1
|
Aslam S, Kousar I, Rani S, Altaf W, Bristy S, Skouta R. Detection of Selected Heavy Metal Ions Using Organic Chromofluorescent Chemosensors. Molecules 2025; 30:1450. [PMID: 40286044 PMCID: PMC11990538 DOI: 10.3390/molecules30071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Heavy and transition metal (HTM) ions have significant harmful effects on the physical environment and play crucial roles in biological systems; hence, it is crucial to accurately identify and quantify any trace pollution. Molecular sensors which are based on organic molecules employed as optical probes play a crucial role in sensing and detecting toxic metal ions in water, food, air, and biological environments. When appropriate combinations of conduction and selective recognition are combined, fluorescent and colorimetric chemosensors are appealing instruments that enable the selective, sensitive, affordable, portable, and real-time investigation of the possible presence of heavy and transition metal ions. This feature article aims to provide readers with a more thorough understanding of the different methods of synthesis and how they work. As noted in the literature, we will highlight colorimetric and fluorometric sensors based on their receptors into multiple categories for heavy metal ion detection, such as Hg2+, Ag2+, Cd2+, Pb2+, and In3+, and simultaneous multiple-ion detection.
Collapse
Affiliation(s)
- Samina Aslam
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Iram Kousar
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Wajiha Altaf
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Sadia Bristy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Sushma, Sharma S, Ghosh KS. Fluorescence chemosensing and bioimaging of metal ions using schiff base probes working through photo-induced electron transfer (PET). Crit Rev Anal Chem 2024:1-32. [PMID: 39559829 DOI: 10.1080/10408347.2024.2418327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Though metal ions like copper, iron, zinc, etc. are essential, but their dyshomeostasis is associated with several disorders. Therefore, fast, sensitive, and cost-effective monitoring of these cations will have a significant impact. Many recently reported small organic molecules were able to detect a specific metal ion because of certain variations in the electron/charge transfer processes occurring in those molecules after binding with metal ions. In this context, Schiff base molecules were widely used as fluorescence turn-on/turn-off probes for the detection of metal ions like Al3+, Cu2+, Zn2+, Fe3+, Ag+, heavy metal ions, etc. In this article, we have reviewed the recent developments in fluorimetric chemosensing of metal ions by Schiff bases based on the photo-induced electron transfer (PET) process. A variety of examples have been discussed in which PET was used as a cation recognition mechanism. Particular focus is placed on the molecular probes used for sensing, including their design, selectivity, sensitivity, and in some cases their potential bioimaging applications.
Collapse
Affiliation(s)
- Sushma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Shivani Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
3
|
Liu P, Shui X, Shi M, Kang M, Liu Y, Yang X, Zhang G. The comparative study of two new Schiff bases derived from 5-(thiophene-2-yl)isoxazole as "Off-On-Off" fluorescence sensors for the sequential detection of Ga 3+ and Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124247. [PMID: 38599023 DOI: 10.1016/j.saa.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Two new Schiff bases, TIC ((E)-N'-(2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide) and TIE ((E)-N'-(3-ethoxy-2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide), have been designed and synthesized as chemosensors for distinct recognition of Ga3+ and Fe3+ ions. TIE demonstrated a prominent "turn on" response characterized by clear distinguished fluorescence when coordination with Ga3+ ions in the DMSO/H2O buffer solution. In comparison, TIC also showed "turn on" response of blue fluorescence which was more selective and sensitive than that of TIE due to the steric hindrance of ethoxy group of TIE. The newly formed complexes TIC-Ga3+ and TIE-Ga3+ may act as selective "turn-off" fluorescent probes towards Fe3+ ions. Limits of detection of TIC and TIE towards Ga3+ ions were 7.8809 × 10-9 M and 2.6277 × 10-8 M, respectively. Limits of detection of TIC-Ga3+ and TIE-Ga3+ towards Fe3+ ions were 8.6562 × 10-9 M and 3.3764 × 10-7 M, respectively. The molar ratio of the complex between the sensor and Ga3+ or Fe3+ ions were all 1:2 determined through Job's Plot, mass spectrometry, and theoretical calculations. Both sensors were utilized for the determination of target ions in environment water samples, and the portable paper sensors for detecting Ga3+ ions have been successfully developed.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoxing Shui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
4
|
Shi M, Li B, Kang M, Liu P, Yang X, Pei M, Zhang G. A comparative study of two thienopyrimidine Schiff base probes for sequential monitoring of Ga 3+ and Pd 2. LUMINESCENCE 2024; 39:e4773. [PMID: 38757733 DOI: 10.1002/bio.4773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Two Schiff base probes (S1 and S2) were prepared and synthesized by incorporating thienopyrimidine into salicylaldehyde or 3-ethoxysalicylaldehyde individually, with the aim of detecting Ga3+ and Pd2+ sequentially. Upon chelation with Ga3+, S1 and S2 exhibited fluorescence enhancement in DMSO/H2O buffer. Both S1-Ga3+ and S2-Ga3+ were quenched by Pd2+. The limit of detection for S1 in response to Ga3+ and Pd2+ was 2.86 × 10-7 and 4.4 × 10-9 M, respectively. For S2, the limit of detection for Ga3+ and Pd2+ was 4.15 × 10-8 and 3.0 × 10-9 M, respectively. Furthermore, the complexation ratios of both S1 and S2 with Ga3+ and Pd2+ were determined to be 1:2 through Job's plots, ESI-MS analysis, and theoretical calculations. Two molecular logic gates were constructed, leveraging the response behaviors of S1 and S2. Moreover, the potential utility of S1 and S2 for monitoring Ga3+ and Pd2+ in domestic water was verified.
Collapse
Affiliation(s)
- Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Boli Li
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
5
|
Shi M, Kang M, Liu P, Zhou H, Pei M, Zhang G, Yang X. Thienopyrimidine-derived multifunctional fluorescence sensor for the detection of Cu 2+, Fe 3+, and PPi in different solvents. LUMINESCENCE 2024; 39:e4744. [PMID: 38682162 DOI: 10.1002/bio.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Hydrazine substituted thienopyrimidine, a new fluorophore, was used to synthesize a novel Schiff base R1 as a chemosensor via the condensation with p-formyltriphenylamine, and the structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) analysis. When treated with Cu2+ in dimethylsulfoxide (DMSO)/H2O buffer, R1 showed a phenomenon of fluorescence quenching, which was reversible with the action of ethylenediaminetetraacetic acid (EDTA). When treated with Fe3+ in dimethylformamide (DMF)/H2O buffer, R1 exhibited the same phenomenon, but fluorescence was recovered with inorganic pyrophosphate (PPi) quantitatively. The complexation ratios for R1-Cu2+ and R1-Fe3+ were both 1:2, which were manifested by MS titrations and corresponding Job's plots. The limits of detection of R1 for Cu2+ and Fe3+ were 3.11 × 10-8 and 1.24 × 10-7 M, respectively. The sensing mechanism of R1 toward Cu2+ and Fe3+ was confirmed using density functional theory calculations and electrostatic potential analysis. Test strips of R1 were fabricated successfully for on-site detection of Cu2+ and Fe3+. In addition, R1 was applied to recognize Cu2+ and Fe3+ in actual water samples with satisfactory recovery.
Collapse
Affiliation(s)
- Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Han Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|