1
|
Zhang H, Yao H, Ni R, Wang R, Ren J, Qiao H, Zhang Y, Zhang Z, Wang J. Insights into interaction of quaternary ammonium salt cationic surfactants with different branched-chain lengths and DNA: Multi-spectral analysis, viscosity method, and gel electrophoresis. Int J Biol Macromol 2025; 299:140095. [PMID: 39832577 DOI: 10.1016/j.ijbiomac.2025.140095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared. The effects of surfactant concentrations, ratio of DNA and BR, and ionic strength on the interaction are estimated. DNA conformational changes are explored. The results indicate that three surfactants can interact with DNA through electrostatic interaction rather than groove and intercalation binding. The interaction results in DNA double helix compression. Also, interaction strength is TBBAC-DNA > TEBAC-DNA > TMBAC-DNA due to different branched-chain lengths. Moreover, fluorescence quenching extent is more obvious at 10.0:1.0 molar ratio (DNA: BR). The fluorescence quenching of three surfactant-DNA-BR systems is static. Three binding models are equal, and three interaction processes are spontaneous. The binding force of TBBAC-DNA is electrostatic, while that of TMBAC-DNA and TEBAC-DNA is Van der Waals forces and hydrogen bonding. Besides, DNA conformation keeps the B-form. It is expected to offer insights into the interaction of QAS cationic surfactants with different branched-chain lengths and DNA.
Collapse
Affiliation(s)
- Honglu Zhang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Hongfeng Yao
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Ruolin Ni
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Ruxue Wang
- School of Environment, Liaoning University, Shenyang 110036, China; Moutai Institute, Renhuai 564500, China
| | - Jing Ren
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Heng Qiao
- Qingdao ECH Testing Company, Limited, Qingdao, 266109, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhaohong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jun Wang
- School of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Şenel P, Faysal AA, Erdoğan T, Doğan M, Gölcü A. Quantitative study on a simple electrochemical dsDNA-pregabalin biosensor; multi-spectroscopic, molecular docking and modelling studies. J Pharm Biomed Anal 2024; 247:116261. [PMID: 38823224 DOI: 10.1016/j.jpba.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Pregabalin (PGB) is a γ-aminobutyric acid (GABA) alkylated analog prescribed to treat neuropathic pain, fibromyalgia, and postherpetic neuralgia. Using analytical, spectroscopic methods and molecular docking and molecular dynamics (MD) simulations, a detailed experimental and theoretical investigation was conducted into the binding process and interactions between PGB and double-stranded fish sperm deoxyribonucleic acid (dsDNA). It was evident from the collected experimental results that PGB binds with ds-DNA. PGB attaches to dsDNA via minor groove binding, as demonstrated by the results of electrochemical studies, UV-Vis absorption spectroscopy, and replacement study with ethidium bromide and Hoechst-32588. PGB's binding constant (Kb) with dsDNA, as determined by the Benesi-Hildebrand plot, is 2.41×104 ± 0.30 at 298 K. The fluorescence investigation indicates that PGB and dsDNA have a binding stoichiometry (n) of 1.21 ± 0.09. Molecular docking simulations were used in the research to computational determination of the interactions between PGB and dsDNA. The findings demonstrated that minor groove binding was the mechanism by which PGB interacted with dsDNA. Based on the electrochemically responsive PGB-dsDNA biosensor, we developed a technique for low-concentration detection of PGB utilizing differential pulse voltammetry (DPV). The voltammetric analysis of the peak current decrease in the deoxyadenosine oxidation signals resulting from the association between PGB and dsDNA enabled a sensitive estimation of PGB in pH 4.80 acetate buffer. The deoxyguanosine oxidation signals exhibited a linear relationship between 2 and 16 μM PGB. The values for the limit of detection (LOD) and limit of quantitation (LOQ) were 0.57 μM and 1.91 μM, respectively.
Collapse
Affiliation(s)
- Pelin Şenel
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye
| | - Abdullah Al Faysal
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye
| | - Taner Erdoğan
- Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli, Turkiye
| | - Mustafa Doğan
- Istanbul Technical University, Faculty of Electrical-Electronics Engineering, Department of Control and Automation Engineering, Istanbul, Turkiye
| | - Ayşegül Gölcü
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye.
| |
Collapse
|
3
|
Durga Priyadharshini R, Jeyashree R, Preethi R, Vennila KN, Elango KP. Intercalation of anticancer drug Palbociclib with calf-thymus DNA: new insights from molecular spectroscopic, molecular dynamic simulations and cleavage studies. J Biomol Struct Dyn 2024; 42:1932-1939. [PMID: 37184154 DOI: 10.1080/07391102.2023.2212787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
The interaction between the anti-cancer drug Palbociclib (PAL) and calf-thymus DNA (CT-DNA) was investigated using various biophysical techniques in a physiological buffer (pH 7.4). It was found that PAL intercalated into the base pairs of CT-DNA as evidenced from the results of UV-Vis, fluorescence, circular dichroism (CD), competitive binding assay with ethidium bromide (EB) and Hoechst 33258, KI quenching study, the effect of denaturing agent and viscosity measurements. The magnitude of binding constants (106 M-1) at different temperatures suggested strong binding between PAL and CT-DNA during complexation. The observed ΔHo > 0 and ΔSo > 0 indicated that the binding process is primarily driven by hydrophobic interactions. Molecular docking studies indicated partial intercalation of pyridopyrimidine ring between the base pairs of DNA. Free energy surface (FES) analysis derived from metadynamics simulation studies revealed the PAL-induced cleavage of DNA, which was confirmed by gel electrophoresis experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute - Deemed to be University, Gandhigram, India
| | - R Jeyashree
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - R Preethi
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute - Deemed to be University, Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute - Deemed to be University, Gandhigram, India
| |
Collapse
|
4
|
Bag S, Bhowmik S. Fluorescence Spectroscopy: A Useful Method to Explore the Interactions of Small Molecule Ligands with DNA Structures. Methods Mol Biol 2024; 2719:33-49. [PMID: 37803111 DOI: 10.1007/978-1-0716-3461-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Small molecule ligands-DNA interactions have recently received a lot of attention in the fields of life sciences, medicine, and chemical sciences. To decode these interactions, many strategies have been developed. DNA is the primary target for a wide range of drugs that may interact with DNA in particular or non-specific ways and impact its activities. Fluorescence spectroscopy is a highly advanced and non-invasive technology for measuring the concentrations of substrates and products or identifying characteristic processing states. Small molecule ligands-DNA interaction studies are beneficial not only in comprehending the method of interaction, but also in synthesizing DNA-targeted particular drugs. Several small compounds that bind to DNA are clinically established therapeutic medicines, while their specific mechanism of action is unknown. Figuring out their molecular recognizing patterns is the only way to construct innovative compounds that can target specific DNA sequences with strong affinities. This book chapter will mostly explore several fluorescence spectroscopic methodologies used to investigate interactions between small molecule ligands and DNA. In addition, we provide many approaches for determining a drug's binding mode with DNA. These strategies produce data that is both trustworthy and easy to comprehend. All of the knowledge gained by studying these fluorescence spectroscopies are supposed to lead to the development of more efficient new pharmaceuticals that might aid in the treatment of diseases.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India.
| |
Collapse
|
5
|
Xie Z, Zhang S, Wu Y, Liang J, Yao W, Qu R, Tong X, Zhang G, Yang H. Interaction of isoquinoline alkaloids with pyrimidine motif triplex DNA by mass spectrometry and spectroscopies reveals diverse mechanisms. Heliyon 2023; 9:e14954. [PMID: 37082631 PMCID: PMC10112036 DOI: 10.1016/j.heliyon.2023.e14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Isoquinoline alkaloids represent an important class of molecules due to their broad range of pharmacology and clinical utility. Prospective development and use of these alkaloids as effective anticancer agents have elicited great interest. In this study, in order to reveal structure-activity relationship, we present the characterization of bioactive isoquinoline alkaloid-DNA triplex interactions, with particular emphasis on the sequence selectivity and preference of binding to the two types of DNA triplexes, by electrospray ionization mass spectrometry (ESI-MS) and various spectroscopic techniques. The six alkaloids, including coptisine, columbamine, epiberberine, berberrubine, jateorhizine, and fangchinoline, were selected to explore their interactions with the TC and TTT triplex DNA structures. Berberrubine, fangchinoline, coptisine, columbamine, and epiberberine have preference for TC rich DNA sequences compared to TTT rich DNA triplex based on affinity values in MS. The experimental results from different fragmentation modes in tandem MS, subtractive and hyperchromic effects in UV absorption spectra, fluorescence quenching and enhancement in fluorescence spectra, and strong conformational changes in circular dichroism (CD) hinted that the interaction between isoquinoline alkaloid-TC/TTT DNA had diverse mechanisms including at least two different binding modes: the electrostatic binding and the intercalation binding. Interestingly, columbamine, berberrubine, and fangchinoline can stabilize TTT triplex as inferred from optical thermal melting profiles, while it was not the case in TC triplex. These results provide new insights into binding of isoquinoline alkaloids to pyrimidine motif triplex DNA.
Collapse
Affiliation(s)
- Zhaoyang Xie
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Sunuo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Wu
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jinling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenbin Yao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ruoning Qu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaole Tong
- Jilin Jian Yisheng Pharmaceutical Co., Ltd., Jian, 134200, China
| | - Guang Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Corresponding author.
| | - Hongmei Yang
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
- Corresponding author.
| |
Collapse
|
6
|
Lei Y, Zhang Z, Ma X, Cai R, Dai L, Guo Y, Tuo X. Deciphering the interaction of perampanel and calf thymus DNA: A multi-spectroscopic and computer modelling study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Miyan L, Adam AMA, Refat MS, Alsuhaibani AM. 2-aminopyrimidine-oxalic acid liquid–liquid charge-transfer interactions: Synthesis, spectroscopic characterizations, and the effect of temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Luo H, Liang Y, Zhang H, Liu Y, Xiao Q, Huang S. Comparison on binding interactions of quercetin and its metal complexes with calf thymus DNA by spectroscopic techniques and viscosity measurement. J Mol Recognit 2021; 34:e2933. [PMID: 34432328 DOI: 10.1002/jmr.2933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Quercetin (Qu) and its metal complexes have received great attention during the last years, due to their good antioxidant, antibacterial, and anticancer activities. In this contribution, binding interactions of Qu and Qu-metal complexes with calf thymus DNA (ctDNA) were investigated and compared systematically by using spectroscopic techniques and viscosity measurement. UV-vis absorption spectra of ctDNA-compound systems showed obvious hypochromic effect. Relative viscosity and melting temperature of ctDNA increased after the addition of Qu and Qu-metal complexes, and the change tendency is Qu-Cr(III) > Qu-Mn(II) > Qu-Zn(II) > Qu-Cu(II) > Qu. Fluorescence competition experiments show that hydrogen bonds and van der Waals interaction play an important role in the intercalative binding of Qu and Qu-metal complexes with ctDNA. Qu and Qu-metal complexes could unwind the right-handed B-form helicity of ctDNA and further affect its base pair stacking. Space steric hindrance might be responsible for the differences in the intercalative binding between ctDNA and different Qu-metal complexes. These results provide new information for the molecular understanding of binding interactions of Qu-metal complexes with DNA and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Yu Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Huiying Zhang
- College of Chemistry and Biological Engineering, Hechi University, Hechi, China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
9
|
Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Muhamedejevs R, Živković L, Dzintare M, Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021; 348:109638. [PMID: 34508711 DOI: 10.1016/j.cbi.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The DNA-binding activities of compounds used as remedies can display DNA-protection, but also damaging effects in biological systems. The current review compiles literature data on DNA-binding activities of drugs widely used as remedies with different therapeutic indications. The compounds are classified according their mechanism of action: enzyme inhibitors, ion channel inhibitors, inhibitors of viral RNA replication and HIV protease and receptor agonists. DNA binding was reported for such widely used drugs as paracetamol, aspirin, metformin, statins and many others. The capability of the drug to bind DNA is sometimes coupled to genotoxic effects, but in some cases - to genome protection. Data on atoms and chemical groups involved in the drug-DNA interactions are also presented. In many cases the same atoms are involved in both interactions of the compounds with proteins and DNA.
Collapse
Affiliation(s)
- Ruslans Muhamedejevs
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Maija Dzintare
- Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Latvian Academy of Sport Education, Brivibas gatve 333, Riga, LV-1006, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Jelgavas Street 1, Riga, LV-1004, Latvia.
| |
Collapse
|
11
|
|
12
|
Singhal S, Khanna P, Khanna L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct-DNA and SARS-CoV-2 M pro. LUMINESCENCE 2021; 36:1531-1543. [PMID: 34087041 DOI: 10.1002/bio.4098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
In this study, synthesis of 15 novel bis indole-based Schiff bases (SBs) 4a-4o was conducted by condensation of 2-(1-aminobenzyl)benzimidazole with symmetrical bis-isatins linked via five alkyl chains (n = 2-6). These were subjected to ADME (absorption, distribution, metabolism and excretion), physiochemical properties, molecular docking, in vitro antibacterial and antioxidant studies. The in silico studies indicated lower toxicity with metabolic stability for nearly all the derivatives proving reliability as drug candidates. The comparative antibacterial study against Staphylococcus aureus and Escherichia coli, also showed a superior inhibition than reference drug and their mono counterparts. The increase in linker alkyl chain length and variation of substituents in indole, further predicted increased inhibition, with maximum value for compound 4o at 50 μg/ml. The in vitro calf thymus DNA (ct-DNA) binding ability of compounds 4c, 4f, 4i, 4l, 4 m, 4n, and 4o was evaluated via ultraviolet-visible and fluorescence spectroscopy techniques. A hyperchromic effect was observed with no apparent wavelength shift which predicted for the groove binding mode. A moderate binding constant for 4o, in fluorescence results, confirms groove binding. The molecular docking of 4o with ct-DNA (PDBID:1BNA) and SARS-CoV-2 Mpro (3CL protease, PDBID:6LU7) prove its efficacy as potential DNA binder and antiviral agent.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
13
|
Khandar AA, Mirzaei-Kalar Z, Shahabadi N, Hadidi S, Abolhasani H, Hosseini-Yazdi SA, Jouyban A. Antimicrobial, cytotoxicity, molecular modeling and DNA cleavage/binding studies of zinc-naproxen complex: switching DNA binding mode of naproxen by coordination to zinc ion. J Biomol Struct Dyn 2020; 40:4224-4236. [PMID: 33272098 DOI: 10.1080/07391102.2020.1854858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intercalation DNA binding mode of the naproxen, a non-steroidal anti-inflammatory drug, has been reported previously. In this study, calf thymus deoxyribonucleic acid (CT-DNA) binding of zinc-naproxen complex, [Zn(naproxen)2(MeOH)2], at physiological pH has been investigated by multi-spectroscopic techniques and molecular docking. Zinc-naproxen complex displays significant binding property to the CT-DNA (Kb = 0.2 × 105 L.mol-1). All of the experimental results; relative increasing in viscosity of CT-DNA and fluorimetric studies using ethidium bromide (EB) and Hoechst 33258 probes, are indicative of groove binding mode of zinc-naproxen complex to CT-DNA. These results show that the coordination of naproxen to zinc metal switches the mode of binding from intercalation to groove. The molecular modeling also shows that the complex binds to the AT-rich region of minor groove of DNA. Structural and topography changes of DNA in interaction with the complex by atomic force microscopy (AFM) indicated that CT-DNA becomes swollen after interaction. The pUC18 plasmid DNA cleavage ability of zinc-naproxen complex by gel electrophoresis experiments revealed that zinc-naproxen complex cleaved supercoiled pUC18 plasmid DNA to nicked DNA. The cytotoxicity of the zinc complex performed by MTT method on HT29 and MCF7 cancer cell lines and on HEK 293 normal cell lines indicates that zinc complex has no cytotoxic effect on both HT29 and MCF7 cell lines but has better cytotoxicity effect on HEK 293 cell lines compared to cisplatin standard drug. The antimicrobial activity of the complex against Staphylococcus aureus and Escherichia coli bacteria revealed the high antimicrobial activity of the complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Akbar Khandar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Zeinab Mirzaei-Kalar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nahid Shahabadi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of medical Sciences, Kermanshah, Iran
| | - Saba Hadidi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Abolghasem Jouyban
- Phamaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Kondori T, Akbarzadeh-T N, Ghaznavi H, Karimi Z, Shahraki J, Sheervalilou R, Shahraki O. A binuclear iron(III) complex of 5,5'-dimethyl-2,2'-bipyridine as cytotoxic agent. Biometals 2020; 33:365-378. [PMID: 33033992 DOI: 10.1007/s10534-020-00255-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
The binuclear iron(III) complex (1), namely, {[Fe(5,5'-dmbpy)2(OH2)]2(µ-O)}(NO3)4 with a distorted octahedral coordination, formed by four nitrogen and two oxygen atoms, was previously reported by our team. In this study the DNA-binding and cytotoxicity evaluation for target complex were studied. The results indicated strong cytotoxicity activity against A549 cells comparable to cisplatin values. The binding interaction between complex 1 and FS-DNA was investigated by UV-Vis, fluorescence spectroscopy, and gel electrophoresis at physiological pH (7.2). The DNA binding investigation has shown groove binding interactions with complex 1, therefore the hydrogen binding plays an important role in the interaction of DNA with complex 1. The calculated thermodynamic parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and Vander-Waals forces have an important function in Fe(III) complex-DNA interaction. Moreover, DNA cleavage was studied using agarose gel electrophoresis. Viscosity measurements illustrated that relative viscosity of DNA was unchanged with the adding concentrations of Fe(III) complex. Molecular docking simulation results confirmed the spectroscopic and viscosity titration outcomes.
Collapse
Affiliation(s)
- Tahere Kondori
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | | | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, P.O.Box, 98167-43463, Zahedan, Iran.,Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zeinab Karimi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Jafar Shahraki
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Zabol University of Medical Sciences, Zabol, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, P.O.Box, 98167-43463, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, P.O.Box, 98167-43463, Zahedan, Iran. .,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
15
|
Chen X, He Z, Wu X, Mao D, Feng C, Zhang J, Chen G. Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: From theoretical simulation to structural analysis to functional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118109. [PMID: 32062512 DOI: 10.1016/j.saa.2020.118109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Puerariae Radix (PR) is a natural herb whose active ingredient is mainly flavonoids. To explore the interaction between PR flavonoids and DNA not only has important biological implications for understanding the mechanism of action, but also helps develop PR products for the design of appropriate dietary interventions to aid cancer treatment. In this work, we comprehensively studied the interaction between six kinds of PR flavonoids and DNA from four different and progressive levels, including molecular docking, multi-spectral analysis, and functional analysis in vitro and in cell. Results show that the DNA binding affinity of six flavonoids is in an order of quercetin > formononetin > daidzein > puerarin > 4'-methoxy puerarin > puerarin 6″-O-xyloside (POS), in which quercetin can significantly inhibit DNA amplification owing to its strongest binding affinity. The binding between quercetin and DNA is further revealed to be intercalated binding, which can cause conformational changes in DNA, thereby exhibiting an activity of cell cycle arrest and anti-proliferative. This property of quercetin can be utilized for the further development of flavonoids with anticancer activity. In addition to the potential application, this work also provides a platform for the comprehensive study of the interaction between micromolecules and DNA.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China; Experimental Center for Life Sciences, Shanghai University, Shanghai, PR China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
16
|
Kheirdoosh F, Pazhavand M, Sariaslani M, Moghadam NH, Salehzadeh S. Multi-spectroscopic and molecular docking studies on the interaction of neotame with calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:699-714. [PMID: 32126880 DOI: 10.1080/15257770.2019.1680999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, we have studied the in vitro binding of neotame (NTM), an artificial sweetener, with native calf thymus DNA using different methods including spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD), and viscosimetric techniques. From the spectrophotometric studies, the binding constant (Kb) of NTM-DNA was calculated to be 2 × 103 M-1. The quenching of the intrinsic fluorescence of NTM in the presence of DNA at different temperatures was also used to calculate binding constants (Kb) as well as corresponding number of binding sites (n). Moreover, the obtained results indicated that the quenching mechanism involves static quenching. By comparing the competitive fluorimetric studies with Hoechst 33258, as a known groove probe, and methylene blue, as a known intercalation probe, and iodide quenching experiments it was revealed that NTM strongly binds in the grooves of the DNA helix, which was further confirmed by CD and viscosimetric studies. In addition, a molecular docking method was employed to further investigate the binding interactions between NTM and DNA, and confirm the obtained results.
Collapse
Affiliation(s)
- Fahimeh Kheirdoosh
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Islamic Republic of Iran
| | - Mahsa Pazhavand
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Islamic Republic of Iran
| | - Mahya Sariaslani
- School of paramedical, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | | |
Collapse
|
17
|
Shahabadi N, Amiri S, Zhaleh H. Spectrophotometric and physicochemical studies on the interaction of a new platinum(IV) complex containing the drug pregabalin with calf thymus DNA. J COORD CHEM 2020. [DOI: 10.1080/00958972.2019.1710743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Amiri
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Mehran S, Rasmi Y, Karamdel HR, Hossinzadeh R, Gholinejad Z. Study of the Binding Interaction between Wortmannin and Calf Thymus DNA: Multispectroscopic and Molecular Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4936351. [PMID: 31975999 PMCID: PMC6949734 DOI: 10.1155/2019/4936351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Wortmannin (WTN) is a steroid metabolite that inhibits phosphatidylinositol 3-kinase and other signaling pathways. Structurally, the WTN consists of a cyclopentanophenanthrene-like structure with several oxygen-rich moieties which have the potential to interact with deoxyribonucleic acid (DNA) molecules. METHODS We aim to evaluate the WTN and calf thymus DNA (ct-DNA) interaction with molecular docking using the AutoDock 4.2 software. UV and fluorescence spectroscopy and viscosity techniques were performed to confirm the in silico analysis. RESULTS Molecular docking showed that the WTN interacted with ct-DNA via hydrogen bonds at guanine-rich sequences. The number of hydrogen bonds between the WTN and DNA was 1-2 bonds (average 1.2) per WTN molecule. The in silico binding constant was 2 × 103 M-1. UV spectroscopy showed that the WTN induced a hyperchromic feature without wavelength shifting. The WTN and DNA interaction led to quenching of DNA-emitted fluorescence. The different concentrations of WTN had no effect on DNA viscosity. Taken together, our results demonstrated WTN interacts with DNA in the nonintercalating mode, which is considered as a new mechanism of action. CONCLUSION These results suggest that the WTN may exert its biological effects, at least in part, via interaction with DNA.
Collapse
Affiliation(s)
- Shiva Mehran
- Department of Biology, Higher Education Institute of Rabe-Rashidi, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Reza Karamdel
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Ramin Hossinzadeh
- Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
19
|
Singhal S, Khanna P, Khanna L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon 2019; 5:e02596. [PMID: 31667415 PMCID: PMC6812229 DOI: 10.1016/j.heliyon.2019.e02596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Novel Schiff bases (SBs) were synthesized by condensation of 2-(1-Amino benzyl) benzimidazole with heterocyclic and aromatic carbonyl compounds. The structural characterization was done using 1H, 13C NMR, FTIR and ES-MS spectroscopic techniques. The in silico pharmacokinetics showed that nearly all compounds obeyed Lipinski rule of 5 with low toxicity and metabolic stability. The global reactivity descriptors were calculated using DFT approach. The molecular docking result of SBs with ct-DNA suggested interaction via groove binding mode. The antibacterial activity was tested against S. aureus and E. coli, indicated significant inhibition than reference drug. The compound 4d gave best results at 50 μg ml-1 concentrations. UV/Vis and Fluorescence spectroscopy tools were used to evaluate ct-DNA binding ability of compounds 4a-e through hypochromic shift. The steady state fluorescence predicted a moderate binding constant of 1.12 × 104 for 4d, indicative of non-intercalative mode.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
20
|
Khosravifar F, Dehghan G, Bidoki SK, Mahdavi M. DNA‐binding activity and cytotoxic and cell‐cycle arrest properties of some new coumarin derivatives: a multispectral and computational investigation. LUMINESCENCE 2019; 35:98-106. [DOI: 10.1002/bio.3702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 08/03/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Fariba Khosravifar
- Department of Biology, Faculty of SciencePayame Noor University (PNU) P. O. Box 19395‐3697 Tehran Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural SciencesUniversity of Tabriz Tabriz Iran
| | - Seyed Kazem Bidoki
- Department of Biology, Faculty of SciencePayame Noor University (PNU) P. O. Box 19395‐3697 Tehran Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural SciencesUniversity of Tabriz Tabriz Iran
| |
Collapse
|
21
|
Shiekhzadeh A, Sohrabi N, Moghadam ME, Oftadeh M. Kinetic and Thermodynamic Investigation of Human Serum Albumin Interaction with Anticancer Glycine Derivative of Platinum Complex by Using Spectroscopic Methods and Molecular Docking. Appl Biochem Biotechnol 2019; 190:506-528. [PMID: 31388926 DOI: 10.1007/s12010-019-03078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023]
Abstract
In this paper, a new anticancer Pt (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was synthesized with glycine-derivative ligand and characterized. Cytotoxicity of this water-soluble Pt complex was studied against human cancer breast cell line of MCF-7. The interaction of human serum albumin (HSA) with Pt complex was studied by using UV-Vis, fluorescence spectroscopy methods, and molecular docking at 27 and 37 °C in the physiological situation (I = 10 mM, pH = 7.4). The negative [Formula: see text] and positive [Formula: see text] indicated that electrostatic force may be a major mode in the binding between Pt complex and HSA. Binding constant values were obtained through UV-Vis and fluorescence spectroscopy that reveal strong interaction. The negative Gibbs free energy that was obtained by using the UV-Vis method offers spontaneous interaction. Fluorescence quenching the intensity of HSA by adding Pt complex confirms the static mode of interaction is effective for this binding process. Hill coefficients, nH, Hill constant, kH, complex aggregation number around HSA, <J>, number of binding sites, g, HSA melting temperature, Tm, and Stern-Volmer constant, kSV, were also obtained. The kinetics of the interaction was studied, which showed a second-order kinetic. The results of molecular docking demonstrate the position of binding of Pt complex on HSA is the site I in the subdomain IIA.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
22
|
Habib A, Bhatti HN, Iqbal M, Asim S, Mansha A. 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Present study was conducted to appraise the interaction mechanism of 4-acetamidophenol (4-AP) with DNA based on UV-Vis and FTIR techniques based on binding energy, isolated atomic energy, LUMO and HOMO orbitals gap and geometry of molecule. Analysis revealed the groove binding and intercalation mode of interaction between 4-AP and DNA since hyperchromic and bathochromic shifts were observed in response of interaction of DNA. The planar part of interacting molecule intercalated with DNA and non-planar part of 4-acetamidophenol bounded with DNA (groove binding). The constants for binding between 4-AP and DNA were calculated and 20.12 × 103 mol−1 dm3 binding constant was recorded at pH 4.7, whereas this value was 5.32 × 103 mol−1 dm3 for the pH 7.4. The binding constant value for interaction of 4-AP with DNA revealed the possibility of oral administration of 4-AP. The 4-AP binding with DNA is spontaneous process, which was confirmed from negative value of free energy at room temperature. FTIR study revealed that C–H and C=C (aromatic) functional groups were involved in binding at pH 4.7 and C=O (amide) was involved in groove binding, whereas C–H (aromatic) was responsible for intercalation at pH 7.4 and C–H (alkaline) and C=O (amide) were responsible for groove binding at pH 4.7.
Collapse
Affiliation(s)
- Aqsa Habib
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Sadia Asim
- Department of Chemistry , University of Agriculture , Faisalabad-38040 , Pakistan
- Department of Chemistry , Government College Women University , Faisalabad , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College Women University , Faisalabad , Pakistan
| |
Collapse
|
23
|
In vitro binding interaction of atorvastatin with calf thymus DNA: multispectroscopic, gel electrophoresis and molecular docking studies. J Pharm Biomed Anal 2018; 161:101-109. [DOI: 10.1016/j.jpba.2018.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
|
24
|
Yang H, Wang Y, Yu W, Shi L, Wang H, Su R, Chen C, Liu S. Screening and investigation of triplex DNA binders from Stephania tetrandra S. Moore by a combination of peak area-fading ultra high-performance liquid chromatography with orbitrap mass spectrometry and optical spectroscopies. J Sep Sci 2018; 41:2878-2885. [PMID: 29763521 DOI: 10.1002/jssc.201800190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 01/24/2023]
Abstract
The identification and screening of triplex DNA binders are important because these compounds, in many cases, are potential anticancer agents as well as promising drug candidates. Therefore, the ability to screen for these compounds in a high-throughput mode could dramatically improve the drug screening process. A method involving a combination of 96-well plate format and peak area-fading ultra high-performance liquid chromatography coupled with Orbitrap mass spectrometry was employed for screening bioactive compounds binding to the triplex DNA from the extracts of Stephania tetrandra S. Moore. Two compounds were screened out and identified as fangchinoline and tetrandrine based on the comparison of retention time and tandem mass spectrometry data with those of standards. The binding mechanisms of fangchinoline and tetrandrine at the molecular level were explored using tandem mass spectrometry, fluorescence spectroscopy, ultraviolet-visible spectroscopy, and circular dichroism. Collision-induced dissociation experiments showed that the complexes with fangchinoline and tetrandrine were dissociated by ligand elimination. According to these measurements, an intercalating binding is the most appropriate binding mode of these two alkaloids to the triplex DNA. The current work provides not only deep insight into alkaloid-triplex DNA complexes but also useful guidelines for the design of efficient anticancer agents.
Collapse
Affiliation(s)
- Hongmei Yang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Yihan Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Wenjing Yu
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Lei Shi
- China National Nuclear Corporation, Beijing, P. R. China
| | - Hongfeng Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Rui Su
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Changbao Chen
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| | - Shuying Liu
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Changchun, P. R. China
| |
Collapse
|
25
|
Sun Q, Suo Z, Pu H, Tang P, Gan N, Gan R, Zhai Y, Ding X, Li H. Studies of the binding properties of the food preservative thiabendazole to DNA by computer simulations and NMR relaxation. RSC Adv 2018; 8:20295-20303. [PMID: 35541658 PMCID: PMC9080843 DOI: 10.1039/c8ra03702g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022] Open
Abstract
Thiabendazole (TBZ) is a commonly used food preservative and has a wide range of anthelmintic properties. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism of TBZ and herring sperm DNA (hsDNA) at the molecular level. Molecular docking showed that TBZ interacted with DNA in groove mode and bound in A-T and C-G base pair regions. Molecular dynamics (MD) was used to evaluate the stability of the TBZ-DNA complex and found that the three phases in MD and the hydrogen bonds helped maintain the combination. NMR relaxation indicated that TBZ had a certain affinity to hsDNA with a binding constant of 462.43 L mol-1, and the thiazole ring was the main group bound with DNA. Results obtained from fluorescence experiments showed that the binding of TBZ and hsDNA was predominantly driven by enthalpy through a static quenching mechanism. Circular dichroism and viscosity measurements proved the groove binding mode. The FTIR results clarified the conformational changes of DNA, that the DNA helix became shorter and compact, and the DNA structure transformed from B-form to A-form.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Zili Suo
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Hongyu Pu
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Na Gan
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Ruixue Gan
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Yuanming Zhai
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Xiaohui Ding
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| | - Hui Li
- School of Chemical Engineering, Sichuan University Chengdu 610065 China +86 028 85401207 +86 028 85405220
| |
Collapse
|
26
|
Pawar S, Tandel R, Kunabevu R, Jaldappagari S. Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA. J Biomol Struct Dyn 2018; 37:846-856. [DOI: 10.1080/07391102.2018.1442748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Suma Pawar
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ranjita Tandel
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ramesh Kunabevu
- Department of Chemistry, SJM College, Chitradurga, 577 501, India
| | | |
Collapse
|
27
|
Datta LP, De D, Ghosh U, Das TK. RAFT derived fatty acid based stimuli responsive fluorescent block copolymers as DNA sensor and cargo delivery agent. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Xu L, Hu YX, Li YC, Zhang L, Ai HX, Liu YF, Liu HS. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Khan SZ, Amir MK, Ullah I, Aamir A, Pezzuto JM, Kondratyuk T, Bélanger-Gariepy F, Ali A, Khan S, Zia-ur-Rehman. New heteroleptic palladium(II) dithiocarbamates: synthesis, characterization, packing and anticancer activity against five different cancer cell lines. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3445] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shahan Zeb Khan
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
- Department of Chemistry; University of Science and Technology; Bannu 28100 KPK Pakistan
| | | | - Imdad Ullah
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Asma Aamir
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - John M. Pezzuto
- College of Pharmacy; University of Hawaii at Hilo; 34 Rainbow Drive Hilo HI 96720 USA
- Arnold & Marie Schwartz College of Pharmacy; Long Island University; Brooklyn NY 11201 USA
| | - Tamara Kondratyuk
- College of Pharmacy; University of Hawaii at Hilo; 34 Rainbow Drive Hilo HI 96720 USA
| | | | - Akbar Ali
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Sajid Khan
- Department of Chemistry; University of Science and Technology; Bannu 28100 KPK Pakistan
| | - Zia-ur-Rehman
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
30
|
Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 2015; 576:49-60. [PMID: 25951786 DOI: 10.1016/j.abb.2015.03.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Drug-DNA interactions have been extensively studied in the recent past. Various techniques have been employed to decipher these interactions. DNA is a major target for a wide range of drugs that may specifically or non-specifically interact with DNA and affect its functions. Interaction between small molecules and DNA are of two types, covalent interactions and non-covalent interactions. Three major modes of non-covalent interactions are electrostatic interactions, groove binding and intercalative binding. This review primarily focuses on discussing various techniques used to study non-covalent interactions that occur between drugs and DNA. Additionally, we report several techniques that may be employed to analyse the binding mode of a drug with DNA. These techniques provide data that are reliable and simple to interpret.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India.
| |
Collapse
|