1
|
Shiraki R, Ogawa S, Wakigawa K, Okazaki H, Gohda A, Mori T, Katayama Y. GC/MS-based quantitative analysis of sulfide ion in whole blood using ethenesulfonyl fluoride as a derivatization reagent. Forensic Toxicol 2025:10.1007/s11419-025-00712-9. [PMID: 39928229 DOI: 10.1007/s11419-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE Identification and quantification of sulfide ion in biological samples are required in forensic purpose. Gas chromatography-mass spectrometry (GC/MS) has been used for the analysis of sulfide ion by using derivatization reagents. However, conventional derivatization reagents require special attention for derivatization. To simplify the derivatization protocol, we examined ethenesulfonyl fluoride (ESF) as a derivatizing reagent of sulfide ion. METHODS To 100 μL of whole blood sample containing sulfide ion, 100 μL of boric acid buffer (pH 8.0), 100 μL of acetone solution containing internal standard, 100 μL of acetone solution containing 600 mM concentration of ESF, and 100 μL of hexane were added in a 1.5-mL plastic tube. The mixture was vortexed at room temperature, the tubes were centrifuged, and the organic layer was injected into the GC/MS. RESULTS ESF exhibited higher reactivity toward sulfide ion than interfering compounds present in whole blood, allowing for selective derivatization. With the optimized protocol, the detection limit for sulfide ion was 0.01 μg/mL. The calibration curve showed good linearity (R2 = 0.9999) in the range of 0.05-10.0 μg/mL, and the precision (% relative standard deviation) and the accuracy (% bias) were within ± 10% (intra- and inter-day). CONCLUSION This GC/MS-based method is a valuable tool for forensic investigations and various analytical fields, offering reliable quantification of sulfide ion in whole blood.
Collapse
Affiliation(s)
- Ryosuke Shiraki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka, 812-8576, Japan.
| | - Shin Ogawa
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka, 812-8576, Japan
| | - Kengo Wakigawa
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka, 812-8576, Japan
| | - Hidehiko Okazaki
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka, 812-8576, Japan
| | - Akinaga Gohda
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka, 812-8576, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8532, Japan.
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
4
|
Liu X, He C, Li Q, Li Z, Liu L, Chen S, Hou P. HClO imaging in vivo and drug-damaged liver tissues by a large Stokes shift fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123081. [PMID: 37392533 DOI: 10.1016/j.saa.2023.123081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Drug-induced liver injury (DILI), as a classic acute inflammation, has attracted widespread concern due to its unpredictability and severity. Among the various reactive oxygen species, HClO has been used as a marker for the detection of DILI process. Thus, we designed and synthesized a "turn-on" fluorescent probe FBC-DS by modifying 3'-formyl-4'-hydroxy-[1,1'-biphenyl]-4-carbonitrile (FBC-OH) with N, N-dimethylthiocarbamate group for sensitively sensing HClO. Probe FBC-DS showed a low detection limit (65 nM), fast response time (30 s), an enormous Stokes shift (183 nm) and 85-fold fluorescence enhancement at 508 nm in the detection of HClO. Probe FBC-DS could monitor exogenous and endogenous HClO in living HeLa cells, HepG2 cells and zebrafish. In addition, probe FBC-DS has been successfully utilized in biological vectors for imaging acetaminophen (APAP)-induced endogenous HClO. Moreover, DILI caused by APAP is evaluated by probe FBC-DS through imaging over-expression of endogenous HClO in the mice liver injury models. All in all, we have every reason to believe that probe FBC-DS can be a potential tool to study the complex biological relationship between HClO and drug-induced liver injury.
Collapse
Affiliation(s)
- Xiangbao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Chuan He
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Qi Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Likun Liu
- Research Institute of Medicine & Pharmacy Qiqihar Medical University, Qiqihar 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China.
| |
Collapse
|
5
|
Tong X, Hao L, Song X, Wu S, Zhang N, Li Z, Chen S, Hou P. Construction of novel coumarin-carbazole-based fluorescent probe for tracking of endogenous and exogenous H 2S in vivo with yellow-emission and large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121445. [PMID: 35660155 DOI: 10.1016/j.saa.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Recent medical studies have confirmed that endogenous H2S serves as the third gas-messenger besides nitric oxide (NO) and carbon monoxide (CO), which is produced by enzyme-catalyzed metabolism of cysteine and takes part in multiple physiological processes. The abnormal levels induced by H2S overproduction in mammals can destroy tissues and organ systems, which lead to certain serious diseases, such as neurodegenerative diseases, cardiovascular diseases, and various cancers. In this work, we developed a novel coumarin-carbazole fluorescent probe COZ-DNB with yellow emission and a large Stokes shift for H2S detection. In probe COZ-DNB, the newly dye COZ-OH as a luminophore and the 2,4-dinitrophenyl ether moiety was chosen as a trigger group for H2S. Probe COZ-DNB itself displayed nearly non-fluorescent. However, COZ-DNB gave the remarkable fluorescence with an 83-fold enhancement in the yellow region after interaction with H2S. The sensing mechanism of COZ-DNB toward H2S was checked by means of UHPLC, HRMS and DFT/TD-DFT calculations. What's more, probe COZ-DNB also exhibited fast response (2.0 min), high sensitivity (65.0 nM), a large Stokes shift (161.0 nm), high stability and excellent selectivity. Furthermore, COZ-DNB was applied for imaging of exogenous and endogenous H2S in living HeLa cells and zebrafish with satisfactory performances. We anticipate COZ-DNB would be served as a potential tool for investigating the biological functions of H2S in pathological processes.
Collapse
Affiliation(s)
- Xu Tong
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Liguo Hao
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xue Song
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Shuang Wu
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Na Zhang
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China.
| |
Collapse
|
6
|
Su L, Zhang X, Su Y, Liu B. A simple colorimetric method based on "on-off-on" mode for detection of H 2S and Hg 2+ in water. ANAL SCI 2022; 38:1407-1416. [PMID: 35974229 DOI: 10.1007/s44211-022-00171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/24/2022] [Indexed: 11/01/2022]
Abstract
It is of great significance to develop efficient platforms for the detection of hypertoxic Hg2+ and H2S. Colorimetric have received much attention for the detection of H2S and Hg2+ in the last decades. In this work, an "on-off-on" mode colorimetric method based on MnO2/multi-wall carbon nanotubes (MnO2/MWCNTs) composite was constructed. MnO2/MWCNTs composite can oxidize TMB directly to form blue product (ox TMB) with a good simulated oxidase activity. In the presence of H2S, it can decompose the MnO2/MWCNTs composite causing the absorbance of the chromogenic system to decrease. When Hg2+ is introduced, the formation of Hg-S bond between Hg2+ and H2S inhibited the decomposition ability of H2S toward MnO2 composite, thus resulting in a color change from colorless to blue. Based on this phenomenon, the proposed "on-off-on" colorimetric sensor can be used for detection of H2S (off) and Hg2+ (on). Under optimized experimental conditions, this sensor showed a satisfactory linear relationship of H2S and Hg2+ with pleasant repeatability, acceptable method accuracy and stability. More importantly, the proposed colorimetric sensor has been successfully applied to the detection of H2S and Hg2+ in real samples, which not only provides a simple and cost-effective method to detect H2S and Hg2+ but also hopefully makes a certain contribution to environmental protection.
Collapse
Affiliation(s)
- Lixia Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Xue Zhang
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Yonghuan Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
A Phenothiazine-HPQ Based Fluorescent Probe with a Large Stokes Shift for Sensing Biothiols in Living Systems. Molecules 2021; 26:molecules26082337. [PMID: 33920567 PMCID: PMC8072808 DOI: 10.3390/molecules26082337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023] Open
Abstract
Due to the redox properties closely related to numerous physiological and pathological processes, biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), have received considerable attention in biological science. On account of the important physiological roles of these biothiols, it is of profound significance to develop sensitive and selective detection of biothiols to understand their biological profiles. In this work, we reported an efficient fluorescent probe, PHPQ-SH, for detecting biothiols in vitro and vivo, based on the phenothiazine-HPQ skeleton, with DNBS (2,4-dinitrobenzenesulfonate) as the response unit. Probe PHPQ-SH exhibited brilliant sensing performances toward thiols, including a large Stokes shift (138 nm), excellent sensitivity (for GSH, LOD = 18.3 nM), remarkable fluorescence enhancement (163-fold), low cytotoxicity, rapid response (8 min), and extraordinary selectivity. Finally, the probe PHPQ-SH illustrated herein was capable of responding and visualizing biothiols in MCF-7 cells and zebrafish.
Collapse
|
8
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Chen S, Hou P, Sun J, Wang H, Liu L. A new long-wavelength emission fluorescent probe for imaging biothiols with remarkable Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118655. [PMID: 32623305 DOI: 10.1016/j.saa.2020.118655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
By using BPMOH as the fluorophore and 2, 4-dinitrobenzenesulfonate moiety as the recognition site for thiols, a new long-wavelength emission (645 nm) fluorescent probe BPMSH with large Stokes shift (133 nm) was designed and synthesized. Probe BPMSH exhibited almost no fluorescence emission because of the PET process. When adding thiols, BPMSH could be quickly converted into BPMOH emitting a significant red fluorescence at 645 nm. In addition, BPMSH displayed high selectivity toward thiols among various biologically related analytes. Probe BPMSH has been applied to exogenous and endogenous thiols detection and imaging in living MCF-7 cells and MGC-803 cells. Most importantly, this probe BPMSH was successfully utilized for imaging thiols in zebrafish.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China.
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jingwen Sun
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| |
Collapse
|
10
|
Shen Y, Dai L, Zhang Y, Zhang X, Zhang C, Liu S, Tang Y, Li H. A ratiometric fluorescent probe for visualization of thiophenol and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118061. [PMID: 31958606 DOI: 10.1016/j.saa.2020.118061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Thiophenol has a broad application in agriculture and industry. However, thiophenol can harm to the environment and health for its high toxicity. Developing an effective method for detection of thiophenol in the field of environmental and biology is valuable. In this work, we construct a reaction-based ratiometric fluorescent probe (E)-4-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)vinyl)-1-(4-(2,4-dinitrophenoxy)benzyl)pyridin-1-ium bromide (DCVP-DNP) for probing thiophenol in environment and cells by employing (E)-7-(diethylamino)-3-(2-(pyridin-4-yl)vinyl)-2H-chromen-2-one (DCVP) as the fluorophore and 2,4-dinitrophenyl (DNP) ether as the recognition group for the first time. The probe has high selectivity for thiophenol though thiophenol-triggered nucleophilic substitution reaction. In addition, the ratio of emission intensities of the probe has linearly with thiophenol concentration in the range of 0-65 μM and the detection limit of thiophenol is as low as 4.8 × 10-8 M. Moreover, the probe can not only be applied for detection of thiophenol in water samples, but also image thiophenol in living cells, suggesting its potential application in environment and biological system.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.; Key Laboratory of National Forestry & Grassland Bureau for Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350108, PR China.
| | - Lingcong Dai
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China..
| | - Xiangyang Zhang
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Shaoheng Liu
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yucai Tang
- Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
11
|
Shen D, Liu J, Sheng L, Lv Y, Wu G, Wang P, Du K. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H 2S in hepatocytes and natural waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117690. [PMID: 31740124 DOI: 10.1016/j.saa.2019.117690] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Design and synthesis of fluorescent probe with fast response, excellent water solubility and good hepatocyte-targeting capacity to detect hydrogen sulfide (H2S) in hepatocytes and water samples is of great significance. Here, a novel fluorescent probe QL-Gal-N3 for detection of H2S was designed and synthesized based on H2S-mediated azide reduction strategy. This sensor demonstrated low toxicity, fast response (within 1 min), high selectivity and low detection limit (as low as 126 nM in water) for the detection of H2S. HeLa, A549 and HepG-2 cells were chosen to investigate the hepatocyte-targeting ability of QL-Gal-N3 respectively. The results indicated that the specific recognition of ASGPR over-expressed in hepatocytes by galactose group was an important reason for the good targeting ability of probe QL-Gal-N3. Furthermore, due to the introduction of glycosyl moiety, the water solubility of fluorescent probe was enhanced obviously. It was successfully applied for the detection of H2S in environmental water samples including river water, tap water, lake water and waste water.
Collapse
Affiliation(s)
- Dadong Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jian Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Li Sheng
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China.
| | - Yonghui Lv
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China
| | - Guofeng Wu
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
12
|
Khose VN, Hasan M, Khot SC, Mobin SM, Borovkov V, Karnik AV. Directional Approach to Enantiomerically Enriched Functionalized [7]Oxa-helicenoids and Groove-Based Selective Cyanide Sensing. J Org Chem 2020; 85:1847-1860. [PMID: 31858799 DOI: 10.1021/acs.joc.9b02100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several regioselective functionalized mono- and disubstituted [7]oxa-helicenoids have been synthesized in the enantiomerically enriched (90-99% ee) form. These functionalized helicenoids exhibited pronounced spectral and chiroptical properties suitable for sensing applications. In particular, corresponding helicenoid's mono and dialdehydes have been effectively used as chemodosimeters for selective detection of cyanide anions over other anions, while simple aromatic aldehydes do not function as cyanide sensors. The groove available in the helical host plays a crucial role in the sensing. The enantiomerically enriched nature of the sensors allows the use of electronic circular dichroism as an uncommon detection tool for cyanide anions, along with conventional fluorescence and NMR methods.
Collapse
Affiliation(s)
- Vaibhav N Khose
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (East) , Mumbai 400098 , India
| | - Mohammed Hasan
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (East) , Mumbai 400098 , India.,College of Chemistry and Materials Science , South Central University for Nationalities , 182# Minzu RD , Hongshan District, Wuhan , Hubei province 430074 , China
| | - Sushil C Khot
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (East) , Mumbai 400098 , India
| | - Shaikh M Mobin
- Department of Chemistry , Indian Institute of Technology, Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Victor Borovkov
- College of Chemistry and Materials Science , South Central University for Nationalities , 182# Minzu RD , Hongshan District, Wuhan , Hubei province 430074 , China
| | - Anil V Karnik
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (East) , Mumbai 400098 , India
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Wu Y, Zhao B, Wang L, Song B. Hemicyanine based naked-eye ratiometric fluorescent probe for monitoring lysosomal pH and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117767. [PMID: 31707017 DOI: 10.1016/j.saa.2019.117767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Lysosome as the typical acidic organelle involved in many biological processes, the dysfunction of its pH would alter many diseases. Small-molecule fluorescent probe has been considered as vital tool for monitoring pH fluctuation in living cells. Herein, a hemicyanine based ratiometric fluorescent probe was synthesized, namely, 2,3-trimethy-3-[2-(dimethyl-amino-4-yl) vinyl]-3H-benzo[e]indole (BiDL), for rapidly detection pH under acidic conditions. BiDL exhibited ratio fluorescence emission (F534nm/F622nm) characteristic with pKa 4.25. BiDL showed good linearly response in pH 3.4-4.82, indicating that the probe can be used for quantitative detection pH. The probe also displayed large Stokes shift (112 nm/201 nm) under neutral and acidic conditions, respectively, which could effectively reduce the excitation interference. BiDL had excellent cell membrane permeability, good photo-stability and low toxicity in living cells. The dual-channel confocal fluorescent microscopic ratiometric imaging application of pH in HeLa cells and lysosome were achieved successfully, indicating that BiDL has good potential for investigating lysosome-relevant pathological and physiological processes.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Bo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
14
|
Recognition of Thiols in Living Cells and Zebrafish Using an Imidazo[1,5-α]pyridine-Derivative Indicator. Molecules 2019; 24:molecules24183328. [PMID: 31547406 PMCID: PMC6767008 DOI: 10.3390/molecules24183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023] Open
Abstract
A new cyan fluorescent probe, MIPY-DNBS, using an imidazo[1,5-α]pyridine derivative as the fluorophore and 2,4-dinitrobenzensufonate as the recognition site for the selective detection of thiols (Cys, GSH, and Hcy), was designed and synthesized. Probe MIPY-DNBS exhibited a 172 nm Stokes shift, a fast response time (400 s), low cytotoxicity, low detection limits (12.7 nM for Cys), and excellent selectively in the detection of thiols. In addition, MIPY-DNBS was successfully applied to imaging thiols in living MCF-7 cells and zebrafish.
Collapse
|
15
|
Ultrafast response fluorescent probe with red-emission for monitoring hydrogen sulfide in vivo and in vitro. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang KP, Zhang QL, Wang X, Lei Y, Zheng WJ, Chen S, Zhang Q, Hu HY, Hu ZQ. A fluorescent probe based on tetrahydro[5]helicene derivative with large Stokes shift for rapid and highly selective recognition of hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:487-495. [PMID: 30818149 DOI: 10.1016/j.saa.2019.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 02/17/2019] [Indexed: 05/08/2023]
Abstract
In this work, we have designed and synthesized a dinitrobenzene-sulfonate tetrahydro[5]helicene (H-DNP) as an effective fluorescent probe for detection of hydrogen sulfide (H2S). Upon the addition of H2S, a significant fluorescence enhancement (75-fold) at 495 nm can be observed with a distinct color change from colorless to yellow. Additionally, H-DNP shows low background spectroscopic signal, large Stokes Shift up to ~140 nm, good sensitivity, rapid response time less than 2 min, low detection limit (48 nM) and high selectivity toward common bio-thiols (Cysteine, Homocysteine and Glutathione). Compared with the previous dinitrophenoxy tetrahydro[5]helicene, this probe has shorter response time and lower detection limit. Most importantly, this probe H-DNP has low toxicity to cells and excellent cell permeability, which can be applied to visualize H2S in living cells.
Collapse
Affiliation(s)
- Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qing-Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Yang Lei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wen-Jun Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
17
|
Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:342-346. [PMID: 30716645 DOI: 10.1016/j.saa.2019.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Based on dual quenching strategy (ESIPT inhibited quenching and PET quenching), we have developed a new turn-on fluorescent probe 1. Combining 3-(benzo[d]thiazol-2-yl)-10-butyl-10H-phenothiazin-2-ol (dye 2) as the fluorophore and 2-fluoro-5-nitro-benzoic as the recognition moiety, probe 1 had feature of notable large Stokes shift, highly sensitivity and selective for monitoring H2Sn with remarkable fluorescence enhancement (328-fold) response at 534 nm. Probe 1 exhibited excellent performance in the quantitative detection of H2Sn with a 137 nm Stokes shift and a low detection limit of 26 nM in solution. Finally, probe 1 was successfully utilized to image H2Sn in living A549 cells and zebrafish.
Collapse
Affiliation(s)
- Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China.
| |
Collapse
|