1
|
Singh G, Diskit T, Singh A, Dege N, Ozturk S, Rana S, Singh J, Dalal A, Devi S. Synthesis and X-ray evaluation of 7 N-1S thiabendazole based 1,2,3-triazole as a dual metal sensing probe: Molecular logic gate construction, DFT analysis, real water sample analysis and catalytic activity investigation of its metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125737. [PMID: 39826166 DOI: 10.1016/j.saa.2025.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The research aimed to develop of a thiabendazole-derived dual metal sensing probe (TBZT) for the selective detection of metal ions and to explore its metal complexes in reducing environmental pollutants like nitro-phenol and dyes. Absorption and emission based studies predicted the selectivity and sensitivity of TBZT towards Ni(II) and Co(II) ions which was further validated by 1HNMR, Mass, FT-IR, DFT, Docking, electrochemical, TGA studies and vibrating sample magnetometer analysis techniques. Limit of detection (LOD) values were calculated as 2 × 10-10 M and 4.17 × 10-8 M for Ni(II) metal ion in emission and absorption based techniques respectively and 2.8 × 10-9 M and 4.5 × 10-6 M for Co(II). EDTA based Reversible binding behaviour suggested its potential for constructing molecular logic gates. Catalytic studies of metal complexes of TBZT with these metals demonstrated TBZT-Co(II) superior activity in reducing nitro-phenol, rhodamine B and methyl red. Real sample analysis validated its capability for the environmental monitoring of these metal ions. This emphasized its potential application in metal ion detection and catalysis.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University Chandigarh, 160014, India.
| | - Tsering Diskit
- Department of Chemistry, Panjab University Chandigarh, 160014, India.
| | - Akshpreet Singh
- Department of Chemistry, DAV College Chandigarh, 160011, India
| | - Necmi Dege
- Ondokuz Mayıs University, Faculty Science, Department of Physics, 55139, Samsun, Turkey
| | - Seyhan Ozturk
- Ondokuz Mayıs University, Faculty Science, Department of Chemistry, 55139, Samsun, Turkey
| | - Shweta Rana
- Department of Chemistry, Panjab University Chandigarh, 160014, India
| | - Jaiveer Singh
- Department of Chemistry, Panjab University Chandigarh, 160014, India
| | - Anurag Dalal
- Department of Chemistry, Panjab University Chandigarh, 160014, India
| | - Swati Devi
- Department of Chemistry, Panjab University Chandigarh, 160014, India
| |
Collapse
|
2
|
Abd-El-Aziz A, Li Z, Zhang X, Elnagdy S, Mansour MS, ElSherif A, Ma N, Abd-El-Aziz AS. Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications. Top Curr Chem (Cham) 2025; 383:8. [PMID: 39900838 DOI: 10.1007/s41061-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Zexuan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Sherif Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed S Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed ElSherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Alaa S Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China.
| |
Collapse
|
3
|
Maddikayala S, Bengi K, Pulimamidi SR. DNA interaction, molecular dynamics simulation, molecular docking, biological,
in vivo
anti‐inflammatory and thermal studies of o
‐
hydroxyacetophenone and 2‐fluoroaniline Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Kavitha Bengi
- Department of Chemistry University College for Women, Osmania University, Koti Hyderabad Telangana State India
| | | |
Collapse
|
4
|
Sumrra SH, Zafar W, Imran M, Chohan ZH. A review on the biomedical efficacy of transition metal triazole compounds. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2059359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
5
|
Demirbaş Ü, Yanık H, Akçay HT, Durmuş M, Bekircan O, Kantekin H. Synthesis, characterization, photophysical and photochemical properties of peripherally tetra-1,2,4-triazol-3-ylthio substituted metal-free phthalocyanine and its zinc(II) and lead(II) derivatives. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2053846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ümit Demirbaş
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Hülya Yanık
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hakkı Türker Akçay
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Halit Kantekin
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022; 27:271-281. [PMID: 35175415 DOI: 10.1007/s00775-022-01932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.
Collapse
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Yunus Zorlu
- Faculty of Science, Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75700, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey
| |
Collapse
|
7
|
El‐Sayed YS, Gaber M, Fahmy RM, Fathallah S. Characterization, theoretical computation, DNA‐binding, molecular docking, antibacterial and antioxidant activities of new metal complexes of (E)‐1‐((1H‐1,2,4‐triazol‐3‐yl)diazenyl)naphthalen‐2‐ol. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusif S. El‐Sayed
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Mohammed Gaber
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Rowaida M. Fahmy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Shaimaa Fathallah
- Chemistry Departments, Faculty of Science Taif University Saudi Arabia
| |
Collapse
|
8
|
Bhaduri R, Mukherjee S, Mitra I, Ghosh S, Chatterji U, Dodda SR, Moi SC. Anticancer activity and cell death mechanism of Pt(II) complexes: Their in vitro bio-transformation to Pt(II)-DNA adduct formation and BSA binding study by spectroscopic method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120096. [PMID: 34214741 DOI: 10.1016/j.saa.2021.120096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pt(II) complex cis-[Pt(PEA)(OH2)2] X2, C-2 (where, PEA = 2-Pyridylethylamine and X = ClO4- or NO3-) was synthesized by hydrolysis of cis-[Pt(PEA)Cl2] C-1. Glutathione (GSH) and DL-penicilamine (DL-pen) substituted complexes cis-[Pt(PEA)(GSH)],C-3 and cis-[Pt(PEA)DL-pen)]X C-4 were synthesized and characterized by spectroscopic methods. Kinetic studies were traced on complex C-2 with the thiols, GSH and DL-pen. Pt(II)-Sulfur adduct formation mechanisms of the substituted products C-3 and C-4 were established from the kinetic investigation. At pH 4.0, C-2 - thiols interactions follow two consecutive steps: the first step is dependent, and the second is independent of [thiol]. The association equilibrium constant (KE), substitution rate constants for both steps (k1 & k2), and activation parameters (ΔH‡ and ΔS‡) have been assessed to propose the mechanism. Agarose gel electrophoresis mobilization pattern of DNA with complexes was performed to visualize the interaction nature. CT-DNA and BSA binding activities of the complexes have been executed by electronic, fluorescence spectroscopy, and viscometric titration methods. Evaluation of thermodynamic parameters (ΔH0, ΔS0, and ΔG0) from BSA binding constants was executed to propose the driving forces of interaction between these species. A molecular docking study was performed to evaluate the binding mode of complexes with BDNA strands. Anticancer activity of the complexes C-1 to C-4 was explored on both A549 and HEp-2 cell lines, compared with approved anticancer drugs cisplatin, carboplatin, and oxaliplatin. All these complexes were tested by NBT assay on normal cell line skeletal muscle cells (L6 myotubes) to observe the adverse effects compared to recognized anticancer medications. The ultimate aim is to explore the role of anticancer agents on cell death mechanism, which has been performed by flow-cytometer on HEp-2 cell lines.
Collapse
Affiliation(s)
- Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Subba Reddy Dodda
- Department of Biotechnology, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, WB, India
| | - Sankar Ch Moi
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
9
|
A new Schiff base containing 5-FU and its metal Complexes: Synthesis, Characterization, and biological activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Khan E, Hanif M, Akhtar MS. Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Schiff bases are in the field of medicinal and material chemistry for a long time. There are several advancements from time to time towards facile synthesis and potential applications. As medicines they have been applied as organic molecules as well as their metal complexes. The activities of metal complexes have been found to increase due to increase lipophilicity in comparison to the corresponding free ligand. Besides simple coordination compounds they have been applied as ionic liquid (IL)- supported and IL-tagged species with far enhanced efficiency. Among metal complexes recent advancement deals with photodynamic therapy to treat a number of tumors with fewer side effects. Schiff bases are efficient ligands and their complexes with almost all metal ions are reported. This mini-review article deals with complexes of Schiff bases with biologically compatible metal ions, Co(II), Cu(II), Zn(II), Pd(II), Ag(I), Pt(II) and their potential uses to combat cancerous cells. Strong hopes are associated with photodynamic therapy and IL-tagged and IL-supported Schiff bases and their complexes.
Collapse
Affiliation(s)
- Ezzat Khan
- Department of Chemistry , University of Malakand , Chakdara 18800 , Lower Dir , Khyber Pakhtunkhwa , Pakistan
- Department of Chemistry , College of Science, University of Bahrain , Sakhir 32038 , Kingdom of Bahrain
| | - Muhammad Hanif
- Department of Chemistry , University of Malakand , Chakdara 18800 , Lower Dir , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Salim Akhtar
- Department of Chemistry , College of Science, University of Bahrain , Sakhir 32038 , Kingdom of Bahrain
| |
Collapse
|
11
|
Zafar W, Sumrra SH, Chohan ZH. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur J Med Chem 2021; 222:113602. [PMID: 34139626 DOI: 10.1016/j.ejmech.2021.113602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Clinical reports have highlighted the radical increase of antibiotic resistance. As a result, multidrug resistance has emerged as a serious threat to human health. Many organic compounds commonly used as drugs in the past, no longer have pure organic mode of action rather need bio-transformation or more activation. Bulk of research has shown that they need trace amount of metal ions incorporated within the chemistry of bioactive molecules for enhancement of their potentiality to fight aggressively against resistance. The deficiency of some metal ions can also be responsible for many diseases like growth retardation, pernicious anemia and heart diseases in infants. To overcome these problems, there is a need to introduce novel strategies which have new mechanism of action along with significant spectrum of biological activity, enhanced safety and efficacy. Bioinorganic compounds have played imperative role in developing the new strategy in the form of "Metal Based Drugs". In current years there have been momentous rise of interest in the application of metal based Schiff base compounds to treat various diseases which are difficult to be treated with conventional methodologies. The unique properties of metal chelates acting as an intermediate between conventional organic and inorganic compounds provided innovative opportunities in the field of pharmaceutical chemistry. In this review, we have exclusively focused on the search of metal based 1,2,4-triazole derived Schiff base compounds (synthesized, reported and reviewed in the past ten years) that possess various biological activities such as antifungal, antibacterial, antioxidant, antidiabetic, anthelmintic, anticancer, antiproliferative, cytotoxic and DNA-intercalation activity.
Collapse
Affiliation(s)
- Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Zahid H Chohan
- Department of Chemistry, Institute of Southern Punjab, Multan, Pakistan
| |
Collapse
|
12
|
El-Sayed YS, Gaber M, El-Nahass MN. Structural elucidation, spectroscopic, and metallochromic studies of 2-(2-hydroxy phenyl)-1-H–benzimidazole complexes: Metal ions sensing, DNA binding, and antimicrobial activity evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Aljohani ET, Shehata MR, Alkhatib F, Alzahrani SO, Abu‐Dief AM. Development and structure elucidation of new VO
2+
, Mn
2+
, Zn
2+
, and Pd
2+
complexes based on azomethine ferrocenyl ligand: DNA interaction, antimicrobial, antioxidant, anticancer activities, and molecular docking. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Enas T. Aljohani
- Chemistry Department, College of Science Majmaah University Majmaah Saudi Arabia
| | | | - Fatmah Alkhatib
- Chemistry Department, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | | | - Ahmed M. Abu‐Dief
- Chemistry Department, College of Science Taibah University Madinah Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
14
|
Singh K, Turk P, Dhanda A. Synthesis, spectral characterization, and antimicrobial evaluation of new imine derived from 3‐methylthiophene‐2‐carboxaldehyde and its Co(II), Ni(II), Cu(II), and Zn(II) metal complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Prerna Turk
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
- Government College Bherian Kurukshetra 136128 India
| | - Anita Dhanda
- Department of Microbiology Kurukshetra University Kurukshetra 136119 India
| |
Collapse
|
15
|
Aldulmani SA. Spectral, modeling, dna binding/cleavage and biological activity studies on the newly synthesized 4-[(Furan-2-ylmethylene)amino]-3-[(2‑hydroxy‑benzylidene)amino]-phenyl}-phenyl-methanone and some bivalent metal(II) chelates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Aljohani ET, Shehata MR, Abu‐Dief AM. Design, synthesis, structural inspection of Pd
2+
, VO
2+
, Mn
2+
, and Zn
2+
chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Enas T. Aljohani
- Chemistry Department, College of Science Majmaah University Majmaah Saudi Arabia
| | | | - Ahmed M. Abu‐Dief
- Chemistry Department, College of Science Taibah University Madinah Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
17
|
Sen Chowdhury M, Sarkar A, Rai SR, Dasgupta S, Majumder I, Bhattacharya A, Das D, Bose D, Mukhopadhyay J, Mukhopadhyay M. Probing the binding interaction of zinc (II) Schiff bases with bovine serum albumin: A spectroscopic and molecular docking study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Megha Sen Chowdhury
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700156 India
| | - Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700156 India
| | - Sanchari Dasgupta
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Ishani Majumder
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Abir Bhattacharya
- Department of Physics, The Bhawanipur Education Society College University of Calcutta Kolkata 700020 India
| | - Debasis Das
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata West Bengal 700 009 India
| | - Debosreeta Bose
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| | - Jayanta Mukhopadhyay
- Energy Materials and Devices Division CSIR‐Central Glass and Ceramic Research Institute Kolkata 700 032 India
| | - Madhumita Mukhopadhyay
- Department of Chemistry, Amity Institute of Applied Sciences (AIAS) Amity University Kolkata 700156 India
| |
Collapse
|
18
|
Rashad A, Ibrahim F, Ahmed A, Salman E, Akram E. Synthesis and photophysical study of divalent complexes of chelating Schiff base. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2020. [DOI: 10.47419/bjbabs.v1i01.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Schiff base compounds derivative from1,2,4-triazole, and their transition metal complexes play an essential role in coordination and bioinorganic chemistry due to biological and industrial applications. Objectives: This work aims to prepare and characterize 1,2,4-triazole Schiff base and its complexes with a theoretical study, photophysical properties, and surface morphology for these complexes. Methods: 1,2,4-triazole Schiff base prepared by condensation reaction between 4-Amino-3-mercapto-5-phenyl-4H-1,2,4-triazole and 2-hydroxy-1-naphthaldehyde, then Schiff base reacted with Co2+, Ni2+, and Cu2+ ions, the synthesized 1,2,4-triazole Schiff base, and its complexes were characterized by infrared spectra, magnetic susceptibility, conductivity measurements, photophysical properties, and surface morphology measured by atomic force microscopy. The practical results were reinforced with a theoretical study, using PM3 calculation and HyperChem program, for these Schiff base complexes. Then, the proposed structures of the prepared complexes. Results: 1,2,4-triazole Schiff base act as a chelate ligand. The coordination has occurred through the oxygen of the phenolic group O-H and the nitrogen of the imine group N=C of Schiff base with divalent metal ions. Cobalt complex has a tetrahedral geometry, while the nickel and copper complexes have square planar geometries. The stability of all compounds was studied by calculating the energy gap by diffuse reflectance spectroscopy and theoretical calculations. Copper Schiff base is a more stable complex due to the lower value of the energy gap, and the copper Schiff base complex is more semiconductivity than the other complexes. Surface morphology, properties of chelating Schiff base ligand and its complexes measured by atomic force microscopy, cobalt Schiff base complex is higher roughness. The bond length of (-C=N-), (-C-O-),(M-O), and (M-N) are affected in the coordination with metal ions, the bond length of the square planar geometry more affected than tetrahedral geometry. Conclusions: All compounds were prepared successfully, characterized, and photophysical properties were studied.
Collapse
|
19
|
Bengi K, Maddikayala S, Pulimamidi SR. Biological evaluation, molecular docking, DNA interaction and thermal studies of new bioactive metal complexes of 2‐hydroxybenzaldehyde and fluorobenzamine Schiff base ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kavitha Bengi
- Department of Chemistry Osmania University Hyderabad Telangana India
| | | | | |
Collapse
|
20
|
Alkış ME, Buldurun K, Turan N, Alan Y, Yılmaz ÜK, Mantarcı A. Synthesis, characterization, antiproliferative of pyrimidine based ligand and its Ni(II) and Pd(II) complexes and effectiveness of electroporation. J Biomol Struct Dyn 2020; 40:4073-4083. [PMID: 33251985 DOI: 10.1080/07391102.2020.1852965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the study, a new Schiff base (ligand) was obtained using 4-aminopyrimidine-2(1H)-one, the starting material, and 2,3,4-trimethoxy benzaldehyde. Ni(II) and Pd(II) complexes were obtained from the reaction of the ligand and NiCl2·6H2O, PdCl2(CH3CN)2 (1:1 ratio). These compounds were characterized using the elemental and mass analysis, 1H, 13C-NMR, FT-IR, UV-Vis, magnetic susceptibility, thermal analysis, and the X-ray diffraction analyses. The antiproliferative activities of the synthesized ligand, Ni(II) and Pd(II) complexes were identified on the HepG2 (human liver cancer cells) cell line and their biocompatibility was tested on the L-929 (fibroblast cells) cell line by the MTT analysis method. Furthermore, the effects of electroporation (EP) on the cytotoxic activities of synthesized compounds were investigated in HepG2 cancer cells. According to the MTT findings of the study, the ligand did not exhibit an antiproliferative activity while its Ni(II) and Pd(II) complexes exhibited an antiproliferative activity. Moreover, it was observed that the antiproliferative activity of the Pd(II) complex was stronger than that of the Ni(II) complex. The combined application of EP + compounds is much more effective than the usage of the compounds alone in the treatment of HepG2 cancer cells. The EP increased the cytotoxicity of the Ni(II) and Pd(II) complexes by 1.66, and 2.54 times, respectively. It was concluded that Ni(II) and Pd(II) complexes may contribute as potential anti-cancer agents for the treatment of hepatocellular carcinoma and yield promising results in the case of being used in ECT.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Sciences Vocational School, Muş Alparslan University, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Yusuf Alan
- Department of Primary Education, Education Faculty, Muş Alparslan University, Muş, Turkey
| | - Ünzile Keleştemur Yılmaz
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
21
|
Synthesis, structural identification, DNA interaction and biological studies of divalent metal(II) chelates of 1,2- ethenediamine Schiff base ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Bian R, Wang J, Xu X, Dong X, Ding Y. Investigation of mononuclear, dinuclear, and trinuclear transition metal (II) complexes derived from an asymmetric Salamo‐based ligand possessing three different coordination modes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6040] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruo‐Nan Bian
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Ji‐Fa Wang
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Xin Xu
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Xiu‐Yan Dong
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Yu‐Jie Ding
- College of Biochemical Engineering Anhui Polytechnic University Wuhu 241000 China
| |
Collapse
|
23
|
Buldurun K, Turan N, Bursal E, Aras A, Mantarcı A, Çolak N, Türkan F, Gülçin İ. Synthesis, characterization, powder X-ray diffraction analysis, thermal stability, antioxidant properties and enzyme inhibitions of M(II)-Schiff base ligand complexes. J Biomol Struct Dyn 2020; 39:6480-6487. [DOI: 10.1080/07391102.2020.1802340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kenan Buldurun
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, Muş, Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences, Igdır University, Igdır, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Naki Çolak
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
24
|
Bipyrazole Based Novel Bimetallic µ-oxo Bridged Au(III) Complexes as Potent DNA Interacalative, Genotoxic, Anticancer, Antibacterial and Cytotoxic Agents. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Nuţă I, Badea M, Chifiriuc MC, Bleotu C, Popa M, Daniliuc C, Olar R. Synthesis, physico‐chemical characterization and bioevaluation of Ni(II), Pd(II), and Pt(II) complexes with 1‐(
o
‐tolyl)biguanide: Antimicrobial and antitumor studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ileana Nuţă
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| | - Mihaela Badea
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| | - Mariana Carmen Chifiriuc
- Faculty of BiologyUniversity of Bucharest 1‐3 Aleea Portocalelor Str. Bucharest 60101 Romania
- Life, Environment and Earth Sciences Department, Spl. Independentei 91‐95Research Institute of the University of Bucharest Bucharest Romania
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology 285 Mihai Bravu Ave Bucharest Romania
| | - Marcela Popa
- Faculty of BiologyUniversity of Bucharest 1‐3 Aleea Portocalelor Str. Bucharest 60101 Romania
| | - Constantin‐Gabriel Daniliuc
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität Münster Corrensstrasse 40 Münster 48149 Germany
| | - Rodica Olar
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| |
Collapse
|
26
|
Gaber M, El‐Ghamry HA, Fathalla SK. Synthesis, structural identification, DNA interaction and biological studies of divalent Mn, Co and Ni chelates of 3‐amino‐5‐mercapto‐1,2,4‐triazole azo ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohamed Gaber
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Hoda A. El‐Ghamry
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
- Chemistry Department, Faculty of Applied Science, Umm Al‐Qura University Makkah Kingdom of Saudi Arabia
| | - Shaimaa K. Fathalla
- Chemistry Department, Faculty of Science Taif University Taif Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Atlam FM, Awad MK, Gaber M, Fathalla S. New Zn (II) and Cd (II) complexes of 2,4‐dihydroxy‐5‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]benzaldehyde: Synthesis, structural characterization, molecular modeling and docking studies, DNA binding and biological activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Faten M. Atlam
- Theoretical Applied Chemistry Unit (TACU), Chemistry DepartmentFaculty of Science, Tanta University Tanta Egypt
| | - Mohamed K. Awad
- Theoretical Applied Chemistry Unit (TACU), Chemistry DepartmentFaculty of Science, Tanta University Tanta Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | - Shimaa Fathalla
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
- Chemistry Department, Faculty of ScienceTaif University Saudi Arabia
| |
Collapse
|
28
|
Zinc ternary complexes with gabapentin and neurotransmitters: Synthesis, spectral, thermal and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Bellam R, Jaganyi D, Mambanda A, Robinson R, BalaKumaran MD. Seven membered chelate Pt(ii) complexes with 2,3-di(2-pyridyl)quinoxaline ligands: studies of substitution kinetics by sulfur donor nucleophiles, interactions with CT-DNA, BSA and in vitro cytotoxicity activities. RSC Adv 2019; 9:31877-31894. [PMID: 35530785 PMCID: PMC9072748 DOI: 10.1039/c9ra06488e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Dichloro platinum(ii) complexes coordinated with 2,3-di(2-pyridyl)quinoxaline ligands which form seven-membered chelates namely, bpqPtCl2, dmbpqPtCl2 and bbqPtCl2 (where bpq, dmbpq and bbq are 2,3-di(2-pyridyl)quinoxaline, 6,7-dimethyl-2,3-di(2-pyridyl)quinoxaline and 2,3-bis(2'pyriyl)benzo[g]quinoxaline, respectively) were synthesized, characterised and their respective hydrated product complexes namely, bpqPt(OH2)2 2+, dmbpqPt(OH2)2 2+ and bbqPt(OH2)2 2+ were prepared by chloride metathesis. The substitution kinetics of the aquated cations by thiourea nucleophiles indicated that the two aqua ligands are substituted simultaneously according to the rate law: k obs = k 2[Nu]. This is followed by a forced dechelation of the ligands from the Pt (II) to form Pt(Nu)4 2+ species. The dechelation step is considerably slow to be monitored reliably. The rate of substitution is marginally enhanced by introducing two methyl groups and by extending the π-conjugation on the bpq core ligand. The reactivity order increased as bpqPt(OH2)2 2+ < dmbpqPt(OH2)2 2+ < bbqPt(OH2)2 2+. Reactivity trends were well supported by theoretical computed DFT electronic descriptors. The interactions of the Pt(ii) complexes with CT-DNA and BSA were also examined spectroscopically in tris buffers at pH 7.2. Spectroscopic and viscosity measurements suggested strong associative interactions between the Pt(ii) complexes and CT-DNA, most likely through groove binding. In silico theoretical binding studies showed energetically stable poses through associative non-covalent interactions. In vitro MTT cytotoxicity IC50 values of the Pt(ii) complexes on human liver carcinoma cells (HepG2) cancer cell lines revealed bbqPtCl2 as the least active. The fluorescence staining assays revealed the morphological changes suggested early apoptotic induction as well as non-specific necrosis.
Collapse
Affiliation(s)
- Rajesh Bellam
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | - Deogratius Jaganyi
- School of Science, College of Science and Technology, University of Rwanda P.O. Box 4285 Kigali Rwanda
- Department of Chemistry, Durban University of Technology P.O. Box 1334 Durban 4000 South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | - Ross Robinson
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | | |
Collapse
|
30
|
El-Ghamry HA, Gaber M, Farghaly TA. Synthesis, Structural Characterization, Molecular Modeling and DNA Binding Ability of CoII, NiII, CuII, ZnII, PdII and CdII Complexes of Benzocycloheptenone Thiosemicarbazone Ligand. Mini Rev Med Chem 2019; 19:1068-1079. [DOI: 10.2174/1389557519666190301143322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/09/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
Background & Objective:
Six novel complexes of transition metal namely,
[CoLCl2(H2O)2]0.5H2O, [NiLCl2(H2O)2]0.5H2O, [CuLCl2]0.5H2O, [ZnLCl2], [PdLCl2]H2O and
[CdLCl2]H2O, where L is benzocycloheptenone thiosemicarbazone ligand, have been obtained. The
confirmation of the structures of the obtained metal chelates depends on the different spectral and
physicochemical techniques including CHN analysis, infrared spectra, molar conductivity measurement,
UV-vis, thermogravimetric analysis and magnetic moment. The infrared spectral results ascertained
that the ligand behaved as neutral bidentate connecting the metal centers via N and S atoms of
C=N and C=S groups, respectively.
Methods:
The UV-Vis, molar conductivity and magnetic susceptibility results implied that the geometrical
structures of the metal chelates are octahedral for Co(II) & Ni(II) complexes, tetrahedral for
Zn(II) & Cd(II) complexes and square planar for Cu(II) & Pd(II) complexes which have been confirmed
by molecular modeling studies.
Conclusion:
Moreover, the mode of interaction between some chosen metal complexes towards SSDNA
has been thoughtful by UV-Vis spectra and viscosity measurements. The value of the intrinsic
binding constant (Kb) for the examined compounds has been found to be lower than the binding affinity
of the classical intercalator ethedium bromide. Also, the viscosity measurements of the complexes
proved that they bind to DNA, most likely, by a non-intercalative mode like H-bonding or electrostatic
interactions.
Collapse
Affiliation(s)
- Hoda A. El-Ghamry
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
31
|
Abd El‐Aziz DM, El‐Wakiel N, Gaber M. Fluorescent UO
2
(II) and ZrO(II) complexes: Synthesis, structural characterization, fluorescence, DNA binding studies and biological applications in cell probing. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Nadia El‐Wakiel
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| |
Collapse
|
32
|
Zianna A, Geromichalos GD, Pekou A, Hatzidimitriou AG, Coutouli-Argyropoulou E, Lalia-Kantouri M, Pantazaki AA, Psomas G. A palladium(II) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies. J Inorg Biochem 2019; 199:110792. [PMID: 31365891 DOI: 10.1016/j.jinorgbio.2019.110792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/30/2023]
Abstract
The synthesis and characterization of the Pd(II) complex of the formula [Pd(L)2] 1 with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol (HL) as derived in situ via the condensation reaction of 5-chloro-salicylaldehyde and ethylamine was undertaken. The structure of 1 was verified by single-crystal X-ray crystallography. The ability of 1 to interact with calf-thymus (CT) DNA was studied by UV-vis and viscosity experiments, and its ability to displace ethidium bromide (EB) from the DNA-EB conjugate was revealed by fluorescence spectroscopy. It was found that intercalation is the most possible mode of interaction with CT DNA. Additionally, DNA electrophoretic mobility experiments showed that 1 interacts with the plasmid pBluescript SK(+) (pDNA) as proved by the formation of unusual mobility DNA bands and degradation of relaxed pDNA at concentration of 5 mM. The interaction of 1 with human (HSA) and bovine serum albumin (BSA) was monitored revealing its reversible binding to albumins. The complex showed noteworthy antimicrobial activity against one (Bacillus subtilis) of the five tested bacteria. In order to explain the described in vitro activity of the compound, we adopted molecular docking studies on the crystal structure of HSA, BSA, CT DNA and DNA-gyrase. Furthermore, in silico predictive tools have been employed to study the properties of the complex. The in silico studies are adopted on a multitude of proteins involved in cancer growth, as well as prediction of drug-induced changes of gene expression profile, protein- and mRNA-based prediction results, prediction of sites of metabolism, cytotoxicity for cancer cell lines, etc.
Collapse
Affiliation(s)
- Ariadni Zianna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | - George D Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | - Anna Pekou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Evdoxia Coutouli-Argyropoulou
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Maria Lalia-Kantouri
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
33
|
Abu‐Dief AM, El‐Sagher HM, Shehata MR. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4943] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmed M. Abu‐Dief
- Chemistry Department, Faculty of ScienceSohag University 82524 Egypt
| | | | | |
Collapse
|
34
|
Evaluation of the Catalytic Activities of Some Synthesized Divalent and Trivalent Metal Complexes and Their Inhibition Efficiencies for the Corrosion of Mild Steel in Sulfuric Acid Medium. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Gaber M, El-Wakiel N, Hemeda OM. Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) complexes of 7-((1H-benzo[d]imidazol-2-yl)diazenyl)-5-nitroquinolin-8-ol.synthesis, thermal, spectral, electrical measurements, molecular modeling and biological activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Palladium(II) complexes with salicylaldehyde ligands: Synthesis, characterization, structure, in vitro and in silico study of the interaction with calf-thymus DNA and albumins. J Inorg Biochem 2019; 194:85-96. [PMID: 30844610 DOI: 10.1016/j.jinorgbio.2019.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/23/2022]
Abstract
The synthesis and characterization of four palladium(II) complexes with substituted salicylaldehydes (X-saloH) having the general formula [Pd(X-salo)2] was undertaken. The complexes are formulated as [Pd(3-OCH3-salo)2] 1, [Pd(5-NO2-salo)2] 2, [Pd(5-Cl-salo)2] 3, and [Pd(5-Br-salo)2] 4. The structure of complex 1 was verified by single-crystal X-ray crystallography. Spectroscopic (UV-vis), and physicochemical (viscosity measurements) techniques were employed in order to study the binding of the complexes with calf-thymus (CT) DNA, while ethidium bromide (EB) displacement studies, performed by fluorescence emission spectroscopy, revealed the ability of the complexes to displace the DNA-bound EB. Intercalation is the most possible mode of interaction of the complexes with CT DNA. The interaction of the complexes with bovine (BSA) and human (HSA) serum albumin proteins was studied by fluorescence emission spectroscopy and the relatively high binding constants revealed the reversible binding of the complexes to the albumins. Molecular docking simulations on the crystal structure of HSA, BSA and CT DNA were employed in order to study in silico the ability of the studied complexes 1-4 to bind to these target macromolecules.
Collapse
|
37
|
Gaber M, Fathalla SK, El‐Ghamry HA. 2,4‐Dihydroxy‐5‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]benzaldehyde acetato, chloro and nitrato Cu(II) complexes: Synthesis, structural characterization, DNA binding and anticancer and antimicrobial activity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed Gaber
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | | | - Hoda A. El‐Ghamry
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| |
Collapse
|
38
|
Abstract
Cutting-edge practices in bioinorganic chemistry are pivotal for enhancing the layout of compounds to lessen poisonous facet effect and recognize their mechanism of action. A powerful anticancer agent should own inherent, inhibitory property and also delivery, dosage and residence time in vivo. Organic function and conformation of mutated gene may be altered by way of binding of metal ions. Upswing of activities counting on the structural data, intending in enhancing and growing different forms of metal based compounds, continuous seek of extra metal based compounds have been synthesized via revamping the prevailing chemical shape via ligand substitution. The prevailing paper addresses the trendy development in the design of novel antitumor agents primarily based on transition metal complex via highlighting the near dating among their structural alternatives and cytotoxic ability.
Collapse
Affiliation(s)
- G. Sridevi
- Department of Chemistry. Sriram Engineering College, Chennai-602024, India, 2R&D Centre, Bharathiar University, Coimbatore-641046, India
| | - S. Arul Antony
- PG and Research Department of Chemistry, Presidency College, Chennai-600005, India
| | - R. Angayarkani
- Department of Chemistry. Sriram Engineering College, Chennai-602024, India
| |
Collapse
|
39
|
Ustabaş R, Çoruh U, Akçay HT, Menteşe E, Vazquez-Lopez EM. Crystal Structure of 4-[(4-Ethyl-5-Phenyl-4H-1,2,4-Triazol-3-yl)Sulfanyl]Phthalonitrile. J STRUCT CHEM+ 2018. [DOI: 10.1134/s002247661805027x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
El-Ghamry H, El-Wakiel N, Khamis A. Synthesis, structure, antiproliferative activity and molecular docking of divalent and trivalent metal complexes of 4H
-3,5-diamino-1,2,4-triazole and α-hydroxynaphthaldehyde Schiff base ligand. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hoda El-Ghamry
- Department of Chemistry, Faculty of Science; Tanta University; Tanta 31527 Egypt
- Department of Chemistry, Faculty of Applied Science; Umm Al-Qura University; Makkah Kingdom of Saudi Arabia
| | - Nadia El-Wakiel
- Department of Chemistry, Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
| |
Collapse
|
41
|
Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis(1-phenylpiperazine dithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes: Crystal structures of 1-phenylpiperazine dithiocarbamato-S,S′ zinc(II) and Pt(II). J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Chromone Schiff base complexes: synthesis, structural elucidation, molecular modeling, antitumor, antimicrobial, and DNA studies of Co(II), Ni(II), and Cu(II) complexes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1494-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
New Pd(II) schiff base complexes derived from ortho-vanillin and -tyrosine or -glutamic acid: Synthesis, characterization, crystal structures and biological properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Gaber M, Awad MK, Atlam FM. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Pd(II) and Pt(II) chalcone complexes. Synthesis, spectral characterization, molecular modeling, biomolecular docking, antimicrobial and antitumor activities. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Gaber M, El-Ghamry HA, Fathalla SK, Mansour MA. Synthesis, spectroscopic, thermal and molecular modeling studies of Zn 2+ , Cd 2+ and UO 2 2+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:78-89. [DOI: 10.1016/j.msec.2017.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/20/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
|
47
|
Macrocyclic Cu(II) and Pd(II) complexes with new 16-membered tetradentate [N4] ligand: synthesis, characterization, 3D molecular modeling and in vitro anticancer and antimicrobial activities. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0774-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Sampath K, Mohanraj M, Jayabalakrishnan C. DNA interaction and antioxidant studies of ruthenium(II) complexes containing mixed ligands. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Krishnan Sampath
- Department of Chemistry, Kumaraguru College of Technology, Coimbatore, India
| | - Maruthachalam Mohanraj
- Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - Chinnasamy Jayabalakrishnan
- Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| |
Collapse
|
49
|
Evolution of palladium(II) complexes as DNA intercalator and artificial metallonuclease. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Dostani M, Kianfar AH, Mahmood WAK, Dinari M, Farrokhpour H, Sabzalian MR, Abyar F, Azarian MH. An experimental and theoretical study on the interaction of DNA and BSA with novel Ni 2+, Cu 2+ and VO 2+ complexes derived from vanillin bidentate Schiff base ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:144-153. [PMID: 28284160 DOI: 10.1016/j.saa.2017.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4×105, 1.9×105 and 4.2×104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n>1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2+, Cu2+ and VO2+ ions were colonized by fungal growth.
Collapse
Affiliation(s)
- Morteza Dostani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Hossein Kianfar
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fatemeh Abyar
- Department of Engineering, Ardakan University, Ardakan 89518-95491, Iran
| | | |
Collapse
|