1
|
Zhao Y, Zhang Q, Wu B, Zhu Y, Ren H, Diao Y, Tang Y, Hu J. Expression characteristics of miR-222b-5p/MAPK10 in major immune organs of SPF chickens infected with avian reticuloendotheliosis virus strain SNV (REV-SNV). Comp Immunol Microbiol Infect Dis 2025; 116:102290. [PMID: 39675224 DOI: 10.1016/j.cimid.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Reticuloendotheliosis virus (REV) is a retrovirus in poultry that can atrophy immune organs and cause immunosuppression and tumor diseases. Our previous results revealed that, in the spleen of SPF chickens infected with REV-SNV, gga-miR-222b-5p expression was upregulated at 7, 14 and 21 dpi, and MAPK10 expression was downregulated, both of which were negatively correlated, with a targeted relationship between the two at 28, 35 and 42 dpi. To understand and analyze the expression patterns of MAPK10 and gga-miR-222b-5p in infected chickens at different times and in different immune organs, qRT-PCR was used to analyze the spleen, bursa of Fabricius and thymus samples of SPF chickens at 7, 14, 21, 28, 35 and 42 dpi. The results revealed that, in the spleen, MAPK10 gene expression was highly significantly downregulated at 7, 14, 21, 35 and 42 dpi, and gga-miR-222b-5p expression was significantly upregulated at six-time points. In the bursa of Fabricius, MAPK10 expression was significantly downregulated at six-time points, and gga-miR-222b-5p expression was upregulated at 7, 21, 28, 35 and 42 dpi. In the thymus, MAPK10 and gga-miR-222b-5p expression was upregulated at six-time points. A negative regulatory relationship was evident in the spleen and bursa of Fabricius but not in the thymus. This study suggested that gga-miR-222b-5p may induce the downregulation of MAPK10 in the spleen and bursa of Fabricius and promote tumor formation.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yudong Zhu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Hui Ren
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
2
|
Yu H, Tang J, Dong L, Tang M, Arif A, Zhang T, Zhang G, Xie K, Zhao Z, Dai G. Transcriptome analysis reveals that gga-miR-2954 inhibits the inflammatory response against Eimeria tenella infection. Int J Biol Macromol 2024; 269:131807. [PMID: 38670189 DOI: 10.1016/j.ijbiomac.2024.131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1β, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - AreeJ Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Wang H, Sun Y, Xiao FJ, Zhao X, Zhang WY, Xia YJ, Wang LS. Mesenchymal Stem Cells Ameliorate DSS-Induced Experimental Colitis by Modulating the Gut Microbiota and MUC-1 Pathway. J Inflamm Res 2023; 16:2023-2039. [PMID: 37197438 PMCID: PMC10184855 DOI: 10.2147/jir.s402592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) have become novel therapeutic agents for the treatment of inflammatory bowel diseases (IBDs). However, the precise cellular and molecular mechanisms by which MSCs restore intestinal tissue homeostasis and repair the epithelial barrier have not been well elucidated. This study aimed to investigate the therapeutic effects and possible mechanisms of human MSCs in the treatment of experimental colitis. Methods We performed an integrative transcriptomic, proteomic, untargeted metabolomics, and gut microbiota analyses in a dextran sulfate sodium (DSS)-induced IBD mouse model. The cell viability of IEC-6 cells was determined by Cell Counting Kit-8 (CCK-8) assay. The expression of MUC-1 and ferroptosis-related genes were determined by immunohistochemical staining, Western blot, and real-time quantitative polymerase chain reaction (RT-qPCR). Results Mice treated with MSCs showed notable amelioration in the severity of DSS-induced colitis, which was associated with reduced levels of proinflammatory cytokines and restoration of the lymphocyte subpopulation balance. Treatment with MSC restored the gut microbiota and altered their metabolites in DSS-induced IBD mice. The 16s rDNA sequencing showed that treatment with MSC modulated the composition of probiotics, including the upregulation of the contents of Firmicutes, Lactobacillus, Blautia, Clostridia, and Helicobacter bacteria in mouse colons. Protein proteomics and transcriptome analyses revealed that pathways related to cell immune responses, including inflammatory cytokines, were suppressed in the MSC group. The ferroptosis-related gene, MUC-1, was significantly upregulated in the MSC-treated group. MUC-1-inhibition experiments indicated that MUC-1 was essential for epithelial cell growth. Through overexpression of MUC-1, it showed that upregulation of SLC7A11 and GPX4, and downregulation of ACSL4 in erastin and RSL3-treated IEC-6 cells, respectively. Conclusion This study described a mechanism by which treatment with MSCs ameliorated the severity of DSS-induced colitis by modulating the gut microbiota, immune response, and the MUC-1 pathway.
Collapse
Affiliation(s)
- Han Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yang Sun
- School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Xia Zhao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Wei-Yuan Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yu-Jun Xia
- School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
- Yu-Jun Xia, School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China, Email
| | - Li-Sheng Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
- Correspondence: Li-Sheng Wang, Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
4
|
Integrated Transcriptome Analysis Reveals mRNA-miRNA Pathway Crosstalk in Roman Laying Hens' Immune Organs Induced by AFB1. Toxins (Basel) 2022; 14:toxins14110808. [PMID: 36422982 PMCID: PMC9693605 DOI: 10.3390/toxins14110808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widely distributed contaminant in moldy corn, rice, soybean, and oil crops. Many studies have revealed its adverse effects, such as carcinogenicity, immunotoxicity, and hepatotoxicity, on the health of humans and animals. To investigate the immunotoxic effects on chicken immune organs induced by AFB1, we integrated RNA and small-RNA sequencing data of the spleen and the bursa of Fabricius to elucidate the response of the differentially expressed transcriptional profiles and related pathways. AFB1 consumption negatively influenced egg quality, but no obvious organ damage was observed compared to that of the control group. We identified 3918 upregulated and 2415 downregulated genes in the spleen and 231 upregulated and 65 downregulated genes in the bursa of Fabricius. We confirmed that several core genes related to immune and metabolic pathways were activated by AFB1. Furthermore, 42 and 19 differentially expressed miRNAs were found in the spleen and the bursa of Fabricius, respectively. Differentially expressed genes and target genes of differentially expressed miRNAs were mainly associated with cancer progression and immune response. The predicted mRNA-miRNA pathway network illustrated the potential regulatory mechanisms. The present study identified the transcriptional profiles and revealed potential mRNA-miRNA pathway crosstalk. This genetic regulatory network will facilitate the understanding of the immunotoxicity mechanisms of chicken immune organs induced by high concentrations of AFB1.
Collapse
|
5
|
Tian Y, Liu Y, Wang Q, Wen J, Wu Y, Han J, Man C. Stress-Induced Immunosuppression Affects Immune Response to Newcastle Disease Virus Vaccine via Circulating miRNAs. Animals (Basel) 2022; 12:ani12182376. [PMID: 36139236 PMCID: PMC9495071 DOI: 10.3390/ani12182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating miRNAs play important roles in immune response and stress-induced immunosuppression, but the function and mechanism of stress-induced immunosuppression affecting the NDV vaccine immune response remain unknown. In our study, key timepoints, functions, mechanisms, and potential biomarkers of circulating miRNAs involved in immune response and immunosuppression were discovered, providing a theoretical basis for studying the roles of circulating miRNAs in immune regulation. Abstract Studies have shown that circulating microRNAs (miRNAs) are important players in the immune response and stress-induced immunosuppression. However, the function and mechanism of stress-induced immunosuppression affecting the immune response to the Newcastle disease virus (NDV) vaccine remain largely unknown. This study analyzed the changes of 15 NDV-related circulating miRNAs at different immune stages by qRT-PCR, aiming to explore the key timepoints, potential biomarkers, and mechanisms for the functional regulation of candidate circulating miRNAs under immunosuppressed conditions. The results showed that stress-induced immunosuppression induced differential expressions of the candidate circulating miRNAs, especially at 2 days post immunization (dpi), 14 dpi, and 28 dpi. In addition, stress-induced immunosuppression significantly affected the immune response to NDV vaccine, which was manifested by significant changes in candidate circulating miRNAs at 2 dpi, 5 dpi, and 21 dpi. The featured expressions of candidate circulating miRNAs indicated their potential application as biomarkers in immunity and immunosuppression. Bioinformatics analysis revealed that the candidate circulating miRNAs possibly regulated immune function through key targeted genes, such as Mg2+/Mn2+-dependent 1A (PPM1A) and Nemo-like kinase (NLK), in the MAPK signaling pathway. This study provides a theoretical reference for studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
|
6
|
Zhang YM, Chen QG, Chen C, Wang S, Li ZF, Hou ZF, Liu DD, Tao JP, Xu JJ. MicroRNA expression profile of chicken cecum in different stages during Histomonas meleagridis infection. BMC Vet Res 2022; 18:222. [PMID: 35690747 PMCID: PMC9188098 DOI: 10.1186/s12917-022-03316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. Results Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA–gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. Conclusion This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03316-2.
Collapse
Affiliation(s)
- Yu-Ming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Qiao-Guang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zai-Fan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Zhao-Feng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Dan-Dan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jian-Ping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China
| | - Jin-Jun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|