1
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
3
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
4
|
Vafabakhsh M, Dadmehr M, Kazemi Noureini S, Es'haghi Z, Malekkiani M, Hosseini M. Paper-based colorimetric detection of COVID-19 using aptasenor based on biomimetic peroxidase like activity of ChF/ZnO/CNT nano-hybrid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122980. [PMID: 37295377 DOI: 10.1016/j.saa.2023.122980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Corona Virus Disease 2019 (COVID-19) as the infectious disease caused the pandemic disease around the world through infection by SARS-CoV-2 virus. The common diagnosis approach is Quantitative RT-PCR (qRT-PCR) which is time consuming and labor intensive. In the present study a novel colorimetric aptasensor was developed based on intrinsic catalytic activity of chitosan film embedded with ZnO/CNT (ChF/ZnO/CNT) on 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The main nanocomposite platform was constructed and functionalized with specific COVID-19 aptamer. The construction subjected with TMB substrate and H2O2 in the presence of different concentration of COVID-19 virus. Separation of aptamer after binding with virus particles declined the nanozyme activity. Upon addition of virus concentration, the peroxidase like activity of developed platform and colorimetric signals of oxidized TMB decreased gradually. Under optimal conditions the nanozyme could detect the virus in the linear range of 1-500 pg mL and LOD of 0.05 pg mL. Also, a paper-based platform was used for set up the strategy on applicable device. The paper-based strategy showed a linear range between 50 and 500 pg mL with LOD of 8 pg mL. The applied paper based colorimetric strategy showed reliable results for sensitive and selective detection of COVID-19 virus with the cost-effective approach.
Collapse
Affiliation(s)
- Mostafa Vafabakhsh
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | - Morteza Hosseini
- Nanobiosenors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Dadmehr M, Shahi SC, Malekkiani M, Korouzhdehi B, Tavassoli A. A stem-loop like aptasensor for sensitive detection of aflatoxin based on graphene oxide/AuNPs nanocomposite platform. Food Chem 2023; 402:134212. [DOI: 10.1016/j.foodchem.2022.134212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
|
6
|
Dadmehr M, Mortezaei M, Korouzhdehi B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron 2022; 220:114889. [DOI: 10.1016/j.bios.2022.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022]
|
7
|
Cheng Y, Li G, Huang X, Qian Z, Peng C. Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters. BIOSENSORS 2022; 12:bios12100832. [PMID: 36290969 PMCID: PMC9599485 DOI: 10.3390/bios12100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 05/31/2023]
Abstract
In this work, a label-free fluorescent detection method for glyphosate, based on DNA-templated silver nanoclusters (DNA-Ag NCs) and a Cu2+-ion-modulated strategy, was developed. In the presence of Cu2+, the fluorescence of the DNA-Ag NCs was quenched. Glyphosate can restore the fluorescence of DNA-Ag NCs. By analyzing the storage stability of the obtained DNA-Ag NCs using different DNA templates, specific DNA-Ag NCs were selected for the construction of the glyphosate sensor. The ultrasensitive detection of glyphosate was achieved by optimizing the buffer pH and Cu2+ concentration. The sensing of glyphosate demonstrated a linear response in the range of 1.0-50 ng/mL. The limit of detection (LOD) was 0.2 ng/mL. The proposed method was successfully applied in the detection of glyphosate in a real sample, indicating its high application potential for glyphosate detection.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Guowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiufang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhijuan Qian
- Nanjing Customs District Light Industry 375 Productsand Children’s Products Inspection Center, Yangzhou 225009, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
8
|
An enhanced immunochromatography assay based on colloidal gold-decorated polydopamine for rapid and sensitive determination of gentamicin in animal-derived food. Food Chem 2022; 387:132916. [DOI: 10.1016/j.foodchem.2022.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
9
|
Malekkiani M, Ravari F, Heshmati Jannat Magham A, Dadmehr M, Groiss H, Hosseini HA, Sharif R. Fabrication of Graphene-Based TiO 2@CeO 2 and CeO 2@TiO 2 Core-Shell Heterostructures for Enhanced Photocatalytic Activity and Cytotoxicity. ACS OMEGA 2022; 7:30601-30621. [PMID: 36061736 PMCID: PMC9435054 DOI: 10.1021/acsomega.2c04338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Development of light-harvesting properties and inhibition of photogenerated charge carrier recombination are of paramount significance in the photocatalytic process. In the present work, we described the synthesis of core-shell heterostructures, which are composed of titanium oxide (TiO2) and cerium oxide (CeO2) deposited on a reduced graphene oxide (rGO) surface as a conductive substrate. Following the synthesis of ternary rGO-CeO2@TiO2 and rGO-TiO2@CeO2 nanostructures, their photocatalytic activity was investigated toward the degradation of rhodamine B dye as an organic pollutant under UV light irradiation. The obtained structures were characterized with high-resolution transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy surface analysis, and UV-Vis spectroscopy. Various parameters including pH, catalyst dosage, temperature, and contact time were studied for photocatalysis optimization. Heterostructures showed considerable advantages because of their high surface area and superior photocatalytic performance. In contrast, rGO-CeO2@TiO2 showed the highest photocatalytic activity, which is attributed to the more effective electron-hole separation and quick suppression of charge recombination at core-shell phases. A biological assay of the prepared heterostructure was performed to determine the cytotoxicity against breast cancer cells (MCF-7) and demonstrated a very low survival rate at 7.65% of cells at the 17.5 mg mL-1 concentration of applied photocatalyst.
Collapse
Affiliation(s)
- Mitra Malekkiani
- Department
of Chemistry, Payame Noor University, Tehran 193954697, Iran
| | - Fatemeh Ravari
- Department
of Chemistry, Payame Noor University, Tehran 193954697, Iran
| | | | - Mehdi Dadmehr
- Department
of Biology, Payame Noor University, Tehran 193954697, Iran
| | - Heiko Groiss
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface and Nanoanalytics, Johannes Kepler
University Linz, Altenberger Straße 69, Linz 4040, Austria
| | | | - Reza Sharif
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface and Nanoanalytics, Johannes Kepler
University Linz, Altenberger Straße 69, Linz 4040, Austria
| |
Collapse
|
10
|
Simple Detection of DNA Methyltransferase with an Integrated Padlock Probe. BIOSENSORS 2022; 12:bios12080569. [PMID: 35892466 PMCID: PMC9332213 DOI: 10.3390/bios12080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
DNA methyltransferases (MTases) can be regarded as biomarkers, as demonstrated by many studies on genetic diseases. Many researchers have developed biosensors to detect the activity of DNA MTases, and nucleic acid amplification, which need other probe assistance, is often used to improve the sensitivity of DNA MTases. However, there is no integrated probe that incorporates substrates and template and primer for detecting DNA MTases activity. Herein, we first designed a padlock probe (PP) to detect DNA MTases, which combines target detection with rolling circle amplification (RCA) without purification or other probe assistance. As the substrate of MTase, the PP was methylated and defended against HpaII, lambda exonuclease, and ExoI cleavage, as well as digestion, by adding MTase and the undestroyed PP started RCA. Thus, the fluorescent signal was capable of being rapidly detected after adding SYBRTM Gold to the RCA products. This method has a detection limit of approximately 0.0404 U/mL, and the linear range was 0.5–110 U/mL for M.SssI. Moreover, complex biological environment assays present prospects for possible application in intricacy environments. In addition, the designed detection system can also screen drugs or inhibitors for MTases.
Collapse
|
11
|
Mashhadi Farahani S, Dadmehr M, Ali Karimi M, Korouzhdehi B, Amin Karimi M, Rajabian M. Fluorometric detection of phytase enzyme activity and phosphate ion based on gelatin supported silver nanoclusters. Food Chem 2022; 396:133711. [PMID: 35853372 DOI: 10.1016/j.foodchem.2022.133711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Phytase is the commercial enzyme for bioconversion of phytate substrate to digestible phosphate ions. Recently silver nanoclusters (AgNCs) have received great attention as the optical transducer nanoparticles in biosensors structure. The novel detection platform was developed to detect the phytase enzyme activity and phosphate ions based on fluorescence quenching of AgNCs. The AgNCs were synthesized through gelatin supported reaction and characterized by TEM, FTIR and XRD analysis. The hydrolytic effect of phytase enzyme and subsequent phosphate release led to suppression of AgNCs fluorescence. The linear range was observed for enzyme in the range of 0.5-5 U/mL with the detection limit of 0.2 U/mL. Also, the same fluorescence quenching effect was observed in the presence of phosphate ion in the linear range of 1 to 16 µM with a detection limit of 0.5 µM. The proposed mechanism showed effectiveness of detection strategy for detection of phytase enzyme and phosphate ion.
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Behnaz Korouzhdehi
- Department of Biotechnology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Rajabian
- Department of Biology, Payame Noor University, Tehran, Iran
| |
Collapse
|
12
|
Liu J, Liu Y, Zhang L, Fu S, Su X. Ultra-specific fluorescence detection of DNA modifying enzymes by dissipation system. Biosens Bioelectron 2022; 215:114561. [PMID: 35841766 DOI: 10.1016/j.bios.2022.114561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Abnormal expression of DNA modifying enzymes (DMEs) is linked to a variety of diseases including cancers. It is desirable to develop accurate methods for DME detection. However, the substrate-based probe for target DMEs is disturbed by various non-target DMEs that have similar activity resulting in a loss of specificity. Here we utilized dissipative DNA networks to develop an ultra-specific fluorescence assay for DME, absolutely distinguishing between target and non-target enzymes. Unlike the conventional sensors in which the discrimination of target and non-target relies on signal intensity, in our system, target DMEs exhibit featured fluorescence oscillatory signals, while non-target DMEs show irreversible 'one-way' fluorescence increase. These dissipation-enabled probes (DEPs) exhibit excellent generality for various types of DMEs including DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1), polynucleotide kinase (T4 PNK), and methyltransferase (Dam). DEPs provide a novel quantification mode based on area under curve which is more robust than those intensity-based quantifications. The detection limits of APE1, T4 PNK, and Dam reach 0.025 U/mL, 0.44 U/mL, and 0.113 U/mL, respectively. DEPs can accurately identify their corresponding DMEs with excellent specificity in cell extracts. Fluorescence sensors based on DEPs herein represent a conceptually new class of methods for enzyme detection, which can be easily adapted to other sensing platforms such as electrochemical sensors.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Wen Q, Li D, Xi H, Huang G, Zhu W. Methylation-blocked cascade strand displacement amplification for rapid and sensitive fluorescence detection of DNA methyltransferase activity. J Pharm Biomed Anal 2022; 219:114935. [PMID: 35820248 DOI: 10.1016/j.jpba.2022.114935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
DNA methylation catalyzed by DNA adenine methylation methyltransferase (Dam MTase) is strongly connected with a variety of biological processes, hence, monitoring Dam MTase activity is of great importance. Here, we developed a rapid and sensitive fluorescence sensing strategy for the detection of Dam MTase activity based on methylation-blocked enzymatic recycling amplification. In this fluorescence sensing system, Dam MTase-induced methylation blocked the subsequent reactions. In contrast, in the absence of Dam MTase, the unmethylated probe initiated the cascade strand displacement amplification for significant signal amplification. Under optimized conditions, this method has a lower detection limit of 0.67 U/mL and a shorter assay time (90 min) compared with previously reported similar methodologies.
Collapse
Affiliation(s)
- Qilin Wen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Dandan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Huai Xi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Guidan Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Wenyuan Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| |
Collapse
|
14
|
Wan Z, Gong F, Zhang M, He L, Wang Y, Yu S, Liu J, Wu Y, Liu L, Wu Y, Qu L, Sun J, Yu F. Detection of the level of DNMT1 based on self-assembled probe signal amplification technique in plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120020. [PMID: 34119770 DOI: 10.1016/j.saa.2021.120020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
DNA (cytosine-5)-methyltransferase1 (DNMT1) is the most abundant DNA methyltransferase in somatic cells, and it plays an important role in the initiation, occurrence, and rehabilitation of tumors. Herein, we developed a novel strategy for the detection of the level of DNMT1 in human plasma using the self-assembled nucleic acid probe signal amplification technology. In this method, the DNMT1 monoclonal antibody (McAbDNMT1) was immobilized on carboxyl magnetic beads to form immunomagnetic beads and then captured DNMT1 specifically. After that, DNMT1 polyclonal antibody (PcAbDNMT1) and biotinylated sheep anti-rabbit IgG (sheep anti rabbit IgG-Biotin) were sequentially added into the system to react with DNMT1 and form biotinylated double antibody sandwich immunomagnetic beads. In the presence of the bridging medium streptavidin, the biotinylated double antibody sandwich immunomagnetic beads would form a complex with biotinylated poly-fluorescein (Biotin-poly FAM), and the fluorescence intensity of the complex was proportional to the concentration of DNMT1. Immunomagnetic beads can capture the target DNMT1 in the sample, and Biotin-poly FAM can realize signal amplification. Using these strategies, we got a linear range of the system for DNMT1 level detection was from 2 nmol/L to 200 nmol/L, and the limit of detection (LOD) was 0.05 nmol/L. The method was successfully applied for the determination of DNMT1 in human plasma with the recovery of 101.3-106.0%. Therefore, this method has the potential for the detection of DNMT1 level in clinical diagnosis.
Collapse
Affiliation(s)
- Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Gong
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Gumei Community Health Service Center, Minhang District, Shanghai 201100, China
| | - Mimi Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuming Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li'e Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaqi Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Ding Z, Li Y, Bao Y, Han K, Turepu I, Li G. A Sensitive Signal-on Supersandwich DNA Biosensor Based on the Enhancement of Poly(aniline-luminol) Nanowires Electrochemiluminescence by Ferrocene. ANAL SCI 2021; 37:1525-1531. [PMID: 33867402 DOI: 10.2116/analsci.21p027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A signal-on supersandwich type of electrochemiluminescence (ECL) DNA biosensor was developed based on the poly(aniline-luminol) nanowires (PALNWs) modified electrode and enhancement of ferrocene (Fc) on ECL of luminol. Aminated capture DNA was covalently linked to the PALNWs on the electrode surface by the crosslinking of glutaraldehyde. In presence of target DNA, its 3' terminus hybridizes with the capture probe and the 5' terminus hybridizes with ferrocene labeled DNA (Fc-DNA) to form a long DNA concatamer supersandwich structure. The ECL intensity of the prepared biosensor was clearly improved by increasing the concentration of target DNA due to the enhancement of ferrocene on luminol ECL. The difference of the ECL intensity in the absence and presence of target DNA was used to monitor the hybridization event. The difference of ECL linearly increased with the logarithm of target DNA concentration in the range from 1.0 × 10-16 - 1.0 × 10-8 mol L-1 with a detection limit of 5.8 × 10-17 mol L-1. The sensor had high sensitivity and wide linear relationship for the detection of target DNA.
Collapse
Affiliation(s)
- Zhifang Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Yue Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Ying Bao
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Kexin Han
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Iparguli Turepu
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University
| |
Collapse
|
16
|
Huang Y, Zhang W, Zhao S, Xie Z, Chen S, Yi G. Ultra-sensitive detection of DNA N6-adenine methyltransferase based on a 3D tetrahedral fluorescence scaffold assisted by symmetrical double-ring dumbbells. Anal Chim Acta 2021; 1184:339018. [PMID: 34625260 DOI: 10.1016/j.aca.2021.339018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic modification that plays a vital role in X chromosome inactivation, genome imprinting, and gene expression. DNA methyltransferase establishes and maintains a stable methylation state in genomic DNA. Efficient and specific DNA methyltransferase testing is essential for the early diagnosis and treatment of cancer. In this study, we designed an ultra-sensitive fluorescent biosensor, based on a 3D tetrahedral fluorescent scaffold assisted by symmetrical double-ring dumbbells, for the detection of DNA-[N 6-adenine]-methyltransferase (Dam MTase). Double-stranded DNA was methylated by Dam MTase and then digested by DpnI to form two identical dumbbell rings. The 3D tetrahedral fluorescent scaffold was synthesized from four oligonucleotide chains containing hairpins. When the sheared dumbbells reacted with the 3D tetrahedral fluorescent scaffold, the hairpins opened and a fluorescence signal could be detected. The strategy was successful over a wide detection range, from 0.002 to 100 U mL-1 Dam MTase, and the lowest detection limit was 0.00036 U mL-1. Control experiments with M.SssI methyltransferase and HpaII methylation restriction endonuclease confirmed the specificity of the method. Experiments with spiked human serum and the 5-fluorouracil inhibitor proved the suitability of the method for early cancer diagnosis.
Collapse
Affiliation(s)
- Yuqi Huang
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wenxiu Zhang
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuhui Zhao
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zuowei Xie
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyi Chen
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
17
|
Colorimetric and label free detection of gelatinase positive bacteria and gelatinase activity based on aggregation and dissolution of gold nanoparticles. J Microbiol Methods 2021; 191:106349. [PMID: 34699865 DOI: 10.1016/j.mimet.2021.106349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022]
Abstract
A simple and sensitive method was developed for the detection of bacteria gelatinase activity based on their enzymatic hydrolysis effect on the surface plasmon resonance (SPR) of gelatin functionalized gold nanoparticles (Au@gelatin NPs) in bacteria supernatant. Characterization of synthesized NPs showed a very thin gelatin layer on the surface of about 20 nm AuNPs which modified the intrinsic SPR property of AuNPs. The extracted supernatants of applied bacteria were incubated with Au@gelatin NPs. Gelatinase activity of bacteria resulted in gradual gelatin shell removal and subsequent dissolution of bare AuNPs. The presence of inducer agents such as NaCl as the common ingredient in the bacterial medium led to the aggregation process of AuNPs and further bacterial activity resulted in AuNPs dissolution. AuNPs colloid solution color was changed from red to purple after addition of bacteria supernatants with gelatinase activity to the reaction. Also, the spectroscopic studies showed that the gelatinase activity of bacteria resulted in the gradual decrease of absorbance at 529 nm and subsequently led to extinction of SPR characteristics. So, the observed absorbance decrease in UV-Vis spectra at 529 nm was indicated as the gelatinase activity of applied bacteria. Different strains of gelatinase positive Bacillus strains were used as the real sample and their gelatinase activity was determined in the present study. Also, sensitivity analysis of the applied method was determined through this method and the obtained results showed Bacillus subtilis gelatinase activity in the linear range of 0-120 U/mL and detection limit of 0.5 U/mL. This method introduced label free, facile and sensitive assay of the bacterial gelatinase activity without any complicated instrument, affording convenience and simplicity.
Collapse
|
18
|
Cheraghi Shahi S, Dadmehr M, Korouzhdehi B, Tavassoli A. A novel colorimetric biosensor for sensitive detection of aflatoxin mediated by bacterial enzymatic reaction in saffron samples. NANOTECHNOLOGY 2021; 32:505503. [PMID: 34488207 DOI: 10.1088/1361-6528/ac23f7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
Aflatoxin is regarded as the potent carcinogenic agent which is secreted from fungi and present in some food products. So far, many detection methods have been developed to determine the trace amounts of aflatoxin in foods. In the present study a colorimetric competitive assay for detection of aflatoxin B1 (AFB1) has been developed based on interaction of gelatin functionalized gold nanoparticles (AuNPs@gelatin) in specific enzymatic reaction. Bacterial supernatant containing gelatinase enzyme were used as the substrate that could digest the coated gelatin on the surface of AuNPs and following in the presence of NaCl medium ingredient resulted to color change of AuNPs colloidal solution from red to purple. It was observed that with addition of aflatoxin to the bacterial supernatant, aflatoxin could interfere in aggregation of AuNPs and inhibited the process which subsequently prevent the expected color change induced by AuNPs aggregation. The supernatant containing AuNPs were investigated to analyze their induced surface plasmon resonance spectra through UV-visible spectroscopy. The absorption values were directly proportional with the applied AFB1 concentration. The experiment conditions including incubation time, AuNPs concentration and pH were investigated. The obtained results showed that through this approach we could detect the AFB1 in a linear range from 10 to 140 pg ml-1, with detection limit of 4 pg ml-1. Real sample assay in saffron samples showed recoveries percentage of 92.4%-95.3%. The applied approach proposed simple, cost effective and specific method for detection of AFB1 toxin in food samples.
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Behnaz Korouzhdehi
- Department of Biotechnology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
19
|
Ge S, Ran M, Mao Y, Sun Y, Zhou X, Li L, Cao X. A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density "hot spot" SERS substrate and rolling circle amplification strategy. Analyst 2021; 146:5326-5336. [PMID: 34319337 DOI: 10.1039/d1an01034d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL-1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10-4 U mL-1 and 2.51 × 10-4 U mL-1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Collapse
Affiliation(s)
- Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ning T, Liao F, Cui H, Yin Z, Ma G, Cheng L, Hong N, Xiong J, Fan H. A homogeneous electrochemical DNA sensor on the basis of a self-assembled thiol layer on a gold support and by using tetraferrocene for signal amplification. Mikrochim Acta 2020; 187:340. [PMID: 32440708 DOI: 10.1007/s00604-020-04274-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
An unmodified electrochemical biosensor has been constructed, which can directly detect DNA in homogeneous solution. The synthesized new compound tetraferrocene was used for signal amplification. The dual-hairpin probe DNA was tagged with a tetraferrocene at the 3' terminal and a thiol at the 5' terminal. Without being hybridized with target DNA, the loop of probe prevented the thiol from contacting the exposed gold electrode surface with an applied potential. After hybridization with the target DNA, the loop-stem structure of the probe was opened, which led to the formation of the hairpin DNA structure. Afterwards, the thiol easily contacted the electrode and accomplished potential-assisted Au-S self-assembly. Its current signal depends on the concentration of target DNA in the 1.8 × 10-13 to 1.8 × 10-9 M concentration range, and the detection limit is 0.14 pM. The technique is a meaningful study because of its high selectivity and sensitivity. Graphical abstract Schematic diagram of the electrochemical DNA sensor operation. Target DNA and probe DNA hybridization, resulting in the disappearance of the steric hindrance of the probe stem ring. A higher signal was generated when tetraferrocene reached the electrode. The electrochemical signals were determined by differential voltammetric pulses (DPV).
Collapse
Affiliation(s)
- Tianjiao Ning
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Fusheng Liao
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Hanfeng Cui
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhaojiang Yin
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Guangqiang Ma
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Lin Cheng
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Nian Hong
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jun Xiong
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Hao Fan
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|