1
|
Li H, Felix LC, Li Q, Ruan Q, Yakobson BI, Hersam MC. Atomic-Resolution Vibrational Mapping of Bilayer Borophene. NANO LETTERS 2024; 24:10674-10680. [PMID: 39141815 DOI: 10.1021/acs.nanolett.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The successful synthesis of borophene beyond the monolayer limit has expanded the family of two-dimensional boron nanomaterials. While atomic-resolution topographic imaging has been previously reported, vibrational mapping has the potential to reveal deeper insight into the chemical bonding and electronic properties of bilayer borophene. Herein, inelastic electron tunneling spectroscopy (IETS) is used to resolve the low-energy vibrational and electronic properties of bilayer-α (BL-α) borophene on Ag(111) at the atomic scale. Using a carbon monoxide (CO)-functionalized scanning tunneling microscopy tip, the BL-α borophene IETS spectra reveal unique features compared to single-layer borophene and typical CO vibrations on metal surfaces. Distinct vibrational spectra are further observed for hollow and filled boron hexagons within the BL-α borophene unit cell, providing evidence for interlayer bonding between the constituent borophene layers. These experimental results are compared with density functional theory calculations to elucidate the interplay between the vibrational modes and electronic states in bilayer borophene.
Collapse
Affiliation(s)
- Hui Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Levi C Felix
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qiucheng Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qiyuan Ruan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 75005, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Ye P, Xiao J, Fan J, Chen J, Gao N, Yang X. Structural Characterization of Boron Sheets beyond the Monolayer and Implication for Experimental Synthesis and Identification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16191-16198. [PMID: 37930136 DOI: 10.1021/acs.langmuir.3c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The successful synthesis of quasi-freestanding bilayer borophene has aroused much attention for its superior physical properties and holds great promise for future electronic devices. Herein, we comprehensively explore six boron sheets beyond the monolayer and structurally characterize them via various methods using first-principles calculations for experimental references. On the basis of atomic models of borophenes, simulated scanning tunneling microscope (STM) images show different morphologies at different bias voltages and are explained by the partial densities of states and the height differences in the vertical direction. Simulated transmission electron microscope images further probe the internal atomic arrangement of boron sheets and compensate for the shortcomings of STM images to better distinguish different phases of boron sheets. The interlayer coupling strength is stronger in bilayer borophenes than in the three-layer system via the electron localization function and Mulliken bond population. In addition, simulated X-ray diffraction and infrared spectra show different characteristic peaks and corresponding vibrational modes to further characterize these boron sheets. These theoretical results can decrease the prime cost and provide vital guidance for the experimental synthesis and identification of boron sheets beyond the monolayer.
Collapse
Affiliation(s)
- Panbin Ye
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Jingyi Xiao
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, People's Republic of China
| | - Jinghuang Chen
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
3
|
Rivera-Tello CD, Guerrero JA, Huerta L, Flores-Ruiz FJ, Flores M, Quiñones-Galván JG. Influence of plasma kinetic energy during the pulsed laser deposition of borophene films on silicon (100). RSC Adv 2023; 13:29819-29829. [PMID: 37829715 PMCID: PMC10566584 DOI: 10.1039/d3ra04601j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Developing borophene films with good structural stability on non-metallic substrates to maximize their potential in photosensitivity, gas detection, photothermia, energy storage, and deformation detection, among others has been challenging in recent years. Herein, we succeeded in the pulsed laser deposition of multilayered borophene films on Si (100) with β12 or χ3 bonding by tuning the mean kinetic energy in the plasma during the deposition process. Raman and X-ray photoelectron spectroscopies confirm β12 and χ3 bonding in the films. Borophene films with β12 bonding were obtained by tuning a high mean kinetic energy in the plasma, while borophene with χ3 bonding required a relatively low mean kinetic energy. Atomic force microscopy (AFM) micrographs revealed a granular and directional growth of the multilayered borophene films following the linear atomic terraces from the (100) silicon substrate. AFM nanofriction was used to access the borophene surfaces and to reveal the pull-off force and friction coefficient of the films where the surface oxide showed a significant contribution. To summarize, we show that it is possible to deposit multilayered borophene thin films with different bondings by tuning the mean kinetic energy during pulsed laser deposition. The characterization of the plasma during borophene deposition accompanies our findings, providing support for the changes in kinetic energy.
Collapse
Affiliation(s)
- César D Rivera-Tello
- Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara Blvd. Marcelino García Barragán 1421, Olímpica Guadalajara Jalisco C.P. 44430 Mexico
| | - J A Guerrero
- Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara Blvd. Marcelino García Barragán 1421, Olímpica Guadalajara Jalisco C.P. 44430 Mexico
| | - L Huerta
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México A. P. 70-360 04510 Ciudad de México Mexico
| | - Francisco J Flores-Ruiz
- CONAHCYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla Ciudad Universitaria, Edif. IF-1 Puebla 72570 México
| | - M Flores
- Departamento de Ingeniería de Proyectos, Universidad de Guadalajara 45150 Zapopan Jalisco Mexico
| | - J G Quiñones-Galván
- Departamento de Física, CUCEI, Universidad de Guadalajara Blvd. Marcelino García Barragán 1421, Olímpica Guadalajara Jalisco C.P. 44430 Mexico
| |
Collapse
|
4
|
Wu Y, Sun M. Polarization-dependent excitons in Borophene-Black phosphorus heterostructures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122372. [PMID: 36657291 DOI: 10.1016/j.saa.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this paper, the optical properties of β1-phase borophene-black phosphorus heterostructures (BBPHs) are theoretically investigated by first principal calculations, including absorption spectra, band structures, IR spectra, and Raman spectra. The calculation results show that constructing BBPHs could form covalent bonds between hetero-layers, making crystal structure more stable, and optical properties of BBPHs are significantly distinctive to that of the borophene and black phosphorus (BP) monomers, and polarization reversal occurs when two monomer materials form a heterostructure. The BBPHs show excellent polarization characteristics in visible or infrared region. Our results is of a certain reference value for the future application of optoelectronic devices based on two-dimensional (2D) heterostructures.
Collapse
Affiliation(s)
- Yuqiang Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100086, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100086, PR China.
| |
Collapse
|
5
|
Chamssine F, Gasparotto LHS, Souza MAF, Khalifeh M, de Oliveira Freitas JC. Retarding mechanism of Zn 2+ species in geopolymer material using Raman spectroscopy and DFT calculations. Sci Rep 2022; 12:21036. [PMID: 36470998 PMCID: PMC9722669 DOI: 10.1038/s41598-022-25552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Geopolymers are the most promising alternative to Ordinary Portland Cement for oil-well cementing and well abandonment. To that end, the slurry needs a required pumping time ensured by the addition of retarders. Although zinc has been widely known to prolong the setting time of geopolymers, its mechanism of action has yet to be fully elucidated. It is herein hypothesized that zinc ions impede the first stages of silicate oligomerization (Si-O-Al), culminating in longer setting times. Pumping time measurements showed that Zn(NO3)2 delayed the setting time by 5 h in comparison to the zinc-less sample. DFT calculations revealed Si(OH)4 to react with [Zn(OH)4]2- via a barrierless transition state, evidencing a kinetic ground for the retardation effect. Additionally, Raman spectroscopy corroborated the DFT results by showing that Q3 species in the proposed mechanism are formed more rapidly in the presence of zinc ions than in its absence.
Collapse
Affiliation(s)
- Fawzi Chamssine
- grid.18883.3a0000 0001 2299 9255Department of Energy and Petroleum Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Luiz H. S. Gasparotto
- grid.411233.60000 0000 9687 399XUniversidade Federal do Rio Grande do Norte, UFRN, Natal, 59078-970 Brazil
| | | | - Mahmoud Khalifeh
- grid.18883.3a0000 0001 2299 9255Department of Energy and Petroleum Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | | |
Collapse
|