USA
| |
Collapse
|
10
|
Hening P, Mataram Auriva MB, Wijayanti N, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet World 2018; 11:1237-1243. [PMID: 30410227 PMCID: PMC6200556 DOI: 10.14202/vetworld.2018.1237-1243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
Aim: This study aimed to analyze the neuroprotective effect of Ocimum sanctum Linn. ethanolic extract (OSE) on human embryonic kidney-293 (HEK-293) cells as the in vitro model of neurodegenerative diseases. Materials and Methods: In this research, HEK-293 cells divided into five groups consisting of normal and healthy cells (NT), cells treated with Camptothecin 500 µM as the negative control, cells treated with trimethyltin 10 µM (TMT), cells treated with OSE 75 µg/ml, and cells pre-treated with OSE 75 µg/ml then induced by TMT 10 µM (OSE+TMT). MTT assay and phase contrast microscopy were applied to observe the cell viability quantitatively and morphological after Ocimum sanctum Linn extract treatment. Finally, the reverse transcription polymerase chain reaction was employed to study the expression of choline acetyltransferase (ChAT). Results: The MTT assay and phase contrast microscopy showed that OSE pre-treatment significantly increased the viability of TMT-induced apoptotic cells and maintained cell viability of the normal HEK-293 cells. Expression of ChAT markedly reduced on TMT treatment group, but OSE administration stabilized ChAT expression in TMT-induced HEK-293 cells. Conclusion: This present study proved that OSE administration has neuroprotective effect by increased HEK-293 cells viability and maintain ChAT expression.
Collapse
Affiliation(s)
- Puspa Hening
- Research Center of Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Made Bagus Mataram Auriva
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|