1
|
Hosny NM, Frontera A, Obaydo RH, Ali MFB. Advancing green and white assessment: DFT-assisted spectrofluorimetry for accurate favipiravir quantification in human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:125983. [PMID: 40088839 DOI: 10.1016/j.saa.2025.125983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Recently, the recognition of computational chemistry potential is growing, because of its applicability for design of substances and studying their properties using computer programs and modelling approaches that help solve various problems. Computational chemistry is involved in the design of advanced fluorescent probes which can be employed in sensing of various analytes. Favipiravir (FVR) is an antiviral drug recommended for the treatment of COVID-19, known for its broad-spectrum activity against RNA viruses by inhibiting viral RNA-dependent RNA polymerase. This study introduces the first-ever integration of computational density functional theory (DFT) and experimental spectrofluorimetric approach to design a highly sensitive spectrofluorimetric method for estimation of FVR in its bulk form and human plasma. The DFT analysis was carried out to investigate the affinity of Zirconium (Zr4+) to FVR in aqueous solution and explore the formation of FVR-Zr4+ chelate. The combuted formation energy (ΔG = -416.5 kcal/mol) of [Zr (FVR)4]4+ complex confirmed the strong of ability of Zr4+ to recognize FVR in solution and evidenced the strong nature of the Zr4+- O and N coordination bonds. The results revealed a significant enhancement in the weak native fluorescence of FVR upon formation of the complex. Various experimental parameters were examined, further the established method was validated according to ICH standards where linearity range was achieved in the range of 0.50-200.0 ng mL-1, with low detection limit reached 32.99 pg mL-1. The developed DFT-assisted spectrofluorimetric methodology was successfully employed for FVR assessment in human plasma samples with good recoveries (98.74 -100.10 %) and relative standard deviation did not exceed 1.80 %. Moreover, the proposed method's eco-friendliness and sustainability were evaluated through four metrics (Red/Green/Blue 12 Algorithm (RGB12), Green Solvent Selection Tool (GSST), Analytical Greenness Metric (AGREE), and Analytical Greenness Metric for Sample Preparation (AGREEprep)), demonstrating its superiority over the existing methods in terms of using safer solvents, reduced sample preparation procedures, and higher overall greenness. Additionally, the high sensitivity and applicability of the proposed method to the reliable analysis of both bulk drug and plasma samples make it efficient and practical for routine FVR analysis in both pharmaceutical and clinical settings. Furthermore, this study opens new avenues for extending computational and experimental approaches to analyze FVR in real samples and explore other drug-metal interactions, contributing to advancements in drug analysis and mechanistic studies.
Collapse
Affiliation(s)
- Noha M Hosny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Reem H Obaydo
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Ebla Private University, Idlib, Syria.
| | - Marwa F B Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
El-Adl SM, El-Shanawani AA, Madbouly EA, Abdelkhalek AS. Green synchronous spectrofluorimetric analysis of remdesivir, the first approved antiviral, with levodropropizine as add-on therapy for covid-19: application in their pharmaceutical dosage form, and spiked human plasma. BMC Chem 2025; 19:115. [PMID: 40317008 PMCID: PMC12048920 DOI: 10.1186/s13065-025-01480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/07/2025] [Indexed: 05/04/2025] Open
Abstract
It was the first time that a spectrofluorimetric approach for the simultaneous analysis of remdesivir and levodropropizine had been achieved. This study aims to propose an accurate and sensitive second-derivative synchronous spectrofluorimetric approach for measurement of remdesivir and levodropropizine in different matrices simultaneously without the need for prior separation. The proposed approach measured the synchronous fluorescence intensity of pharmaceuticals under research at a constant wavelength difference (Δλ) = 130 nm. For the quantitative analysis of remdesivir and levodropropizine, the peak amplitudes of the second derivative were measured at 390 and 399 nm, respectively. The procedure was completely validated and demonstrated outstanding linearity in the concentration ranges of 5-150 ng mL- 1 and 10-600 ng mL- 1 for remdesivir and levodropropizine, respectively. The new method was used to quantitatively analyze both drugs in their pharmaceutical dosage form, synthetically formulated mixture and spiked human plasma. A statistical comparison of the results with other published analytical techniques revealed no significant difference. The validation of the procedure was successfully completed in compliance with ICH guidelines. In terms of greenness, EcoScale and GAPI greenness tools were used to evaluate the analytical methodology.
Collapse
Affiliation(s)
- Sobhy M El-Adl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman A Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
El-Kafrawy DS, Abo-Gharam AH. Comparative study of Normal-phase versus reversed-phase HPTLC methods for the concurrent quantification of three antiviral agents against COVID19: Remdesivir, favipiravir and Molnupiravir: trichromatic sustainability assessment. BMC Chem 2025; 19:83. [PMID: 40155944 PMCID: PMC11954355 DOI: 10.1186/s13065-025-01439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
The pursuit of sustainability in analytical chemistry is a multifaceted, challenging and complex endeavor. This requires continuous and competitive attempts to achieve the sustainable development goals at every step of the analytical methodology by adhering to the principles of green, blue and white analytical chemistry. This also involves assessment of the degree of sustainability using the latest evaluation metrics until finally reaching the design of a trichromatic procedure. The herein illustrated work represents a comparative study between two newly developed normal-phase and reverse-phase HPTLC methods for the simultaneous quantitative determination of Remdesivir (RMD), Favipiravir (FAV) and Molnupiravir (MOL). For normal-phase HPTLC method, the employed mobile phase consisted of ethyl acetate: ethanol: water (9.4:0.4:0.25, v/v), while, for reverse-phase HPTLC procedure, a greener mobile phase was employed consisting of ethanol: water (6:4, v/v). For both methods, detection wavelength of RMD and MOL was 244 nm while FAV was detected at 325 nm. Both methods were validated following the International Council for Harmonisation (ICH) guidelines with respect to linearity, range, accuracy, precision and robustness. The two established methods were proved to be linear over the range of 50-2000 ng/band for FAV and MOL and over the range of 30-800 ng/band for RMD. The excellent linearities were proved by the high values of correlation coefficients not less than 0.99988. The developed methods were successfully applied for the determination of the three drugs in their bulk form and in their pharmaceutical formulations. Furthermore, a thorough comparative and integrative trichromatic evaluation of sustainability of the designed methods was performed. The Analytical Eco-Scale, the novel Modified Green Analytical Procedure Index (MoGAPI) (2024) and the Analytical GREEnness (AGREE) metrics were applied for greenness assessment and the recent Blue Applicability Grade Index (BAGI) (2023) tool was employed for blueness evaluation. Finally, the RGB12 model was implemented for appraisal of whiteness of the developed methods.
Collapse
Affiliation(s)
- Dina Salah El-Kafrawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Elmessalah, Alexandria, 21521, Egypt.
| | - Amira H Abo-Gharam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Elmessalah, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Mohamed AR, Sayed RA, Shalaby A, Ibrahim H. QbD-steered HPTLC approach for concurrent estimation of six co-administered COVID-19 and cardiovascular drugs in different matrices: greenness appraisal. Sci Rep 2025; 15:6252. [PMID: 39979403 PMCID: PMC11842590 DOI: 10.1038/s41598-024-83692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025] Open
Abstract
Many COVID-19 sufferers have a history of cardiovascular illnesses, which makes them more likely to develop severe COVID-19. Such patients were advised by experts to prioritize drug therapies based on their doctor's commendations to avoid exacerbating their basic illnesses. Therefore, developing an analytical methodology for the concurrent estimation of medications prescribed for co-treating cardiovascular and COVID-19 illnesses is becoming critical in both bioavailability hubs and QC units. Herein, an inventive, rapid, and affordable HPTLC approach was developed, and its conditions were optimized employing the full factorial design approach for the concurrent estimation of aspirin, atorvastatin, atenolol, losartan, remdesivir, and favipiravir as co-administered medications, either with salicylic acid or not. Using the desirability function, the experimental design approach could forecast the best eluent system for optimal resolution results. On HPTLC-silica plates, the above-mentioned medications were separated utilizing an eluent system of ethyl acetate, methylene chloride, methanol, and ammonia (6:4:4:1 by volume), and their spots were detected at 232 nm. The proposed methodology was evaluated following ICH prerequisites and applied successfully to the medications' dosage forms, human plasma, and buffered dissolution media with superb recovery proportions and no intrusiveness from formulations' additives or plasma matrices. Five metrics were employed to appraise the suggested technique's greenness: AGREE, eco-scale, Raynie and Driver, GAPI, and NEMI. The sensitivity, large sample capacity, and short run duration (15 min) of the proposed methodology confirm its appositeness for regular estimation of the above-mentioned medications.
Collapse
Affiliation(s)
- Ahmed R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Rania A Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abdalla Shalaby
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hany Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
5
|
Madbouly EA, El-Shanawani AA, El-Adl SM, Abdelkhalek AS. Ecofriendly spectrophotometric methods for simultaneous determination of remdesivir and moxifloxacin hydrochloride as co administered drugs in corona virus treatment. Sci Rep 2025; 15:1721. [PMID: 39799132 PMCID: PMC11724870 DOI: 10.1038/s41598-024-83049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Remdesivir and moxifloxacin hydrochloride are among the most frequently co-administered drugs used for COVID-19 treatment. The current work aims to evaluate green spectrophotometric methodologies for estimating remdesivir and moxifloxacin hydrochloride in different matrices for the first time. The proposed approaches were absorbance subtraction, extended ratio subtraction and amplitude modulation methods. In order to determine the absorbance of the investigated medications in combination at the isoabsorptive point, the pure moxifloxacin hydrochloride absorbance factor is applied using the absorbance subtraction method, which modifies the zero absorption spectra of the drugs under investigation at the isoabsorptive point (229 nm). The spectrum of moxifloxacin hydrochloride is more extended in the plateau area between 340 and 400 nm, where remdesivir exhibits no absorption. So, also, the ratio spectra were successfully manipulated for quantification of the two drugs. Regarding the pharmacokinetic profile of remdesivir (Cmax 4420 ng/mL) and moxifloxacin hydrochloride (Cmax 3.56 µg/mL), the proposed methods were effectively used to spectrophotometrically determine remdesivir and moxifloxacin hydrochloride in plasma matrix. The new approach was validated using the ICH guidelines for specificity, linearity, precision, and accuracy. The greenness of the reported methodologies was evaluated using two metrics: the analytical eco-scale and the green analytical procedure index.
Collapse
Affiliation(s)
- Eman A Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sobhy M El-Adl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Ahmed AB, Abdelrahman MM, Edrees FH. Eco-sustainable chromatographic method for the determination of favipiravir and nitazoxanide for COVID-19: application to human plasma. BMC Chem 2025; 19:11. [PMID: 39789629 PMCID: PMC11714856 DOI: 10.1186/s13065-024-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression. Recently, favipiravir (FAV) has received FDA approval as safe and effective antiviral medication for COVID-19 management. Nitazoxanide (NTZ) also possesses antiviral and immunomodulating activities. Moreover, FAV and NTZ in combination are clinically used in COVID-19 treatment with reported safety, synergistic antiviral and immunomodulating effects. Despite the availability of various clinical studies on both FAV and NTZ, no existing analytical application for the simultaneous estimation of FAV and NTZ exists. As a result, the current work goal is to establish a green HPLC method for their analysis and implementation to human plasma. The developed method utilizes isocratic elution with 0.1% aqueous formic acid: ethanol (55:45, v/v) and dantrolene as internal standard. The bioanalytical validation parameters passed the FDA acceptance criteria. NEMI, eco scale, AGREE and ComplexGAPI approaches were used for qualitative and quantitative evaluation of the method's greenness.
Collapse
Affiliation(s)
- Amal B Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Sharq El-Nile, Beni-Suef, 62511, Egypt.
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62514, Egypt
| | - Fadwa H Edrees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University (NVU), El Fayoum, 63518, Egypt
| |
Collapse
|
7
|
Abdelfatah RM, Abdelmomen EH, Abdelaleem EA, Abdelmoety RH, Emam AA. A newly developed high-performance thin layer chromatographic method for determination of remdesivir, favipiravir and dexamethasone, in spiked human plasma: comparison with the published methods. BMC Chem 2025; 19:7. [PMID: 39773302 PMCID: PMC11705924 DOI: 10.1186/s13065-024-01366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Co-administration of COVID-19 RNA polymerase inhibitors, remdesivir and favipiravir, has synergistic benefits. Together they reduce viral load and inflammation more effectively than either drug used alone. Corticosteroids like dexamethasone are used alongside antivirals in multidrug combination regimens. A new HPTLC method was utilized to isolate and quantitatively determine the three medicines of the COVID-19 therapeutic protocol, remdesivir, favipiravir and dexamethasone, using the anticoagulant apixaban as an internal standard in human plasma. The mobile phase system used a solvent mixture of ethyl acetate, hexane, and acetic acid (9:1:0.3, by volume). At 254 nm, well-resolved spots with Rf values of 0.3 for remdesivir, 0.64 for dexamethasone, and 0.77 for favipiravir have been observed. To ensure compliance with FDA regulations, a validation study was conducted. Quantitation limits as low as 0.1 µg/band have been achieved with remdesivir and dexamethasone, and 0.2 µg/band with favipiravir, demonstrating excellent sensitivities. From 97.07% to 102.77%, the drugs were recovered from human plasma that had been artificially spiked. The whiteness of the method has been assessed using RGB 12 algorithm and a percentage of whiteness of 95.6% has been obtained.
Collapse
Affiliation(s)
- Rehab M Abdelfatah
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Esraa H Abdelmomen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University, Faiyum, Egypt
| | - Eglal A Abdelaleem
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Refaat H Abdelmoety
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Aml A Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Aboelghar SM, Hegazy MA, Wagdy HA. Eco-Friendly Synchronous Spectrofluorimetric Method for Simultaneous Determination of Remdesivir and Acetyl Salicylic Acid in Spiked Human Plasma. J Fluoresc 2024:10.1007/s10895-024-03851-1. [PMID: 39150458 DOI: 10.1007/s10895-024-03851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Remdesivir and acetyl salicylic acid are often co-administered medications in the treatment of COVID-19, specifically targeting the viral infection and thromboembolism associated with the condition. Hence, it is essential to establish a technique that enables the concurrent quantification of these pharmaceutical compounds in plasma while also keeping environmentally friendly methods. Accordingly, the aim of this work is to simultaneously determine remdesivir and acetyl salicylic acid through a bioanalytical validated synchronous spectrofluorimetric method with applying principles of green chemistry. Since, the two drugs showed severe overlap after excitation at 242.0 nm, 284.0 nm for remdesivir and acetyl salicylic acid, respectively. The overlap was effectively overcome by using synchronous mode with a wavelength difference (Δλ) of 160.0 nm for remdesivir and 100.0 nm for acetyl salicylic acid. Different parameters have been optimized such as Δλ, solvent, pH and surfactant. A linear calibration was obtained over the concentration range 0.01-4.00 µg/mL for remdesivir and 0.01-3.00 µg/mL for acetyl salicylic acid and the method was precise and accurate. The method was successfully used for the investigation of pharmaceutical formulation and the quantification of the maximum plasma concentration (Cmax) of the two drugs. The method has been evaluated as an excellent green analytical method based on three greenness assessment tools.
Collapse
Affiliation(s)
- Sohair M Aboelghar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, P.O. Box 43, El-Sherouk City, Cairo, 11837, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini Street, Cairo, 11562, Egypt.
| | - Hebatallah A Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, P.O. Box 43, El-Sherouk City, Cairo, 11837, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Mostafa A. Insights into the sustainability of liquid chromatographic methods for favipiravir bioanalysis: a comparative study. RSC Adv 2024; 14:19658-19679. [PMID: 38899032 PMCID: PMC11185049 DOI: 10.1039/d4ra03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The introduction of favipiravir as a broad-spectrum antiviral agent, particularly in treating influenza and exploring its potential against COVID-19, emphasizes the necessity for efficient analytical methods. Liquid chromatography has emerged as a commonly utilized technique for quantifying favipiravir in biological fluids. However, the environmental and health concerns linked to classical analytical methods mean a transition toward green analytical chemistry is required. This study investigates the environmental impact of 19 liquid chromatographic methods utilized in the bioanalysis of favipiravir. Recognizing the importance of eco-friendly practices in pharmaceutical analysis, the study employs three widely accepted greenness assessment tools: Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), and Analytical Greenness Calculator (AGREE). Moreover, it incorporates a comprehensive evaluation on a global scale utilizing the whiteness assessment tool Red-Green-Blue 12 (RGB 12). The comprehensive evaluation aims to extend beyond traditional validation criteria and considerations of green chemistry, providing insights into the development of practically efficient, eco-friendly and economical analytical methods for favipiravir determination. This study emphasizes the necessity of planning for the environmental impact and overall sustainability of analytical methods before laboratory trials. Additionally, the integration of greenness/whiteness evaluation in method validation protocols is strongly advocated, emphasizing the importance of critical and global evaluations in analytical chemistry.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Eastern Province Saudi Arabia (+966) 56 262 3776
| |
Collapse
|
10
|
Doğan K, Ünal Taş D, Persil Çetinkol Ö, Forough M. Fluorometric and colorimetric platforms for rapid and sensitive hydroxychloroquine detection in aqueous samples. Talanta 2024; 270:125523. [PMID: 38101033 DOI: 10.1016/j.talanta.2023.125523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The detection of pharmaceuticals has been an active area of research with numerous application areas ranging from therapeutic and environmental monitoring to pharmaceutical manufacturing and diagnostics. And, the emergence of COVID-19 pandemic has increased the demand for detection of certain active pharmaceutical ingredients such as Hydroxychloroquine (HCQ) mainly due to their increased manufacturing and usage. In this study, we present two optical, fluorometric and colorimetric, detection platforms for the rapid and sensitive detection of HCQ. These platforms take advantage of the interactions between the highly fluorescent dye Thioflavin T (ThT) and Tel24 G-quadruplex (G4) DNA structure, as well as the salt-induced aggregation behavior of negatively charged citrate-capped silver nanoparticles (Cit-AgNPs) in the presence of HCQ. In the fluorometric method, the addition of HCQ led to a significant and rapid decrease in the fluorescence signal of the ThT + Tel24 probe. In the colorimetric method, HCQ induced the aggregation of Cit-AgNPs in the presence of NaCl, resulting in a noticeable color change from yellowish-gray to colorless. Under the optimized conditions, the colorimetric platform exhibited a linear range of 18.0-240.0 nM and a detection limit of 9.2 nM, while the fluorometric platform showed a linear range of 0.24-5.17 μM and a detection limit of 120 nM. The selectivity of the proposed optical methods towards the target analyte was demonstrated by evaluating the response to other structurally similar small molecules. Finally, the practical applicability of both detection systems was confirmed by analyzing HCQ-spiked human urine samples that yielded average recoveries ranging from 75.4 to 110.2 % for the fluorometric platform and 86.9-98.2 % for the colorimetric platform. These results indicate the potential of the developed methods for HCQ detection in complex matrices.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Dilek Ünal Taş
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
11
|
Alaqel SL, Alzahrani MS, Alharbi A, Almalki AH, Algarni MA, Abdelazim MH, Abdelazim AH. Exploring the role of copper and zinc in chronic otitis media: A novel spectrofluorometric method for precise determination and association study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123534. [PMID: 37883893 DOI: 10.1016/j.saa.2023.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Chronic otitis media is a common condition characterized by fluid accumulation in the middle ear, leading to a perforated eardrum and persistent middle ear drainage. Despite its impact on global health, the role of heavy metals, particularly copper and zinc, in its development and progression remains understudied. Herein, a spectrofluorometric method was developed for the precise determination of copper and zinc in human plasma samples and investigate their association with chronic otitis media. The method involves the use of the fluorescent probe 6,7-dihydroxy-4-phenylcoumarin to selectively quantify copper through fluorescence quenching and zinc through fluorescence enhancement with a remarked bathochromic shift. The method was validated and exhibited good linearity over a concentration range of 100-3000 ng/mL for copper and 200-5000 ng/mL for zinc. Application of the method to healthy volunteers and patients with chronic otitis media revealed significantly decreased copper and zinc levels in patients with chronic otitis media compared to the healthy individuals. These findings shed light on the involvement of copper and zinc in the pathogenesis of chronic otitis media and open avenues for additional treatment approaches.
Collapse
Affiliation(s)
- Saleh L Alaqel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Adnan Alharbi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed H Abdelazim
- Department of Otolaryngology, Faculty of Medicine, Al-Azhar University, 34518 Damietta, Egypt
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| |
Collapse
|
12
|
Elizalde V, Mirazo S, Romero AH, Alvarez G. In vitro antiviral activity of favipiravir and its 6- and 3-O-substituted derivatives against coronavirus: Acetylation leads to improvement of antiviral activity. Arch Pharm (Weinheim) 2024; 357:e2300494. [PMID: 37853660 DOI: 10.1002/ardp.202300494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Favipiravir is currently approved for the treatment of the influenza virus and has shown encouraging results in terms of antiviral capacity in clinical studies against severe acute respiratory syndrome coronavirus 2. Favipiravir is a prodrug, where its favipiravir-ribofuranosyl-5B-triphosphate metabolite is capable of blocking RNA replication of the virus. However, the antiviral efficiency of favipiravir is limited by two factors: (i) low accumulation in plasma and rapid excretion/elimination post-administration and (ii) low conversion rate into the active metabolite. To tackle these problems, herein, we have designed new favipiravir analogues focusing on the replacement of the fluorine atom at the 6-position by halogen or hydrogen atoms and 3-O-functionalization with labile groups. The first type of functionalization seeks to increase the antiviral activity because of the better ability of the keto-tautomer as a function of the halogen, and it is hypothesized that the keto-tautomer tends to promote the formation of the ribofuranosyl-5B-triphosphate (RTP) metabolite. Meanwhile, the second type of functionalization seeks to promote lipophilicity and increase accumulation in cells. From the in vitro antiviral activity against two coronavirus models (bovine and human 229E), it was identified that the replacement did not improve the antiviral activity against both the models, which seems to be attributable to the low water solubility of these new 6-functionalized analogues. Meanwhile, with 3-O-functionalization, acetylation provided the most active compounds with higher half-maximal inhibitory concentration and selectivity than favipiravir, whereas benzylation/methanosulfonation yielded the least active compounds. In summary, acetylation is found to be a convenient functionalization to enhance the antiviral profile of favipiravir.
Collapse
Affiliation(s)
- Valeria Elizalde
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Mirazo
- Depertamento de Bacteriología y Virología. Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Guzman Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
13
|
Alaqel SL, Abdullah O, Alharbi A, Althobaiti YS, Alturki MS, Ramzy S, Almrasy AA, Almalki AH. Application of a nucleophilic substitution reaction for spectrofluorimetric determination of aripiprazole in pharmaceutical dosage form and plasma matrix; greenness assessment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123238. [PMID: 37562210 DOI: 10.1016/j.saa.2023.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Aripiprazole is an antipsychotic medicine used to treat a variety of mental disorders, including irritability linked with autism disorder in children. Herein, a green and highly sensitive spectrofluorimetric method was developed for the determination of aripiprazole in pharmaceutical dosage form and plasma matrix. The method based on the formation of a fluorescent adduct from the nucleophilic substitution reaction of 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-chloride) with aripiprazole, which can be detected at 542 nm following excitation at 481 nm. Factors that affect the development and fluorescence sensitivity of the reaction product were investigated and optimized. The reaction yielded the most optimal fluorescence responses when it was performed using 1.5 mL of 0.2 % w/v NBD-chloride, 1.5 mL of borate buffer pH 9, heating at 80 °C for 20 min, and ethanol as a diluting solvent. The method was validated as per ICH guidelines for analytical and bioanalytical procedures. Good linearity was established between the fluorescence responses of the reaction product and aripiprazole concentrations in the range of 100-1200 ng/mL with adequate accuracy and precision results. The applied method was very sensitive and selectively determined aripiprazole in pharmaceutical and plasma matrices with no interferences. Furthermore, the compliance of the proposed method with the principles of green analytical chemistry was evaluated in comparison with the reported method using analytical eco-scale and AGREE metrics. The outputs proved that the proposed method complied more with the principles of green analytical chemistry than the reported method.
Collapse
Affiliation(s)
- Saleh L Alaqel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan Alharbi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Yusuf S Althobaiti
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmacology and Toxicology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mansour S Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 34212 Dammam, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
14
|
Taha AM, Hassan WS, Elmasry MS, Sayed RA. A validated eco-friendly HPLC-FLD for analysis of the first approved antiviral remdesivir with other potential add-on therapies for COVID-19 in human plasma and pharmaceuticals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6666-6678. [PMID: 38031474 DOI: 10.1039/d3ay01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
It is crucial to have a reliable and sensitive method for separating common drugs used in SARS-CoV-2 pneumonia treatment protocols for ongoing treatment and upcoming investigations. This study presents an HPLC-FLD approach to analyze three co-administered medicines - remdesivir (RDV), hydroxychloroquine sulphate (HCQ), and levofloxacin hemihydrate (LVX) - in their pure forms, pharmaceutical preparations, and spiked human plasma. The HPLC-FLD analysis was conducted using a Symmetry® C18 column (100 mm × 4.6 mm ID, 3.5 μm particle size) at 40 °C, with (A) an aqueous mixture of 0.02 M phosphate buffer and 0.2% heptane-1-sulphonic acid sodium solutions (50 : 50) adjusted to pH 3, (B) acetonitrile, and (C) methanol as the mobile phase. The injection volume was 10 μL, and the flow rate was 1.5 mL min-1. The detection was done using a multi-wavelength excitation and emission fluorescence detector, with individual optimization for each drug. The drug separation time was less than 10 minutes, and the method showed sensitive and wide linearity ranges for all medicines, with r2 values of more than 0.999. The impact of the mobile phase pH and flow rate on suitability parameters (retention time and number of theoretical plates) was studied. The method was found to be environmentally friendly based on GAPI and AGREE metrics. The validity of the method was evaluated following ICH and FDA guidelines.
Collapse
Affiliation(s)
- Asmaa M Taha
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Wafaa S Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Manal S Elmasry
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Rania A Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
15
|
Nardi N, Baumgarten LG, Dreyer JP, Santana ER, Winiarski JP, Vieira IC. Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine. J Pharm Biomed Anal 2023; 236:115681. [PMID: 37672903 DOI: 10.1016/j.jpba.2023.115681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
In this study, a selective and sensitive electrochemical approach for determining hydroxychloroquine (HCQ) was proposed. A novel nanocomposite based on gold nanoparticles synthesized by green synthesis in an extract of white pitaya (Hylocereus undatus) (AuNP-Ext) decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs) was presented. AuNP-Ext was characterized by ultraviolet-visible spectroscopy and the f-MWCNTs/AuNP-Ext nanocomposite by transmission electron microscopy. The nanocomposite was used to modify a glassy carbon electrode (GCE). Using the f-MWCNT-AuNP-Ext/GCE sensor, an irreversible oxidation peak at +0.74 V vs. Ag/AgCl was verified by HCQ. The calibration plot was studied in two linear ranges, from 0.03 to 3.5 µmol/L and from 3.5 to 17.0 µmol/L, with a limit of detection of 0.0093 µmol/L and a limit of quantification of 0.031 µmol/L, regarding the first linear range. The proposed sensor was successfully applied to the determination of HCQ in pharmaceutical and clinical samples without any special purification, separation or pre-treatment steps. The accuracy was verified by UV-Vis spectrometry, and this revealed that the proposed method was accurate and precise, as evidenced by F- and t-tests.
Collapse
Affiliation(s)
- Nathalia Nardi
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Luan Gabriel Baumgarten
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - João Paulo Winiarski
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
16
|
Abdelazim AH, Algarni MA, Almalki AH. Innovative spectrofluorometric method for determination of harmaline and harmine in different matrices. Sci Rep 2023; 13:19951. [PMID: 37968310 PMCID: PMC10652015 DOI: 10.1038/s41598-023-46041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Harmaline and harmine are naturally occurring closely related β-carboline alkaloids found in Peganum and Banisteriopsis plants. They have historical significance in traditional practices due to their potential psychoactive and therapeutic properties. Herein, a highly sensitive spectrofluorometric method was developed for the quantifying of harmaline and harmine in diverse matrices, including pure forms, seed samples, and spiked plasma. The procedures lie in addressing the challenge of overlapping fluorescence spectra exhibited by harmaline and harmine through the incorporation of hydroxypropyl-β-cyclodextrin, altering their chemical properties and fluorescence characteristics. Synchronous fluorescence measurements coupled with first derivative mathematical technique make it possible to distinguish between the harmaline and harmine at 419 and 456 nm, respectively. The method effectiveness is demonstrated through spectral analysis, optimization of the measurement conditions, adopting validation parameters and application to the pure form, seed samples and spiked human plasma. This methodology facilitates accurate determination of these alkaloids over the concentration range of 10─200 ng/mL. Thus, the developed approach provides a robust mean for the precise determination of harmaline and harmine, contributing to analytical chemistry's ongoing efforts to address complex challenges in quantification across diverse matrices.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| |
Collapse
|
17
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of antiviral favipiravir drug, paracetamol and vitamin C based on host-guest inclusion complex of β-CD/CNTs nanocomposite. Sci Rep 2023; 13:19910. [PMID: 37963918 PMCID: PMC10645768 DOI: 10.1038/s41598-023-45353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Favipiravir (FVI) is extensively used as an effective medication against several diverse infectious RNA viruses. It is widely administered as an anti-influenza drug. Combination therapy formed from FVI, paracetamol (PAR) and vitamin C (VC) is needed for treating patients diseased by RNA viruses. Thus, an efficient electrochemical sensor is developed for detecting FVI in human serum samples. The sensor is fabricated by casting a thin layer of carbon nanotubes (CNTs) over a glassy carbon (GC) electrode surface followed by electrodeposition of another layer of β-cyclodextrin (β-CD). Under optimized conditions, the sensor shows excellent catalytic effect for FVI, PAR and VC oxidation in the concentration ranges (0.08 µM → 80 µM), (0.08 µM → 50 µM) and (0.8 µM → 80 µM) with low detection limits of 0.011 μM, 0.042 μM and 0.21 μM, respectively. The combined effect of host-guest interaction ability of β-CD for the drugs, and a large conductive surface area of CNTs improves the sensing performance of the electrode. The sensor exhibits stable response over 4 weeks, good reproducibility, and insignificant interference from common species present in serum samples. The reliability of using the sensor in serum samples shows good recovery of FVI, PAR and VC.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
18
|
Sharaf YA, Abd El-Fattah MH, El-Sayed HM, Hassan SA. A solvent-free HPLC method for the simultaneous determination of Favipiravir and its hydrolytic degradation product. Sci Rep 2023; 13:18512. [PMID: 37898682 PMCID: PMC10613211 DOI: 10.1038/s41598-023-45618-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023] Open
Abstract
During COVID-19 pandemic, Favipiravir (FPV) showed a great efficacy against COVID-19 virus, it produced noticeable improvements in recovery of the patients. The aim of this study was to develop a new, green and simple method for the simultaneous determination of FPV and its acid-induced degradation product (ADP) in its pure and pharmaceutical dosage forms. This method will be key for the inevitable development of FPV solution and inhaler formulations. A green micellar RP-HPLC method was developed using an RP-VDSPHERE PUR 100 column (5 µm, 250 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.02 M Brij-35, 0.1 M SDS and 0.01 M potassium dihydrogen orthophosphate anhydrous and adjusted to pH 3.0 with 1.0 mL min-1 flow rate. The detection was performed at 280 nm with a run time of less than six min. Under the optimized chromatographic conditions, linear relationship has been established between peak area and concentration of FPV and its ADP in the range of 5-100 and 10-100 µg mL-1 with elution time of 3.8 and 5.7 min, respectively. The developed method was validated according to the ICH guidelines and applied successfully for determination of FPV in its pharmaceutical dosage form.
Collapse
Affiliation(s)
- Yasmine Ahmed Sharaf
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mai H Abd El-Fattah
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12566, Egypt.
| | - Heba M El-Sayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Said A Hassan
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12566, Egypt
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
19
|
Almalki AH, Ramzy S, Almrasy AA. Development and validation of analytical methods for selective determination of albuterol and budesonide in Airsupra inhalation aerosol using spectrophotometry. Sci Rep 2023; 13:16587. [PMID: 37789024 PMCID: PMC10547681 DOI: 10.1038/s41598-023-42766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Airsupra inhalation aerosol is a recently approved FDA medication that combines albuterol and budesonide for treating or preventing bronchoconstriction and lowering the risk of relapses in asthma patients who are 18 years of age and older. To selectively determine albuterol and budesonide in both pure and pharmaceutical dosage forms, two analytical methods were developed: the zero-order absorption method and the dual-wavelength method. Even though the two drugs absorption spectra overlapped, the distinctive peak of budesonide at the zero absorbance point of albuterol, 245 nm, allowed for direct detection of budesonide in the combination using the zero-order absorption method. The mathematical dual-wavelength method, on the other hand, allowed for the measurement of both albuterol and budesonide by choosing two wavelengths for each drug in such a way that the absorbance difference for the second drug was zero. Budesonide exhibited comparable absorbance values at wavelengths 227 and 261.40 nm; hence, these two wavelengths were utilized to identify albuterol; similarly, 221.40 and 231.20 nm were chosen to determine budesonide in their binary mixes. The methods were validated according to the ICH guideline for validation of analytical procedures Q2(R1) and demonstrated excellent linearity, sensitivity, accuracy, precision, and selectivity for determining both drugs in synthetic mixed solutions and pharmaceutical formulations. The availability of these analytical methods would be valuable for the pharmaceutical industry and regulatory authorities for quality control and assessment of pharmaceutical formulations containing albuterol and budesonide.
Collapse
Affiliation(s)
- Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| |
Collapse
|
20
|
Imam MS, Abdelazim AH, Ramzy S, Almrasy AA, Gamal M, Batubara AS. Higher sensitive selective spectrofluorometric determination of ritonavir in the presence of nirmatrelvir: application to new FDA approved co-packaged COVID-19 pharmaceutical dosage and spiked human plasma. BMC Chem 2023; 17:120. [PMID: 37735663 PMCID: PMC10514966 DOI: 10.1186/s13065-023-01030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Ritonavir was recently combined with nirmatrelvir in a new approved co-packaged medication form for the treatment of COVID-19. Quantitative analysis based on fluorescence spectroscopy measurement was extensively used for sensitive determination of compounds exhibited unique fluorescence features. OBJECTIVE The main objective of this work was to develop higher sensitive cost effective spectrofluorometric method for selective determination of ritonavir in the presence of nirmatrelvir in pure form, pharmaceutical tablet as well as in spiked human plasma. METHODS Ritonavir was found to exhibit unique native emission fluorescence at 404 nm when excited at 326 nm. On the other hand, nirmatrelvir had no emission bands when excited at 326 nm. This feature allowed selective determination of ritonavir without any interference from nirmatrelvir. The variables affecting fluorescence intensity of ritonavir were optimized in terms of sensitivity parameters and principles of green analytical chemistry. Ethanol was used a green solvent which provided efficient fluorescence intensity of the cited drug. RESULTS The method was validated in accordance with the ICH Q2 (R1) standards in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and specificity. The described method was successfully applied for ritonavir assay over the concentration range of 2.0-20.0 ng/mL. CONCLUSION Ritonavir determination in the spiked human plasma was successfully done with satisfactory accepted results.
Collapse
Affiliation(s)
- Mohamed S Imam
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Fom El Khalig Square, Kasr Al-Aini Street, Cairo, 11796, Egypt
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
- Nasr City, Cairo, 11751, Egypt.
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
21
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
22
|
Batubara AS, Abdelazim AH, Almrasy AA, Gamal M, Ramzy S. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation. BMC Chem 2023; 17:58. [PMID: 37328879 DOI: 10.1186/s13065-023-00967-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
23
|
Kamal AH, Hammad SF, Kamel DN. Coupling of synchronous fluorescence spectroscopy with derivative amplitude outcomes for simultaneous determination of metoprolol succinate and olmesartan medoxomil in combined pharmaceutical preparation: Application in spiked human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122549. [PMID: 36863080 DOI: 10.1016/j.saa.2023.122549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
For the first time a spectrofluorimetric method had been achieved for the concurrent analysis of metoprolol succinate (MET) and olmesartan medoxomil (OLM). The approach depended on assessing the first order derivative (1D) of the synchronous fluorescence intensity of the two drugs in aqueous solution at Δλ of 100 nm. The amplitudes of 1D at 300 nm and 347 nm were measured for MET and OLM, respectively. The linearity ranges were 100-1000 ng/mL and 100-5000 ng/mL for OLM and MET, respectively. This approach is uncomplicated, repetitive, quick, and affordable. The results of analysis had been statistically verified. The validation assessments were carried out following the recommendations of The International Council for Harmonization (ICH). This technique could be employed to assess marketed formulation. The method was sensitive with limits of detection (LOD) of 32 ng/ml and 14 ng/mL for MET and OLM, respectively. Limits of quantitation (LOQ) were 99 ng/ml for MET and 44 ng/mL for OLM. So it can be applied to determine both drugs in spiked human plasma within the linearity ranges of 100-1000 ng/mL for OLM and 100-1500 ng/mL for MET.
Collapse
Affiliation(s)
- Amira H Kamal
- Faculty of Pharmacy, Medical Campus of Tanta University, Elgeish Street, Tanta 31111, Egypt.
| | - Sherin F Hammad
- Faculty of Pharmacy, Medical Campus of Tanta University, Elgeish Street, Tanta 31111, Egypt
| | - Doaa N Kamel
- Faculty of Pharmacy, Medical Campus of Tanta University, Elgeish Street, Tanta 31111, Egypt
| |
Collapse
|
24
|
Batubara AS, Ainousah BE, Ramzy S, Abdelazim AH, Gamal M, Tony RM. Synchronous spectrofluorimetric determination of favipiravir and aspirin at the nano-gram scale in spiked human plasma; greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122880. [PMID: 37216820 DOI: 10.1016/j.saa.2023.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Bayan E Ainousah
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Rehab M Tony
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
25
|
Harahap Y, Noer RF, Simorangkir TPH. Development and validation of method for analysis of favipiravir and remdesivir in volumetric absorptive microsampling with ultra high-performance liquid chromatography-tandem mass spectrophotometry. Front Med (Lausanne) 2023; 10:1022605. [PMID: 37228397 PMCID: PMC10203959 DOI: 10.3389/fmed.2023.1022605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023] Open
Abstract
Favipiravir and remdesivir are drugs to treat COVID-19. This study aims to find an optimum and validated method for simultaneous analysis of favipiravir and remdesivir in Volumetric Absorptive Microsampling (VAMS) by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrophotometry. The use of VAMS can be an advantage because the volume of blood is small and the sample preparation process is simple. Sample preparation was done by precipitation of protein using 500 μL of methanol. Analysis was carried out by ultra high-performance liquid chromatography-tandem mass spectrophotometry with ESI+ and MRM with m/z 157.9 > 112.92 for favipiravir, 603.09 > 200.005 for remdesivir, and at m/z 225.968 > 151.991 for acyclovir as the internal standard. The separation was carried out using an Acquity UPLC BEH C18 column (100 × 2.1 mm; 1.7 m), 0.2% formic acid-acetonitrile (50:50), flow rate was 0.15 mL/min, and column temperature was 50°C. The analytical method has been validated with the requirements issued by the Food and Drug Administration (2018) and European Medicine Agency (2011). The calibration range of favipiravir is 0.5-160 μg/mL and 0.002-8 μg/mL for remdesivir.
Collapse
Affiliation(s)
- Yahdiana Harahap
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- Pharmacy Study Program, Faculty of Medicine and Health Sciences, the Republic of Indonesia Defense University, Bogor, Indonesia
| | | | - Timbul Partogi H. Simorangkir
- Pharmacy Study Program, Faculty of Medicine and Health Sciences, the Republic of Indonesia Defense University, Bogor, Indonesia
| |
Collapse
|
26
|
Zhang J. Hydroxylated polycyclic aromatic hydrocarbons possess inhibitory activity against alpha-glucosidase: An in vitro study using multispectroscopic techniques and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122366. [PMID: 36689906 DOI: 10.1016/j.saa.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Alpha-glucosidase (GAA) activity can be affected by exogenous substances. Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are typical metabolites of PAHs that can enter the body through various routes. The effects of 1-hydroxynaphthalene (1-OHNap) and 1-hydroxypyrene (1-OHPyr) on GAA activity and the potential mechanisms were investigated viamultispectroscopic methods and molecular docking. First-order derivative synchronous spectrofluorimetry was successfully applied to analyze the fluorescence quenching of GAA in the GAA-1-OHNap and GAA-1-OHPyr systems. 1-OHNap and 1-OHPyr had strong inhibitory effects on GAA activity. GAA could bind with 1-OHNap and 1-OHPyr in 1:1 mode with binding constants of 3.97 × 104 and 9.42 × 104 L/mol at 298 K. Hydrophobic interactions and hydrogen bonds played pivotal roles in the interactions. 1-OHNap was located closer to the active site of GAA than 1-OHPyr. This work suggests that the disturbance of glycometabolism by exogenous pollutants in the human body is worthy of attention and further investigation.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
27
|
Batubara AS, Abdelazim AH, Gamal M, Almrasy AA, Ramzy S. Green fitted second derivative synchronous spectrofluorometric method for simultaneous determination of remdesivir and apixaban at Nano gram scale in the spiked human plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122265. [PMID: 36608515 PMCID: PMC9764756 DOI: 10.1016/j.saa.2022.122265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 05/31/2023]
Abstract
Remdesivir and apixaban have been included in the treatment guidelines of several countries for severe COVID-19 infections. To date, no analytical method has been developed for the determination of remdesivir and apixaban in plasma matrix. The main objective of this work was to develop a highly sensitive, green-adapted spectrofluorometric method for the determination of remdesivir and apixaban at the Nanoscale. Remdesivir and apixaban showed overlapping fluorescence emission spectra at 403 nm and 456 nm when excited at 246 nm and 285 nm, respectively. This overlap was resolved in two steps. The first step was synchronous fluorescence scanning of remdesivir and apixaban, and the second step was manipulation of the second-order derivative for the obtained spectra. These steps allowed complete resolution of the overlapping fluorescence spectra and selective determination of remdesivir and apixaban at 410 and 469 nm, respectively. The variables affecting the synchronous scanning of the aforementioned drugs were optimized in terms of sensitivity parameters and principles of green analytical chemistry. The described method allowed sensitive determination of remdesivir and apixaban over the concentration range of 5-200 ng/mL and 50-3000 ng/mL, respectively. The described method was validated and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in spiked human plasma.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| |
Collapse
|
28
|
Abdelazim AH, Abourehab MAS, Abd Elhalim LM, Almrasy AA, Ramzy S. Green adherent spectrophotometric determination of molnupiravir based on computational calculations; application to a recently FDA-approved pharmaceutical dosage form. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121911. [PMID: 36174404 PMCID: PMC9494866 DOI: 10.1016/j.saa.2022.121911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 05/30/2023]
Abstract
Molnupiravir is an oral antiviral drug developed to provide significant benefit in reducing hospitalizations or deaths in mild COVID-19. Integrated green computational spectrophotometric method was developed for the determination of molnupiravir. Theoretical calculations were performed to predict the best coupling agent for efficient diazo coupling of molnupiravir. The binding energy between molnupiravir and various phenolic coupling agents, α-naphthol, β-naphthol, 8-hydroxyquinoline, resorcinol, and phloroglucinol, was measured using Gaussian 03 software based on the density functional theory method and the basis set B3LYP/6-31G(d). The results showed that the interaction between molnupiravir and 8-hydroxyquinoline was higher than that of other phenolic coupling agents. The method described was based on the formation of a red colored chromogen by the diazo coupling of molnupiravir with sodium nitrite in acidic medium to form a diazonium ion coupled with 8-hydroxyquinoline. The absorption spectra showed maximum sharp peaks at 515 nm. The reaction conditions were optimized. Beer's law was followed over the concentration range of 1-12 μg/ml molnupiravir. Job's continuous variation method was developed and the stoichiometric ratio of molnupiravir to 8-hydroxyquinoline was determined to be 1:1. The described method was successfully applied to the determination of molnupiravir in pure form and in pharmaceutical dosage form. The results showed that the proposed method has minimal environmental impact compared to previous HPLC method.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Lobna M Abd Elhalim
- Analytical Chemistry Department, Central Administration of Drug Control, Egyptian Drug Authority, 51 Wezaret Al Zeraa Street, Agouza, Giza 12311, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| |
Collapse
|
29
|
Abdelazim AH, Abourehab MAS, Abd Elhalim LM, Almrasy AA, Ramzy S. Different spectrophotometric methods for simultaneous determination of lesinurad and allopurinol in the new FDA approved pharmaceutical preparation; additional greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121868. [PMID: 36113304 DOI: 10.1016/j.saa.2022.121868] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Lesinurad and allopurinol have been formulated in a combined dosage form providing a new challenge for the treatment of gout attacks. Two mathematical based spectrophotometric methods, area under the curve, and artificial neural networks have been developed for simultaneous determination of lesinurad and allopurinol in pure form and in combined pharmaceutical dosage form. Area under the curve has been utilized to resolve the spectral overlap between lesinurad and allopurinol. Values of area under the curve and area absorptivity were measured at two selected wavelength ranges of 242-250 nm and 255-265 nm. Two mathematically constructed equations have been used to determine the concentrations of the drugs under the study. Advanced chemometry based model, artificial neural network, has been developed utilizing the UV spectral data of lesinurad and allopurinol through various defined steps. A five-level, two-factor experimental design was used to construct 25 mixtures. Thirteen mixtures were used to set up the calibration model and 12 mixtures were used to construct a validation set. The artificial neural network model was optimized to enable precise spectrophotometric determination of the drugs under the study. The described mathematically bases spectrophotometric methods have been successfully applied to the determination of lesinurad and allopurinol in the new combined, Duzallo® tablets. Furthermore, the greenness of the described methods was assessed using four different tools namely, the national environmental method index, the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The proposed methods showed more adherence to the greenness characters in comparison to the previously reported HPLC method.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Lobna M Abd Elhalim
- Analytical Chemistry Department, Central Administration of Drug Control, Egyptian Drug Authority, 51 Wezaret Al Zeraa Street, Agouza, Giza 12311, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| |
Collapse
|