1
|
Liu X, Niu S, Yang B, Liu J, Niu L, Wang X, Song D, Bi S. Fabrication of BSA-protected AgNPs modified MIL-53(Al) as SERS substrate for trace determination of diquat and dipterex. Talanta 2025; 292:128002. [PMID: 40154046 DOI: 10.1016/j.talanta.2025.128002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Ultrasensitive Surface-enhanced Raman spectroscopy (SERS) method for the detection of diquat/dipterex was established using bovine serum albumin (BSA)-protected silver nanoparticles (AgNPs) modified MIL-53(Al) (named as BSA/MIL-53(Al)/AgNPs). Compared with unmodified AgNPs, BSA/MIL-53(Al)/AgNPs significantly enhanced the Raman signals of diquat and dipterex and the enhancement factors (EFs) were 1.58 × 107 and 2.34 × 107, respectively. The TEM, XRD, TGA, XPS, UV-vis and FT-IR were utilized to characterize BSA/MIL-53(Al)/AgNPs and the binding of the substrate with diquat/dipterex. The optimal measurement conditions were investigated in detail by single factor experiment and response surface model. The impacts of common pesticides and coexisting substances on the determination of diquat/dipterex were studied. Under optimum conditions, linear calibration curves for detecting diquat/dipterex were established with a limit of detection (LOD) of 0.17/0.89 pmol L-1 (3S0/S). The SERS approaches were used to detect diquat and dipterex in several fruits and vegetables. The recovery was 97.10 %-104.82 % with the relative standard deviation (RSD) of 1.04 %-4.15 % (n = 5).
Collapse
Affiliation(s)
- Xin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Shiyue Niu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jia Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Liqian Niu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Xian Wang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
2
|
Zhao D, Yan Z, Xiao X. Peroxidase-mimetic carbon dot based nanozyme hydrogel colorimetric sensor for visual trichlorfon detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126027. [PMID: 40120458 DOI: 10.1016/j.saa.2025.126027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Organophosphorus pesticide residues pose considerable threats to the environment and public health and have become a global concern. This paper reports the development of a visual sensing platform for the detection of trichlorfon based on a carbon-based nanozyme (abbreviated as Fe-CDs) with peroxidase-mimetic catalytic activity in conjunction with acetylcholinesterase (AChE). The peroxide-mimetic enzyme activity of Fe-CDs can be inhibited by sulfhydryl (-SH) compounds, and AChE can decompose thiocholine (ATCh) to produce -SH-containing thiocholine (TCh), leading to the inability of Fe-CDs to oxidise 3,3',5,5'-tetramethylbenzidine (TMB) to turn the solution blue, while trichlorfon can inhibit the activity of AChE, thereby recovering the blue colour. This platform achieves sensitive detection of trichlorfon with a linear range of 200-50,000 pM and a detection limit of 157.57 pM and has been successfully applied to the detection of trichlorfon in Chinese cabbage. In addition, encapsulating Fe-CDs, ATCh and TMB in sodium alginate hydrogels and using a smartphone and colour analysis software, a colorimetric hydrogel portable kit is developed, realising the simple and rapid detection of the trichlorfon residue in real samples. This study provides a direct, simple and rapid strategy for the detection of trichlorfon in agricultural products and offers a potential on-site detection tool for food safety monitoring.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Zewen Yan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| |
Collapse
|
3
|
Lei M, Ding X, Liu J, Tang Y, Chen H, Zhou Y, Zhu C, Yan H. Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents. Anal Chem 2024; 96:6072-6078. [PMID: 38577757 DOI: 10.1021/acs.analchem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Mengdie Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xilin Ding
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hongye Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
5
|
Xiao X, Liao W, Ma R, Huang L, Yang Y. A colorimetric analytical method based on a TCPP-CuCo 2O 4-like peroxidase for the detection of trichlorfon. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4331-4337. [PMID: 37609836 DOI: 10.1039/d3ay01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this work, a highly sensitive colorimetric sensing platform was designed for the detection of trichlorfon based on inhibiting thiocholine (TCh)-induced redox reaction. 5,10,15,20-Tetracarboxyphenylporphyrin (TCPP) functionalized CuCo2O4 (TCPP-CuCo2O4) was synthesized to construct a colorimetric sensing platform for trichlorfon. In the presence of H2O2, TCPP-CuCo2O4 can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue ox-TMB, accompanied by a strong absorption peak at 652 nm, while acetylcholinesterase (AChE) can specifically hydrolyze acetylthiocholine (ATCh) into TCh, which can reduce ox-TMB back into colorless TMB, resulting in a lower absorbance at 652 nm. Trichlorfon can irreversibly inhibit the activity of AChE and thus recover the absorption peak. Under the optimized conditions, detection of trichlorfon has a wide linear range of 40-4000 ng mL-1 with a linear correlation coefficient of 0.9904. The proposed method can be applied to the detection of trichlorfon in vegetables and has good application prospects.
Collapse
Affiliation(s)
- Xin Xiao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P. R. China.
| | - Wenchun Liao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P. R. China.
| | - Rao Ma
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P. R. China.
| | - Long Huang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P. R. China.
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P. R. China.
| |
Collapse
|
6
|
Shen Y, Gao X, Chen H, Wei Y, Yang H, Gu Y. Ultrathin C 3N 4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131171. [PMID: 36913745 DOI: 10.1016/j.jhazmat.2023.131171] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Engineering efficient dual-mode portable sensor with built-in cross reference correction is of great significance for onsite reliable and precise detection of organophosphorus pesticides (OPs) and evading the false-positive outputs, especially in emergency case. Currently, most nanozyme-based sensors for OPs monitoring primarily replied on the peroxidase-like activity, which involved unstable and toxic H2O2. In this scenario, a hybrid oxidase-like 2D fluorescence nanozyme (PtPdNPs@g-C3N4) was yielded by in situ growing PtPdNPs in the ultrathin two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheet. When acetylcholinesterase (AChE) hydrolyzed acetylthiocholine (ATCh) to thiocholine (TCh), it ablated O2-• from the dissolved O2 catalyzed by PtPdNPs@g-C3N4's oxidase-like activity, hampering the oxidation of o-phenylenediamine (OPD) into 2,3-diaminophenothiazine (DAP). Consequently, with the increasing concentration of OPs which inhibited the blocking effect by inactivating AChE, the produced DAP caused an apparent color change and a dual-color ratiometric fluorescence change in the response system. Through integrating into a smartphone, a H2O2-free 2D nanozyme-based onsite colorimetric and fluorescence dual-mode visual imaging sensor for OPs was proposed with acceptable results in real samples, which holds vast promise for further development of commercial point-of-care testing platform in early warning and controlling of OPs pollution for safeguarding environmental health and food safety.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Manivannan B, Nallathambi G, Devasena T. Alternative methods of monitoring emerging contaminants in water: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2009-2031. [PMID: 36128976 DOI: 10.1039/d2em00237j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities have steadily increased the release of emerging contaminants (ECs) in aquatic bodies, and these ECs may have adverse effects on humans even at their trace (μg L-1) levels. Their occurrence in wastewater systems is more common, and the current wastewater treatment facilities are inefficient in eliminating many of such persistent ECs. "Gold standard" techniques such as chromatography, mass spectrometry, and other high-resolution mass spectrometers are used for the quantification of ECs of various kinds, but they all have significant limitations. This paper reviews the alternative methods for EC detection, which include voltammetry, potentiometry, amperometry, electrochemical impedance spectroscopy (EIS) based electrochemical methods, colorimetry, surface-enhanced Raman spectroscopy (SERS), fluorescence probes, and fluorescence spectroscopy-based optical techniques. These alternative techniques have several advantages over conventional techniques, including low sample volume, excludes solid phase extraction procedure, high sensitivity, selectivity, portability, reproducibility, rapidity, low cost, and the ability to monitor ECs in real time. This review summarises each of the alternative methods for detecting ECs in water samples and their respective limits of detection (LODs). The sensitivity of each technique varied depending on the type of EC measured, type of electrochemical probe and electrode, substrates, type of nanoparticle (NP), the physicochemical parameters of water samples tested, and more. Nevertheless, this paper also focuses on some of the current challenges encountered by these alternative methods in monitoring ECs.
Collapse
Affiliation(s)
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
8
|
Nanozyme based on ZIF-8 for the colorimetric detection of sulfonamides in cow milk. Anal Biochem 2022; 652:114748. [PMID: 35618035 DOI: 10.1016/j.ab.2022.114748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
A simple and time-saving colorimetric method was developed to quantify sulfonamides (SAAs) in milk via inhibition of the human carbonic anhydrase II (hCAII)-like activity of ZIF-8 that can hydrolyze p-nitrophenyl acetate (pNPA) to p-nitrophenol (pNP), following the color change from yellow to colorless. Effects of different reaction conditions, including pH, temperature, amount of ZIF-8, and incubation time, were investigated. The value of Michaelis-Menten constant (Km) is measured to be 0.15 mM, which exhibits high affinity to pNPA. The IC50 (0.17, 0.24, and 0.60 mM) and inhibition constant (Ki) (0.09, 0.13, and 0.33 mM) of sulfamethazine (SD), sulfadimethoxine (SDM), and sulfathiazole (ST) on ZIF-8 were measured, respectively. Moreover, the activity of ZIF-8 remains more than 90.0% of its initial activity after 30 days' storage. The colorimetric method for SD, SDM, and ST determination was established at the linear ranges of 6.3-750.0 μM (1.75-208.75 mg/kg), 6.3-750.0 μM (1.96-232.75 mg/kg), and 5.0-1250.0 μM (1.28-319.15 mg/kg) with limit of detection of 4.3, 3.2, and 3.9 mΜ (1.2, 0.99, and 0.96 mg/kg), respectively. In addition, the spiked recoveries of SAAs in milk sample are in the range of 81.6%-106.7% with RSD less than 6.5%. In short, the developed colorimetric method can achieve rapid analysis of SAAs in milk with simple operations.
Collapse
|