1
|
Aydin Z, Keskinates M, Armagan E, Altinok BY, Bayrakci M. A hemicyanine-based dual-responsive fluorescent sensor for the detection of lithium and cyanide ions: application in living cells. Anal Bioanal Chem 2025; 417:3127-3139. [PMID: 40180666 PMCID: PMC12103329 DOI: 10.1007/s00216-025-05852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
A hemicyanine-based colorimetric and fluorometric sensor, 2-(2-(2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium iodide (MH-5), was developed and synthesized to detect Li+ and CN- ions in DMSO-PBS buffer solution (10 mM, pH 7.25, v/v 1:9). MH-5 displayed a rapid and highly selective colorimetric response to both Li+ and CN-, indicated by a distinct color change from pink to pale pink in the presence of Li+ and to colorless upon CN- detection, without interference from other cations or anions. The interaction mechanisms of MH-5 with Li+ and CN- ions were investigated using various analytical techniques, including 1H NMR, ESI-MS, FT-IR spectroscopy, and Job's plot analysis. These studies suggest that CN- is detected through nucleophilic addition to the indolium moiety of MH-5, while Li+ detection occurs via coordination with oxygen atoms in the crown ether structure. The fluorescence-based detection limits for Li+ and CN- were determined to be 0.150 µM and 0.154 µM, respectively. Additionally, MH-5 was evaluated in living cells, demonstrating effective cell penetration and reliable detection of Li+ and CN- ions for potential bio-imaging applications.
Collapse
Affiliation(s)
- Ziya Aydin
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Mukaddes Keskinates
- Department of Environmental Protection Technologies, Kazım Karabekir Vocational School, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Esra Armagan
- Department of Pharmacy Services, Ermenek Uysal and Hasan Kalan Health Services Vocational School, Karamanoglu Mehmetbey University, 70400, Karaman, Turkey
| | - Bahar Yilmaz Altinok
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mevlut Bayrakci
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey.
| |
Collapse
|
2
|
Ma L, Xia B, Zhang Y, Lv J, Lv Y, Zhang X. A highly sensitive fluorescent probe for the detection of Al3+ and study of its practical application. J Mol Struct 2024; 1316:138886. [DOI: 10.1016/j.molstruc.2024.138886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Liu K, Zhang H, Wang Y, Xiao W, Zhao J, Zhang X, Zhu B. Novel coumarin-based ratiometric bifunctional fluorescent probe mimicking a set-reset memorized device. Talanta 2024; 278:126478. [PMID: 38943765 DOI: 10.1016/j.talanta.2024.126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
A novel coumarin-based fluorescent sensor CHE, incorporating 2-hydrazinylbenzothiazole and coumarin aldehyde, has been developed that demonstrated a preferential detection of Hg2+ and Ag+ in presence of interferences. Compared to previously prevalent intensity-based fluorescent probes, CHE exhibited a ratiometric fluorescence response to Hg2+ and Ag+, and further accurately differentiated Hg2+ and Ag + using the differential extractive ability of EDTA when interacting with ion-CHE complexes. Sensing mechanism was investigated and elucidated. The chemosensor CHE was successfully applied to detect Hg2+ and Ag+ in six distinct samples with satisfactory results. Additionally, combinatorial logic circuits were constructed utilizing three distinct logic gates (NOT, OR, and INH) based on the sensor's differential output signals in response to Hg2+/Ag+ and other cations. Interestingly, utilizing the reversible and reproducible switching behavior of the EDTA interaction with Hg2+, a conceptual 'Write-Read-Erase-Read' memory function with multi-write capability was proposed, offering a novel perspective for molecular-based memory systems.
Collapse
Affiliation(s)
- Kai Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Han Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Yuna Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Wei Xiao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Jingyi Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Xuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
4
|
Sada PK, Bar A, Jassal AK, Kumar P, Srikrishna S, Singh AK, Kumar S, Singh L, Rai A. A Novel Rhodamine Probe Acting as Chemosensor for Selective Recognition of Cu 2+ and Hg 2+ Ions: An Experimental and First Principle Studies. J Fluoresc 2024; 34:2035-2055. [PMID: 37682499 DOI: 10.1007/s10895-023-03412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Copper and Mercury ions have vital role to play in biological world as their excess or deficiency can cause different type of diseases in human being as well as biological species including plants and animals. Therefore, their detection at trace level becomes very important in term of biological. The current studies embody the fabrication, structural characterization and recognition behavior of a novel rhodamine B hydrazone formed when hydrazide of rhodamine B was condensed with 5-Allyl-3-methoxy salicylaldehyde (RBMA). RBMA was found to be responsive towards the very trace level of Cu2+ and Hg2+ among other tested cations so far. The sensing procedure is based on the classical opening of the spiroatom ring of rhodamine. The limit of detection (LOD) and binding constant is 5.35 ppm, 2.06 × 104 M-1 and 5.16 ppm, 1.26 × 104 M-1 for Cu2+ and Hg2+ ions respectively. The probable mechanism correlates the specific binding of RBMA with Cu2+ and Hg2+ ions. The 1:1 stoichiometry of RBMA with Cu2+ and Hg2+ ions have been supported by HRMS, FT-IR data, Job's plot, and binding constant data. Reversibility is well exhibited by RBMA by the involvement of CO32- ions via demetallation process. The real time application is well demonstrated by the use of paper strip test. The DFT study also carried out which agrees well with the experimental findings. The results displayed the novelty of this current work towards the trace level analysis of the Cu2+ and Hg2+ of the cations which are play the crucial role in industry.
Collapse
Affiliation(s)
- Pawan Kumar Sada
- University Department of Chemistry, L.N. Mithila University Darbhanga, Bihar, 846008, India
| | - Amit Bar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Prabhat Kumar
- Department of Bio-Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S Srikrishna
- Department of Bio-Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Uttar Pradesh, Gorakhpur, 273009, India.
| | - Sumit Kumar
- PG Department of Chemistry, Magadh University Bodh Gaya, Bihar, India.
| | - Laxman Singh
- Department of Chemistry, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India.
| | - Abhishek Rai
- University Department of Chemistry, L.N. Mithila University Darbhanga, Bihar, 846008, India.
| |
Collapse
|
5
|
Bari S, Maity D, Mridha D, Roychowdhury T, Ghosh P, Roy P. Development of a bisphenol A based chemosensor for Al 3+ and its application in cell imaging and plant root imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5642-5651. [PMID: 39113546 DOI: 10.1039/d4ay01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Bisphenol A is a fluorophoric platform that is used to develop chemosensors for various species. Herein, we report a bisphenol A based Schiff-base molecule, 4,4'-(propane-2,2-diyl)bis(2-((E)-((2-hydroxy-5-methylphenyl)imino)methyl)phenol) (Me-H4L), as a selective chemosensor for Al3+. Among the several metal ions, it shows a significant increment in its fluorescence intensity (50 fold) at 535 nm in the presence of Al3+ ions. The enhanced fluorescence was attributed to the CHEFF mechanism and inhibition of CN isomerization. The limit of detection value of Me-H4L for Al3+ was determined to be 9.65 μM. Its quantum yield and lifetime increased considerably in the presence of the cation. Some theoretical calculations were performed to explain the interaction between Al3+ and the probe. Furthermore, Me-H4L was applied in cell imaging studies using animal cells and plant roots.
Collapse
Affiliation(s)
- Sibshankar Bari
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| | - Dinesh Maity
- Department of Chemistry, Government General Degree College, Mangalkote, Purba Bardhaman-713132, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin 12489, Germany
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
6
|
Genc HN, Guctekin Yasar O, Boran T, Karuk Elmas SN, Arslan FN, Yilmaz I, Sirit A. Selective Chromo-Fluorogenic Chemoprobe for nM Al 3+ Recognition: Experimental and Living-Cell Applications. J Fluoresc 2024:10.1007/s10895-024-03904-5. [PMID: 39158625 DOI: 10.1007/s10895-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
A rhodamine based chemoprobe BESN was engineered and employed as a selective ''OFF-ON'' chromo-fluorogenic sensor for Al3+ in H2O:MeOH (1:9, v:v). Notable changes in the absorption and emission spectra of BESN were clearly detectable upon the addition of Al3+. Sensitivity and binding mechanism studies demonstrated a good sensing performance of BESN with nanomolar detection limit (130 nM), and it was found to be highly selective towards interfering metal ions. Besides, the binding constant between BESN and Al3+ was found to be 3.19 × 103 M-1. Then, the validation study of BESN for Al3+ was performed based on significant analytical parameters and statistical tests. The binding of Al3+ with BESN (1:1) was probed via infrared, high-resolution mass and emission (Job's plot) spectroscopy measurements. The sensing performance of BESN could make it ideal chemosensor for real applications including vegetable, tuna fish and water samples, also for Smartphone and test-kit applications. The recovery values of the BESN to Al3+ were estimated within a range from 95.13% to 105.30% for water, 94.63% to 109.62% for tuna fish and 94.80% to 109.80% for vegetable samples. Additionally, the BESN has very low cytotoxicity and was triumphantly utilized for the recognition of Al3+ in living-cells.
Collapse
Affiliation(s)
- Hayriye Nevin Genc
- A. K. Faculty of Education, Department of Science Education, University of Necmettin Erbakan, 42090, Konya, Türkiye.
| | - Ozlem Guctekin Yasar
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Tugce Boran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye
| | - Sukriye Nihan Karuk Elmas
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye.
| | - Fatma Nur Arslan
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Ibrahim Yilmaz
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
- Faculty of Education, Department of Mathematics and Science Education, University of Bolu Abant İzzet Baysal, 14030, Bolu, Türkiye
| | - Abdulkadir Sirit
- A. K. Faculty of Education, Department of Chemistry, University of Necmettin Erbakan, 42090, Konya, Türkiye
| |
Collapse
|
7
|
Tamil Selvan G, Samson J, Rajasingh P, Li X, Ravi Kumar A, Zhu N, Kuldeep SA, Mosae Selvakumar P, Jun Tang P, Zhang Z. A captivating approach to elevate the detection of Al 3+ ions incorporates the utilization of a tripodal receptor intricately embellishing the surface of zinc oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124339. [PMID: 38696995 DOI: 10.1016/j.saa.2024.124339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The FDA (Food and Drug Administration, (USA)) lists ZnO as a material that is widely acknowledged to be safe. ZnO NPs with a range of tiny particle sizes were made using the precipitation process. ZnO nanoparticles' surface is embellished with a tripodal sensor containing naphthol units. The assembly with the same receptor decorated on ZnO NPs is contrasted with the cation detection capabilities of the purified tripodal receptor. The UV-visible spectrophotometric analysis was conducted to study the state transitions of the receptor and the decorated ZnO receptor. A positive selectivity to Al3+ cations is determined by the fluorescence study under ideal circumstances. The particle size and surface morphologies are determined by DLS and SEM analysis for the same receptor - TP1 and embellished with a tripodal receptor TP2. Using a fluorescence switch-on Photoinduced Electron Transfer (PET) mechanism, the receptor coated on ZnO detects the presence of Al3+ ions with specificity. The binding constant value was determined using the B-H plot equation. Binding stoichiometry for [TP1-Al3+, TP2-Al3+] showed a 1:1 ratio. The fluorescence switches ON-OFF process of the ZnO surface adorned - TP2 with Tripodal receptor- TP1 was used to create molecular logic gates, which can function as a module for sensors and molecular switches. The addition of Na2EDTA in the solution of the [TP1; TP2 - Al3+] complex resulted in a noticeable reduction in the emission of fluorescence. This finding offers compelling support for the reversibility of the chemosensor. To enable the practical application of this sensor, we have developed a cassette containing receptors TP1 and TP2. Successfully, it can detect Al3+ metal ions. We performed a comprehensive assessment of the dependability and appropriateness of our approach in measuring the concentration of Al3+ ions in wastewater produced by important industrial procedures.
Collapse
Affiliation(s)
- G Tamil Selvan
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Joel Samson
- Department of NanoScience and Technology, KITS, Coimbatore, Tamil Nadu 641114, India
| | - P Rajasingh
- Department of Chemistry, Kamarajar Government Arts College, Surandai, Tamil Nadu 627859, India
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - A Ravi Kumar
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sweety Angela Kuldeep
- Environmental Science Program, Asian University for Women, Chittagong 4000, Bangladesh
| | | | - P Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310015, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Ghosh S, Mahato S, Dutta T, Ahamed Z, Ghosh P, Roy P. Highly selective, sensitive and biocompatible rhodamine-based isomers for Al 3+ detection: A comparative study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123455. [PMID: 37813088 DOI: 10.1016/j.saa.2023.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective detection of a metal ion with high selectivity is of great importance to understand its existence and its role in many chemical and biological processes. We report here the synthesis, characterization and Al3+ sensing properties of two rhodamine-based isomers, (E)-2-((2-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-2-oxy) and (E)-2-((4-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-4-oxy). L-2-oxyand L-4-oxy show pink coloration, significant enhancement in absorbance at 530 nm and fluorescence intensity at 553 nm in the presence of Al3+ among several cations. Quantum yield and lifetime of the probes increase in the presence of Al3+. LOD values have been determined as low as ∼1.0 nM for both the isomers. DFT study suggests that the cation induces opening of spirolactam ring resulting in the changes of the rhodamine dyes. Additional reason could be Chelation Enhanced Fluorescence (CHEF) effect due to the subsequent chelation of the metal ion. Between two isomers, L-2-oxy displays better sensing ability towards Al3+ in terms of fluorescence enhancement, limit of detection, lifetime enhancement. Both the probes have been utilized in cell imaging studies using rat skeletal myoblast cell line (L6 cell line).
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Shephali Mahato
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tiasha Dutta
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Zisan Ahamed
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
9
|
Musikavanhu B, Huang Z, Ma Q, Liang Y, Xue Z, Feng L, Zhao L. A pyridine modified naphthol hydrazone Schiff base chemosensor for Al 3+ via intramolecular charge transfer process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122961. [PMID: 37290147 DOI: 10.1016/j.saa.2023.122961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
A pyridine modified naphthol hydrazone Schiff base chemosensor, NaPy, was prepared in a two-step process to detect aluminum ion (Al3+) in different samples. The probe shows a turn-off emission response towards Al3+ at a 1:1 binding stoichiometry via intramolecular charge transfer (ICT) mechanism, as validated by density functional theory (DFT) calculations and a series of spectroscopic measurements. The response time is slightly over one minute with a limit of detection (LOD) value of 0.164 µM, demonstrating the great sensitivity of the probe. It is also found that NaPy exhibits high selectivity towards Al3+ and resists interference from seventeen other cations. Application investigations in paper strips, water samples and HeLa cells suggest that NaPy can be used as an efficient probe for sensing Al3+ in real environmental samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zeping Huang
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Abstract
Mercury, a highly toxic heavy metal, poses significant environmental and health risks, necessitating the development of effective and responsive techniques for its detection. Organic chromophores, particularly small molecules, have emerged as promising materials for sensing Hg2+ ions due to their high selectivity, sensitivity, and ease of synthesis. In this review article, we provide a systematic overview of recent advancements in the field of fluorescent chemosensors for Hg2+ ions detection, including rhodamine derivatives, Schiff bases, coumarin derivatives, naphthalene derivatives, BODIPY, BOPHY, naphthalimide, pyrene, dicyanoisophorone, bromophenol, benzothiazole flavonol, carbonitrile, pyrazole, quinoline, resorufin, hemicyanine, monothiosquaraine, cyanine, pyrimidine, peptide, and quantum/carbon dots probes. We discuss their detection capabilities, sensing mechanisms, limits of detection, as well as the strategies and approaches employed in their design. By focusing on recent studies conducted between 2022 and 2023, this review article offers valuable insights into the performance and advancements in the field of fluorescent chemosensors for Hg2+ ions detection.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College Dehradun, Uttarakhand, India
| |
Collapse
|
11
|
Sada PK, Bar A, Jassal AK, Singh AK, Singh L, Rai A. A dual channel rhodamine appended smart probe for selective recognition of Cu 2+ and Hg 2+ via "turn on" optical readout. Anal Chim Acta 2023; 1263:341299. [PMID: 37225341 DOI: 10.1016/j.aca.2023.341299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
A new rhodamine-6G hydrazone RHMA has been synthesized using rhodamine-6G hydrazide and 5-Allyl-3-methoxysalicylaldehyde. RHMA has been fully characterized with different spectroscopic methods and single crystal XRD. RHMA can selectively recognize Cu2+ and Hg2+ in aqueous media amongst other common competitive metal ions. A significant change in absorbance was observed with Cu2+ and Hg2+ ions with emergence of a new peak at λmax 524 nm and 531 nm respectively. Hg2+ ions lead to "turn-on" fluorescence enhancement at λmax 555 nm. This event of absorbance and fluorescence marks the opening of spirolactum ring causing visual color change from colorless to magenta and light pink.RHMA-Cu2+ and RHMA- Hg2+complexes are found to be reversible in presence of EDTA2-ions. RHMA has real application in form of test strip. Additionally, the probe exhibits turn-on readout-based sequential logic gate-based monitoring of Cu2+ and Hg2+ at ppm levels, which may be able to address real-world challenges through simple synthesis, quick recovery, response in water, "by-eye" detection, reversible response, great selectivity, and a variety of output for accurate investigation.
Collapse
Affiliation(s)
- Pawan Kumar Sada
- University Department of Chemistry, L.N. Mithila University Darbhanga, 846008, Bihar, India
| | - Amit Bar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Laxman Singh
- Department of Chemistry, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India.
| | - Abhishek Rai
- University Department of Chemistry, L.N. Mithila University Darbhanga, 846008, Bihar, India.
| |
Collapse
|
12
|
Erdemir S, Oguz M, Malkondu S. Cu 2+-assisted sensing of fungicide Thiram in food, soil, and plant samples and the ratiometric detection of Hg 2+ in living cells by a low cytotoxic and red emissive fluorescent sensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131278. [PMID: 37004440 DOI: 10.1016/j.jhazmat.2023.131278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Metal ions and pesticides are extensively used in many industries and agriculture. However, they cause significant environmental pollution and various adverse health effects. Therefore, the development of sensitive and selective techniques to detect them is necessary for human health and the ecosystem. In this paper, we report a novel red-emitting fluorescence probe with a large Stokes shift (∼220 nm) based on rhodamine and isophorone units. The probe shows a ratiometric fluorescence response toward Hg2+ ions; however, Cu2+ ions quench the red fluorescence signal. The decomposition of the probe-Cu2+ complex allows detection of Thiram followed by recovery of the red fluorescence signal of the probe. In addition, the probe shows a good linear response to Hg2+, Cu2+, and Thiram, with detection limits of 122.0 nM, 29.0 nM, and 72.0 nM, respectively. The practical applicability of the probe has been successfully tested in real samples. Moreover, smartphone detection and light-responsive capsule fabrication have been established, for easy and quick detection. The probe possesses very low cytotoxicity and allows visualization of Hg2+ and Cu2+ ions in HeLa cells. Therefore, the present probe is expected to be an effective tool assisting in easy, quick, and reliable detection of Thiram, Hg2+, and Cu2+ ions.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
13
|
Bari S, Maity D, Dutta T, Biswas K, Roy P. Modulation of aluminum sensing properties of a sulphone group containing chemosensor and its biological applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122981. [PMID: 37321137 DOI: 10.1016/j.saa.2023.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
A chemosensor with two binding pockets facilitates binding of one metal ion in either of the pockets providing a better chance for the interaction and hence recognition of the cation. We report here a chemosensor, namely 2,2'-(1E)-(5,5'-sulfonylbis(2-hydroxy-5,1-phenylene))bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (H4L-naph), for selective sensing of Al3+ in DMF- HEPES buffer (1:4, v/v, pH 7.4). It shows almost 100-fold fluorescence enhancement at 532 nm (λex = 482 nm) in the presence of Al3+. Its quantum yield and excited state lifetime enhances significantly with the cations. H4L-naph forms a 1:2 complex with Al3+ with an association constant value of 2.18 × 104 M-2. Fluorescence enhancement may be attributed to CHEFF mechanism and restriction of >CN isomerization. Effect of the presence of naphthyl rings instead phenyl ring of a previously reported probe has resulted shifting of excitation/emission peak towards longer wavelength. The probe has been applied to image Al3+ in L6 cells with no significant cytotoxicity.
Collapse
Affiliation(s)
- Sibshankar Bari
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India; Department of Chemistry, Government General Degree College, Mangalkote, Purba Bardhaman, West Bengal 713132, India
| | - Tiasha Dutta
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Koyel Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
14
|
Zhang CL, Liu C, Nie SR, Li XL, Wang YM, Zhang Y, Guo JH, Sun YD. Two novel fluorescent probes based on quinolinone for continuous recognition of Al 3+ and ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122917. [PMID: 37269662 DOI: 10.1016/j.saa.2023.122917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
On the basis of classical Schiff base reaction, two novel and efficient fluorescent probes (DQNS, DQNS1) were designed and synthesized by introducing Schiff base structure into dis-quinolinone unit for structural modification, which can be used to detect Al3+ and ClO-. Because the power supply capacity of H is weaker than that of methoxy, DQNS shows better optical performance: a large Stokes Shift (132 nm), identify Al3+ and ClO- with high sensitivity and selectivity, low detection limit (29.8 nM and 25 nM) and fast response time (10 min and 10 s). Through the working curve and NMR titration experiment, the recognition mechanism of Al3+ and ClO- (PET and ICT) probes are confirmed. Meanwhile, it is speculated that the probe has continuity for the detection of Al3+ and ClO-. Furthermore, DQNS detection of Al3+ and ClO- was applied to real water samples and living cell imaging.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Shi-Ru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Xiang-Ling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Ming Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jing-Hao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue-Dong Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
15
|
Bis naphthalene derived dual functional chemosensor: Specific signalling for Al3+ and Fe3+ ions with on-the-spot detection, bio-imaging, and logic gate applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Design, synthesis, experimental investigations, theoretical corroborations, and distinct applications of a futuristic fluorescence chemosensor for the unveiling of Zn2+ ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Abdollahi-Moghadam M, Keypour H, Azadbakht R, Koolivand M. An experimental and theoretical study of a new sensitive and selective Al3+ Schiff base fluorescent chemosensor bearing a homopiperazine moiety. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
A novel multi-purpose convenient Al3+ ion fluorescent probe based on phenolphthalein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Ghosh S, Roy P. A rhodamine based chemodosimeter for the detection of Group 13 metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:17-26. [PMID: 36472156 DOI: 10.1039/d2ay01701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new rhodamine derivative, HL-CIN, derived from a reaction between N-(rhodamine-6G)lactam-ethylenediamine (L1) and trans-cinnamaldehyde, is reported here for the colorimetric and fluorogenic sensing of Group 13 trivalent cations, namely Al3+, Ga3+, In3+ and Tl3+. The absorption intensity of the probe increases significantly at 530 nm whereas the fluorescence intensity enhances massively at 558 nm upon interaction with these metal ions. Other relevant metal ions could not impart any noticeable color change or fluorescence enhancement. The quantum yield or fluorescence life time of HL-CIN increases considerably in the presence of these Group 13 metal ions. Different spectral studies such as ESI-mass, FT-IR, 1H and 13C NMR spectra, establish that HL-CIN undergoes hydrolysis in the presence of the trivalent cations and a rhodamine species in its ring opened form (i.e. N-(2-aminoethyl)-2-((6Z)-3-(ethylamino)-6-(ethylimino)-2,7-dimethyl-6H-xanthen-9-yl)benzamide, (L2)) along with cinnamaldehyde are produced. The rhodamine species in its ring opened form (L2) is responsible for the color change and strong increment in the absorbance and fluorescence of HL-CIN with Group 13 cations. Interaction between L1 and these metal ions could not produce the same outcome. It has been used in test paper strips and to detect these cations in real samples.
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
20
|
Mandal J, Pal K, Ghosh Chowdhury S, Karmakar P, Panja A, Banerjee S, Saha A. Two rhodamine-azo based fluorescent probes for recognition of trivalent metal ions: crystal structure elucidation and biological applications. Dalton Trans 2022; 51:15555-15570. [PMID: 36168977 DOI: 10.1039/d2dt00399f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two rhodamine and azo based chemosensors (HL1 = (3',6'-bis(ethylamino)-2-((2-hydroxy-3-methoxy-5-(phenyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) and HL2 = (3',6'-bis(ethylamino)-2-(((2-hydroxy-3-methoxy-5-(p-tolyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) have been synthesized for colorimetric and fluorometric detection of three trivalent metal ions, Al3+, Cr3+ and Fe3+. The chemosensors have been thoroughly characterized by different spectroscopic techniques and X-ray crystallography. They are non-fluorescent due to the presence of a spirolactam ring. The trivalent metal ions initiate an opening of the spirolactam ring when excited at 490 nm in Britton-Robinson buffer solution (H2O/MeOH 1 : 9 v/v; pH 7.4). The opening of the spirolactam ring increases conjugation within the probe, which is supported by an intense fluorescent pinkish-yellow colouration and an enhancement of the fluorescence intensity of the chemosensors by ∼400 times in the presence of Al3+ and Cr3+ ions and by ∼100 times in the presence of Fe3+ ions. Such a type of enormous fluorescence enhancement is rarely observed in other chemosensors for the detection of trivalent metal ions. A 2 : 1 binding stoichiometry of the probes with the respective ions has been confirmed by Job's plot analysis. Elucidation of the crystal structures of the Al3+ bound chemosensors (1 and 4) also justifies the 2 : 1 binding stoichiometry and the presence of an open spirolactam ring within the chemosensor framework. The limit of detection (LOD) values for both the chemosensors towards the respective metal ions are in the order of ∼10-9 M which supports their application in the biological field. The biocompatibility of the ligands has been studied with the help of the MTT assay. The results show that no significant toxicity was observed up to 100 μM of chemosensor concentration. The capability of our synthesized chemosensors to detect intracellular Al3+, Cr3+ and Fe3+ ions in the cervical cancer cell line HeLa was evaluated with the aid of fluorescence imaging.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India
| | - Snehasis Banerjee
- Department of Higher Education, University Branch, Bikash Bhavan, Salt Lake, Sector-3, Kolkata, 700091, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
21
|
Gul Z, Khan S, Khan E. Organic Molecules Containing N, S and O Heteroatoms as Sensors for the Detection of Hg(II) Ion; Coordination and Efficiency toward Detection. Crit Rev Anal Chem 2022; 54:1525-1546. [PMID: 36122189 DOI: 10.1080/10408347.2022.2121600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rapid detection of potentially toxic heavy metals like Hg(II) has attracted great attention in the last few decades due to the importance to maintain a safe and sustainable environment for human beings. Coordination chemistry and concepts therein, play an important role in the detection of Hg(II). Size, charge, and nature of the donor atom and the respective cation (metal ion), are crucial in selective interactions between the sensor and metal ions. The sensors designed for the purpose, coordinate to Hg(II) ion through various donor sites, coordination causes a change in the electron density in organic molecules and results in either visible color change or enhancing/quenching fluorescence intensity. Since Hg(II) is soft metal, with d10 electron system, so majority of the sensors have soft donor sites which prefer to coordinate with Hg(II). Oxygen is also present in some chelating ligands which is least preferred coordination site, due to its hard nature. There are several reports of replacing other ligating sites by sulfur for enhanced mercury sensing. In some cases, desulfurization is being detected as clear change in spectral behavior during the sensing process. Efforts are still in progress to design and introduce a sensor with utmost sensitivity and selectivity. In this review, we made an attempt to explain the coordination aspects of Hg(II) detectors, reasons for poor efficiency and possible suggestions to improve the selection criterion of various compounds. It will help researchers to know about important concepts in designing more sensitive and selective sensors for detection of Hg(II) in environmental and biological samples.
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Zallaq 32038, Kingdom of Bahrain
| |
Collapse
|
22
|
Choe D, Kim C. A recyclable diacylhydrazone-based turn-on fluorescent chemosensor for detecting Al3+ and its practical applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|