1
|
Zhou J, Wang Y, Shi L, Liu Y, Zhou X, Li J, Ma H, Zhou J. Visual Diagnosis of Drug-Induced Pulmonary Fibrosis Based on a Mitochondrial Viscosity-Activated Red Fluorescent Probe. Anal Chem 2025. [PMID: 40123047 DOI: 10.1021/acs.analchem.4c06786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fatal disease, the prevalence of which has been increasing in recent years. Nonradiographic and noninvasive early diagnosis of pulmonary fibrosis could improve prognosis but is a formidable challenge. As one of the fundamental microenvironmental parameters, viscosity is relevant to various pathological states, such as acute inflammation. Nevertheless, the potential biological roles of viscosity during the IPF process have been relatively underexplored. To address this issue, herein, we developed a new viscosity-responsive probe (JZ-2), which displayed high sensitivity and selectivity for viscosity, as well as excellent characteristics for targeting mitochondria. JZ-2 was successfully applied to map the changes in mitochondrial viscosity in cells caused by various stimuli, such as nystatin and lipopolysaccharide. Besides, JZ-2 was capable of differentiating cancer cells from normal cells and even tissues. More importantly, JZ-2 has been demonstrated to be sufficiently sensitive for tumor detection and early identification of IPF in vivo, revealing a significant increase in the viscosity of lung fibrosis tissues. Thus, JZ-2 is expected to be a swift and reliable diagnostic modality for the prediction of IPF progression in clinical settings.
Collapse
Affiliation(s)
- Jianjian Zhou
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
- Yidu Central Hospital of Weifang, Weifang 262500, China
| | - Yang Wang
- Department of Thyroid and Breast Surgery, Weifang People's Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang 261000, China
| | - Lihong Shi
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Yan Liu
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xucong Zhou
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Jianchun Li
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Huimin Ma
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Zhou
- School of Pharmacy, School of Rehabilitation Medicine, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
2
|
Zhang W, Song Q, He J, Jia H, Shang Z, Zhang Z, Meng Q. A quinoline-malononitrile-based fluorescent probe with aggregation-induced emission effect for the in vivo monitoring of viscosity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1877-1883. [PMID: 39918281 DOI: 10.1039/d4ay02192d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As an essential microenvironmental parameter, viscosity controls the diffusion of molecular species in cells to some extent during processes such as signaling, enzyme catalysis and biomolecular interactions. However, abnormal viscosity can lead to metabolic disorders and disease generation. Therefore, designing viscosity fluorescent probes for detecting viscosity changes in organisms is of great application value. Herein, a viscosity fluorescent probe (QM-C2) with aggregation-induced emission (AIE) effect was synthesized using quinoline-malononitrile with AIE properties as the electron acceptor and phenylcarbazole as the electron donor. Since the probe QM-C2 had a D-π-A structure, the phenylcarbazole moiety rotated freely in comparison to the quinoline-malononitrile moiety when it was in low-viscosity media, leading to a rapid energy depletion through a non-radiative transition process, which resulted in a weaker fluorescence. In contrast, the rotation of the molecular rotor was inhibited in high-viscosity media and the energy depletion of the non-radiative pathway was reduced, which resulted in an enhanced fluorescence. In addition, it was observed that common cationic, anionic and reactive oxygen species in the environment and in living organisms do not significantly interfere with the probe QM-C2, and it works effectively under a wide range of pH (pH = 4-10). Notably, the probe QM-C2 successfully monitored the viscosity changes induced by lipopolysaccharide, monensin and nystatin in zebrafish and nude mice.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Qiuying Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jing He
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| |
Collapse
|
3
|
Naderi PM, Zargoosh K, Qandalee M, Firuzi O, Behmadi H, Hosseinkhani S, Ghafary SM, Durán-Valle CJ, López-Coca IM. A Fluorescent Furan-based Probe with Protected Functional Groups for Highly Selective and Non-Toxic Imaging of HT-29 Cancer Cells and 4T1 Tumors. Chempluschem 2024; 89:e202400095. [PMID: 38787798 DOI: 10.1002/cplu.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Most of the previously reported fluorescent organic probes for cancer cell and tumor imaging have significant limitations including chemical toxicity, structural instability, low Stokes shift value, and the inability for selective accumulations in tumors during in vivo imaging. To overcome the mentioned challenges, we synthesized the fluorescent probes with protected polar functional groups to enhance the non-toxicity nature and increase the selectivity toward tumors. In addition, the structural rigidity of the fluorescent probes was increased by embedding aromatic rings in the probe structure. This issue enables us to obtain ultrabright cell images due to enhanced fluorescence quantum yield (ΦFL) values. After synthesis and spectral characterizations, the applicability of two furan-based and imidazole-based fluorescent probes ( abbreviated as DCPEF and DBPPI, respectively) was investigated for ultrabright in vitro and in vivo imaging of cancer cells. The probe DCPEF shows the ΦFL value of 0.946 and the Stocks shift of 86 nm. In addition, probe DBPPI offers the ΦFL value of 0.400 and a Stocks shift of 150 nm. The MTT colorimetric cytotoxicity assay showed that probe DCPEF has minimal effects against HT-29 (cancer) and Vero (normal) cells. The probe DCPEF produced ultrabright fluorescence images from HT-29 cells. In addition, in vivo imaging of cancer cells showed that probe DCPEF selectively accumulates in the 4T1 tumor in mice. The spectral and chemical stability, minimal cytotoxicity, significant Stokes shift, and high degree of selectivity for tumor cells during in vivo imaging make DCPEF an appropriate candidate to be used as a standard probe for cancer cell imaging.
Collapse
Affiliation(s)
- Parisa Mehdizadeh Naderi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran
| | - Mohammad Qandalee
- Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, 3581631167, Islamic Republic of Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Hossein Behmadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Islamic Republic of Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Soroush Moasses Ghafary
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Carlos J Durán-Valle
- IACYS, Department of Organic and Inorganic Chemistry, Faculty of Sciences, Universidad de Extremadura, Badajoz, 06006, Spain
| | - Ignacio M López-Coca
- INTERRA, Department of Organic and Inorganic Chemistry, School of Technology, Universidad de Extremadura, Cáceres - 10003, Spain
| |
Collapse
|
4
|
Li YY, Hu JL, Wu JR, Wang YR, Zhang AH, Tan YW, Shang YJ, Liang T, Li M, Meng YL, Kang YF. Multifunctional fluorescence probe for simultaneous detection of viscosity, polarity, and ONOO - and its bioimaging in vitro and vivo. Biosens Bioelectron 2024; 254:116233. [PMID: 38518563 DOI: 10.1016/j.bios.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Intracellular microenvironment (viscosity and polarity) and peroxynitrite ions (ONOO-) are involved in maintaining cell morphology, cell function, and signaling so that it is crucial to explore their level changes in vitro and vivo. In this work, we designed and synthesized a mitochondria-targeted fluorescence probe XBL for monitoring the dynamic changes of viscosity, polarity, and ONOO- based on TICT and ICT mechanism. The fluorescence spectra showed obvious changes for polarity at 500 nm as well as ONOO- and viscosity at 660 nm, respectively. The XBL can image simultaneously viscosity, polarity, and ONOO- in cells, and the results showed excess ONOO- leaded to the increase of viscosity in mitochondrial. The ferroptosis process was accompanied by increase of intracellular viscosity and ONOO- levels (or decrease of polarity), which allowed us to better understand the relevant physiological and pathological processes. The XBL can distinguish normal cells and cancerous cells by the fluorescence intensity changes in green and red channels, and image viscosity in inflamed mice. Thus, XBL can provided the chemical tool to understand the physiological and pathological mechanisms of disease by simultaneous detection of viscosity, polarity and ONOO-.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Jia-Ling Hu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ji-Rou Wu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Yi-Ru Wang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Yu-Wei Tan
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ya-Jing Shang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ting Liang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Min Li
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ya-Li Meng
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
5
|
Kumar MS, S V, Dolai M, Nag A, Bylappa Y, Das AK. Viscosity-sensitive and AIE-active bimodal fluorescent probe for the selective detection of OCl - and Cu 2+: a dual sensing approach via DFT and biological studies using green gram seeds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:676-685. [PMID: 38189149 DOI: 10.1039/d3ay01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl- and Cu2+. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in H2O-CH3CN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis. Interestingly, this probe can also be effectively employed as a dual-mode fluorescent probe for light up fluorescent detection of OCl- and Cu2+ at different emission wavelengths of 439 nm and 457 nm via chemodosimetric and chelation pathways, respectively. The fast-sensing ability of NCP towards OCl- was shown by a low detection limit of 0.546 μM and the binding affinity of NCP with Cu2+ was proved by a low detection limit of 3.97 μM and a high binding constant of 1.66 × 103 M-1. The sensing mechanism of NCP towards OCl- and Cu2+ was verified by UV-vis spectroscopy, fluorescence analysis, 1H-NMR analysis, mass spectroscopy, DFT study and Job plot analysis. For practical applications, the binding of NCP with OCl- and Cu2+ was determined using a dipstick method and a cell imaging study in a physiological medium using green gram seeds.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, W.B., India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Yatheesharadhya Bylappa
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
6
|
Kumar MP, G M, Amaladass P, Manikandan C, Dhayalan V. Recent synthetic strategies for the construction of functionalized carbazoles and their heterocyclic motifs enabled by Lewis acids. RSC Adv 2023; 13:32596-32626. [PMID: 37936643 PMCID: PMC10626344 DOI: 10.1039/d3ra06396h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
This article demonstrates recent innovative cascade annulation methods for preparing functionalized carbazoles and their related polyaromatic heterocyclic compounds enabled by Lewis acid catalysts. Highly substituted carbazole scaffolds were synthesized via Lewis acid mediated Friedel-Crafts arylation, electrocyclization, intramolecular cyclization, cycloaddition, C-N bond-formations, aromatization and cascade domino reactions, metal-catalyzed, iodine catalyzed reactions and multi-component reactions. This review article mainly focuses on Lewis acid-mediated recent synthetic methods to access a variety of electron-rich and electron-poor functional groups substituted carbazole frameworks in one-pot reactions. Polyaromatic carbazole and their related nitrogen-based heterocyclic compounds were found in several synthetic applications in pharma industries, energy devices, and materials sciences. Moreover, the review paper briefly summarised new synthetic strategies of carbazole preparation approaches will assist academic and pharma industries in identifying innovative protocols for producing poly-functionalized carbazoles and related highly complex heterocyclic compounds and discovering active pharmaceutical drugs or carbazole-based alkaloids and natural products.
Collapse
Affiliation(s)
- Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry Karaikal-609609 Union Territory Puducherry India https://vasudeva49.wixsite.com/catalysislab
| | - Mahantesh G
- Department of Chemistry, National Institute of Technology Puducherry Karaikal-609609 Union Territory Puducherry India https://vasudeva49.wixsite.com/catalysislab
| | - P Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science Madanapalle 517325 Andhra Pradesh India
| | - Chitrarasu Manikandan
- Department of Chemistry, National Institute of Technology Puducherry Karaikal-609609 Union Territory Puducherry India https://vasudeva49.wixsite.com/catalysislab
| | - Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry Karaikal-609609 Union Territory Puducherry India https://vasudeva49.wixsite.com/catalysislab
| |
Collapse
|
7
|
Li Y, Zhou Z, Chen S, Pang X, Wu C, Li H, Zhang Y. Mitochondria-targeting fluorescent sensor with high photostability and permeability for visualizing viscosity in mitochondrial malfunction, inflammation, and AD models. Anal Chim Acta 2023; 1250:340967. [PMID: 36898810 DOI: 10.1016/j.aca.2023.340967] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Viscosity changes in mitochondria are closely associated with numerous cellular processes and diseases. Currently available fluorescence probes used in mitochondrial viscosity imaging are not very photostable or sufficiently permeable. Herein, a highly photostable and permeable mitochondria-targeting red fluorescent probe (Mito-DDP) was designed and synthesized for viscosity sensing. Viscosity was imaged in living cells using a confocal laser scanning microscope, and the results suggested that Mito-DDP penetrated the membrane and stained the living cells. Importantly, practical applications of Mito-DDP were demonstrated: viscosity visualization was realized for mitochondrial malfunction, cellular and zebrafish inflammation, and Drosophila Alzheimer's disease models, i.e., for subcellular organelles, cells, and organisms. The excellent analytical and bioimaging performance of Mito-DDP in vivo makes it an effective tool for exploring the physiological and pathological effects of viscosity.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China; Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shiying Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
8
|
Liu MX, Chen XB, Liu WY, Zou GY, Yu YL, Chen S, Wang JH. Dual Functional Full-Color Carbon Dot-Based Organelle Biosensor Array for Visualization of Lipid Droplet Subgroups with Varying Lipid Composition in Living Cells. Anal Chem 2023; 95:5087-5094. [PMID: 36892999 DOI: 10.1021/acs.analchem.2c05789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In situ visualization of lipid composition diversity in lipid droplets (LDs) is essential for decoding lipid metabolism and function. However, effective probes for simultaneously localizing and reflecting the lipid composition of LDs are currently lacking. Here, we synthesized full-color bifunctional carbon dots (CDs) that can target LDs as well as respond to the nuance in internal lipid compositions with highly sensitive fluorescence signals, due to lipophilicity and surface state luminescence. Combined with microscopic imaging, uniform manifold approximation and projection, and sensor array concept, the capacity of cells to produce and maintain LD subgroups with varying lipid composition was clarified. Moreover, in oxidative stress cells, LDs with characteristic lipid compositions were deployed around mitochondria, and the proportion of LD subgroups changed, which gradually disappeared when treated with oxidative stress therapeutics. The CDs demonstrate great potential for in situ investigation of the LD subgroups and metabolic regulations.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao-Bing Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
9
|
Yu FT, Huang Z, Yang JX, Yang LM, Xu XY, Huang JY, Kong L. Two quinoline-based two-photon fluorescent probes for imaging of viscosity in subcellular organelles of living HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121769. [PMID: 36007347 DOI: 10.1016/j.saa.2022.121769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Two viscosity-sensitive two-photon fluorescent probes (QL and QLS) were designed and synthesized, which can be localized in lysosome and mitochondria in living HeLa cells, respectively. As the increases of viscosity from 2.55 to 1150 cP, the fluorescence quantum yield (Φ) of QL and QLS was increased by 28-fold and 37-fold, respectively. At the same time, its effective two-photon absorption cross section (ΦδTPA) was enhanced by 15-fold and 16-fold, respectively. Fluorescence lifetime imaging (FLIM) of living HeLa cells stained with QL and QLS, revealed that lysosomal viscosity ranged from 100.76 to 254.74 cP and mitochondrial viscosity ranged from 92.21 to 286.79 cP. This type of fluorescent probe is helpful in the design and application of materials for monitoring diseases associated with abnormal viscosity.
Collapse
Affiliation(s)
- Feng-Tao Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Ze Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Long-Mei Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Xian-Yun Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Jian-Yan Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China.
| |
Collapse
|
10
|
Li XH, Han XF, Wu WN, Zhao XL, Wang Y, Fan YC, Xu ZH. Simultaneous detection of lysosomal SO 2 and viscosity using a hemicyanine-based fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121519. [PMID: 35763947 DOI: 10.1016/j.saa.2022.121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The changes in sulfur dioxide and viscosity of lysosomes are significant indicators in physiological processes and the cell microenvironment. This study aimed to synthesize a hemicyanine-based probe for simultaneous detection of SO2 and viscosity. The probe could not only rationally detect sulfur dioxide in a semi-aqueous solution with high sensitivity (limit of detection = 0.78 μM) and fast response (within 30 s) but also monitor viscosity via fluorescence emission enhancement at 580 nm. Further, the dual-response probe was successfully used to image SO2 and viscosity in the lysosomes of living cells.
Collapse
Affiliation(s)
- Xiao-Hong Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xue-Feng Han
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
11
|
Mehdizadeh Naderi P, Zargoosh K, Qandalee M, Firuzi O, Behmadi H, Hossienkhani S, Moasses Ghafary S, Durán-Valle CJ. Synthesis and application of the fluorescent furan and imidazole probes for selective in vivo and in vitro cancer cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121455. [PMID: 35679740 DOI: 10.1016/j.saa.2022.121455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Development of imaging probes for identification of tumors in the early stages of growth can significantly reduce the tumor-related health hazards and improve our capacity for treatment of cancer. In this work, three different furan and imidazole fluorescent derivatives abbreviated as Cyclo X, SAC and SNO are introduced for in vivo and in vitro imaging of cancer cells. The fluorescence quantum yield values were 0.226, 0.400 and 0.479 for Cyclo X, SAC and SNO, respectively. The excitation and emission wavelengths of maximum intensity were (360, 452), (350, 428) and (350, 432) nm for Cyclo X, SAC and SNO, respectively. The MTT reduction assay was used to estimate the cytotoxic activity of the proposed derivatives against HT-29 (cancer) and Vero (normal) cell lines. Cyclo X showed no cytotoxic effect, while SAC and SNO showed significantly higher cytotoxicity against the tested cell lines than cisplatin as a well-known anticancer drug. In vitro fluorescence microscopic images obtained using HT-29 cells showed that Cyclo X produced very bright images. The in vivo cancer cell imaging using 4T1 tumor-bearing mice revealed that Cyclo X is selectively accumulated in the tumor without distribution in the mice body organs. The spectral and structural stability, large Stokes shift, non-cytotoxicity and high level of selectivity for in vivo imaging are properties that make Cyclo X a suitable candidate to be used for long-term monitoring of cancer cells.
Collapse
Affiliation(s)
- Parisa Mehdizadeh Naderi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Mohammad Qandalee
- Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Behmadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saman Hossienkhani
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sorous Moasses Ghafary
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
12
|
Lu B, Yin J, Liu C, Lin W. Probing the viscosity changes of acute kidney injury by fluorescence imaging. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
|
14
|
Wang C, Shu W, Chen Q, Yang C, Su S, Gao M, Zhang R, Jing J, Zhang X. A simple dual-response fluorescent probe for imaging of viscosity and ONOO - through different fluorescence signals in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119990. [PMID: 34082351 DOI: 10.1016/j.saa.2021.119990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cellular viscosity is a prominent micro-environmental parameter and peroxynitrite is an essential reactive oxygen special, both of which are involved in various pathological and physiological processes. When the intracellular viscosity is abnormal or the ONOO- concentration is irregular, the normal function of cells will be disturbed. Herein, we rationally designed and synthesized a novel multichannel fluorescent probe (probe 1) for multichannel imaging of viscosity and peroxynitrite. Probe 1 displayed about 108-fold enhancement as the viscosity increased from 1.005 cP to 1090 cP. Moreover, the fluorescence intensity at 540 nm was quickly increased after adding ONOO-. It should be noted that probe 1 has high sensitivity, selectivity and low cytotoxicity, which can be successfully employed for the visualization of exogenous and endogenous ONOO- and imaging viscosity changes in HeLa cells by different fluorescent signals. Furthermore, probe 1 could monitor the change of ONOO- induced by LPS (lipopolysaccharide) and IFN-γ (interferon-γ) in zebrafish. This result reveals that probe 1 may inspire more diagnostic and therapeutic programs for viscosity-peroxynitrite related diseases shortly.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qianqian Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
15
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
16
|
Mitra AK. Sesquicentennial birth anniversary of carbazole, a multifaceted wonder molecule: a revisit to its synthesis, photophysical and biological studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Wang M, Han X, Yang X, Liu J, Song X, Zhu W, Ye Y. A long-wavelength activable AIEgen fluorescent probe for HClO and cell apoptosis imaging. Analyst 2021; 146:6490-6495. [PMID: 34559170 DOI: 10.1039/d1an01430g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypochlorous acid (HClO) is an important bactericide, and adjusting the content of HClO helps to improve the host's innate immunity and resist microbial invasion. Aggregation-induced luminescence (AIE) is the opposite of aggregation-induced quenching (ACQ). Compounds with AIE properties emit weakly in a dispersed state in solution and they can emit strong fluorescence in an aggregated state. In this article, we proposed a new AIE fluorescent probe QM-ClO based on the quinoline-malononitrile (QM) fluorophore and dimethylthiocarbamate (DMTC) to detect HClO. The probe QM-ClO showed a fast response time, a low detection limit of 30.8 nM and a large Stokes shift (190 nm). Carbonyl cyanide metachlorophenyl-hydrazone (CCCP) was used to induce cell apoptosis, and then an increase in the HClO content was observed in the cell. It is proved that cell apoptosis can lead to the increase of the HClO content in the cell. This probe provides an effective tool for studying apoptosis-related diseases.
Collapse
Affiliation(s)
- Mengyun Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaojing Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, China
| | - Weimin Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Liang Y, Zhao Y, Lai C, Zou X, Lin W. A coumarin-based TICT fluorescent probe for real-time fluorescence lifetime imaging of mitochondrial viscosity and systemic inflammation in vivo. J Mater Chem B 2021; 9:8067-8073. [PMID: 34490436 DOI: 10.1039/d1tb01150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systemic inflammation, linked with abnormal mitochondrial viscosity, is reported to be associated with cerebro-cardiovascular disease and Alzheimer's disease. Therefore, it is of great significance to detect the mitochondrial viscosity to indicate the inflammatory signal in vivo. Considering the strategies of fluorescent molecular rotors (FMRs) and fluorescence lifetime imaging microscopy (FLIM), we have rationally designed a novel mitochondrial viscosity-specific fluorescent probe Mito-VCI, based on coumarin fluorophores with benzo[e]indolium as the rotor group. In a high viscosity solution system, the fluorescence lifetime of the probe Mito-VCI was prolonged due to the planarization and rigidity enhancement of the molecular rotor. Satisfactorily, the probe was only sensitive to viscosity, instead of non-viscosity factors such as pH and polarity. Furthermore, the probe sensitively targeted mitochondria in HeLa cells with a Pearson's correlation of 0.93, and specifically detected dynamics variation of mitochondrial viscosity with FLIM imaging in HeLa cells induced by LPS. Notably, significant fluorescence lifetime changes of Mito-VCI between normal and inflammatory tissues also occurred (for example, the fluorescence lifetime in the spleen changed from 1.128 to 1.432 ns). It can be inferred from the above observations that Mito-VCI could work as an effective and sensitive fluorescent molecular rotor for mitochondrial viscosity monitoring through FLIM imaging with a systemic inflammatory response, and provide potential applications for the diagnosis of systemic inflammation in pharmacology and toxicology studies.
Collapse
Affiliation(s)
- Yun Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Yuping Zhao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Chaofeng Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Xiang Zou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
19
|
Jachak M, Khopkar S, Patel K, Patil Y, Shankarling G. Synthesis of Novel d-π-A chromophores: Effect of structural manipulations on photophysical properties, viscosity and DFT study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Chen H, Zhao J, Lin J, Dong B, Li H, Geng B, Yan M. Amphiphilic copolymer fluorescent probe for mitochondrial viscosity detection and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119499. [PMID: 33556793 DOI: 10.1016/j.saa.2021.119499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The mitochondrial viscosity measurement with the amphiphilic copolymer fluorescent probe (PP) has been successfully revealed for the first time. PP was synthesized, starting from a hydrophobic rhodamine derivative fluorophore and hydrophilic 2-hydroxyethyl acrylate (HEA) by radical polymerization, which could be used to detect mitochondrial viscosity specifically. The systematic investigation demonstrated that the fluorescence emission of PP with a deep red emission increased about 9-fold when the medium is changed from methanol to 99% glycerol, indicating high viscosity dependence. Moreover, PP could self-assemble into nanospheres with the particle size of about 140 nm in water and the nano-structure enabled PP to enter living cells quickly. Cytotoxicity test showed that the cells survival rate remained above 70% at 70 μg·mL-1 of PP. Good biocompatibility and low cytotoxicity of PP are promising to provide a high contrast fluorescence imaging. Taken together, the results point the way to development of novel amphiphilic copolymer fluorescent probes-based the detection in solutions, physiology and pathology.
Collapse
Affiliation(s)
- Huiying Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jianzhi Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Junzhi Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Bing Geng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China.
| |
Collapse
|
21
|
Sun M, Wang T, Yang X, Yu H, Wang S, Huang D. Facile mitochondria localized fluorescent probe for viscosity detection in living cells. Talanta 2021; 225:121996. [PMID: 33592743 DOI: 10.1016/j.talanta.2020.121996] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Fluorescent probes act as a powerful tool to understand the function of intracellular viscosity, which are closely associated with many functional disorders and diseases. Herein we report a boron-dipyrromethene (4,4-difluoro-4-borata-3a,4a-diaza-s-indacene, BODIPY) group based new fluorescent probe (BV-1), which was synthesized facilely by a one-step Knoevenagel-type condensation reaction, to detect viscosity in living cells with high selectivity and sensitivity. DFT calculation demonstrated that the unsaturated moiety at the meso-position of BODIPY suppressed the fluorescence via twisted intramolecular charge transfer (TICT) mechanism in low viscosity media. By restricting the rotation of the molecular rotor, the fluorescence would be enhanced significantly with redshift in emission wavelength in high viscosity conditions. The fluorescence intensity ratio (log (I/I0)) at 570 nm showed a good linearity (R2 = 0.991) with the viscosity (log η) in the range of 2-868 cP. And the limit of detection (LOD) and limit of quantification (LOQ) for viscosity were calculated to be 0.16 cP and 0.54 cP, respectively. BV-1 was demonstrated to be mitochondria localized with low cytotoxicity. Utilizing the new probe BV-1, the changes in mitochondrial viscosity caused by monensin or nystatin have been monitored successfully in real time. This work will provide new efficient ways for the development of viscosity probes, which are expected to be used for the study of intracellular viscosity properties and functions.
Collapse
Affiliation(s)
- Mingtai Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China; Department of Food Science and Technology, National University of Singapore, 3 Science Drive 2, 117542, Singapore
| | - Tian Wang
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 2, 117542, Singapore
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 2, 117542, Singapore
| | - Huan Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Suhua Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 2, 117542, Singapore.
| |
Collapse
|
22
|
Xiao H, Li P, Tang B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021; 27:6880-6898. [DOI: 10.1002/chem.202004888] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
23
|
Wang Z, Zhang F, Xiong J, Mao Z, Liu Z. Investigations of drug-induced liver injury by a peroxynitrite activatable two-photon fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118960. [PMID: 33017795 DOI: 10.1016/j.saa.2020.118960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Drug-induced liver injury (DILI) is a prevalent liver disease and the leading cause for acute liver failure (ALF) worldwide. Screening of DILI in patients is central to ensure drug safety and improve therapy efficiency. Mounting evidences revealed that peroxynitrite (ONOO-) is involved in the DILI process and can be a potential biomarker for DILI. Thus far, there are few two-photon fluorescence probes for ONOO- that can accomplish this challenging task in DILI liver tissues. Hereby, a peroxynitrite activatable two-photon fluorescence probe BN-PN for the imaging of ONOO- in mice liver was elaborately constructed. The probe specifically reacted with peroxynitrite to furnish 140-fold fluorescence increase in vitro, which elucidated a high sensitivity for ONOO-. Thus, subtle changes of ONOO- levels in live cells can be sensitively imaged with this probe by two-photon microscopy. The probe also denoted the overproduction of ONOO- in APAP-induced liver injury, and proved that administration with NAC can effectively alleviate DILI and reduce ONOO- production in mouse liver. Further, the probe demonstrated the rapid rise of ONOO- level in the liver of DILI mice administrated with alcohol. This work disclosed the rational construction of a two-photon fluorescence probe-based DILI screening method, which would help the estimation of drug safety and new drug development.
Collapse
Affiliation(s)
- Zhao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jianhua Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
24
|
Chen H, Zhao J, Lin J, Dong B, Li H, Geng B, Yan M. Two-photon fluorescent probes for detecting the viscosity of lipid droplets and its application in living cells. RSC Adv 2021; 11:8250-8254. [PMID: 35423320 PMCID: PMC8695079 DOI: 10.1039/d0ra09683k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are storage organelles at the centre of lipid and energy homeostasis, which act as vital hubs of cellular metabolism and the key to maintaining lipid and energy homeostasis. We synthesized a new two-photon fluorescent probe (CIV) that could detect the viscosity of lipid droplets. The probe is constructed via the typical ICT system of D–π–A using carbazole as the donor and imidazole as the acceptor. With the increase in viscosity from PBS to 99% glycerol, the fluorescence intensity of CIV increased by 13-fold, showing sensitivity and specificity towards viscosity. In addition, CIV showed low toxicity and excellent biocompatibility in cytotoxicity tests, and was successfully used for living cell LD imaging. Taken together, the results widen the way for the development of novel fluorescent probe-based the visualization LDs and detection in solutions, physiology and pathology. A novel two-photon fluorescence probe (CIV) can detect the viscosity and locate lipid droplets in living cells.![]()
Collapse
Affiliation(s)
- Huiying Chen
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Institute of Fluorescent Probes for Biological Imaging
| | - Jianzhi Zhao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Institute of Fluorescent Probes for Biological Imaging
| | - Junzhi Lin
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Institute of Fluorescent Probes for Biological Imaging
| | - Baoli Dong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Institute of Fluorescent Probes for Biological Imaging
| | - Hui Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
| | - Bing Geng
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
| | - Mei Yan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
| |
Collapse
|