1
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Altered expression of microglial markers of phagocytosis in schizophrenia. Schizophr Res 2023; 251:22-29. [PMID: 36527956 DOI: 10.1016/j.schres.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cognitive disturbances in schizophrenia have been linked to a lower density of dendritic spines on pyramidal neurons in the prefrontal cortex (PFC). Complement component C4, which has previously been found at higher levels in schizophrenia, marks synapses for phagocytosis by microglia. Thus, elevated consumption of dendritic spines by microglia mediated through excessive complement activity may play a role in lower spine density in schizophrenia. However, it is unclear if microglia themselves have the molecular capacity for enhanced phagocytosis of spines in schizophrenia. METHODS Transcript levels for complement components and microglia-specific phagocytic markers were quantified using quantitative PCR in the PFC of 62 matched pairs of schizophrenia and unaffected comparison subjects and in antipsychotic-exposed monkeys. RESULTS Relative to comparison subjects, schizophrenia subjects had higher mRNA levels for C4 (+154 %); C1q (+69 %), which initiates the classical complement pathway that includes C4; and for microglia-specific markers that enable phagocytic activity including TAM receptor tyrosine kinases Axl (+27 %) and MerTK (+27 %) and lysosome-associated glycoprotein CD68 (+27 %) (all p ≤ .042). Transcript levels for microglial phagocytic markers were correlated with C4 mRNA levels in schizophrenia subjects (all r ≥ 0.31, p ≤ .015). We also found further evidence consistent with microglial activation in schizophrenia, including higher mRNA levels for THIK1 (TWIK-related halothane-inhibited potassium channel: +30 %) and lower mRNA levels for the purinergic receptor P2Y12 (-27 %) (all p ≤ .016). Transcript levels were unchanged in antipsychotic-exposed monkeys. CONCLUSIONS These results are consistent with the presence of increased complement activity and an elevated molecular capacity of microglia for phagocytosis in the same schizophrenia subjects.
Collapse
|
3
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
4
|
Qin Z, Zhang L, Zasloff MA, Stewart AFR, Chen HH. Ketamine's schizophrenia-like effects are prevented by targeting PTP1B. Neurobiol Dis 2021; 155:105397. [PMID: 34015491 DOI: 10.1016/j.nbd.2021.105397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
Subanesthetic doses of ketamine induce schizophrenia-like behaviors in mice including hyperlocomotion and deficits in working memory and sensorimotor gating. Here, we examined the effect of in vivo ketamine administration on neuronal properties and endocannabinoid (eCB)-dependent modulation of synaptic transmission onto layer 2/3 pyramidal neurons in brain slices of the prefrontal cortex, a region tied to the schizophrenia-like behavioral phenotypes of ketamine. Since deficits in working memory and sensorimotor gating are tied to activation of the tyrosine phosphatase PTP1B in glutamatergic neurons, we asked whether PTP1B contributes to these effects of ketamine. Ketamine increased membrane resistance and excitability of pyramidal neurons. Systemic pharmacological inhibition of PTP1B by Trodusquemine restored these neuronal properties and prevented each of the three main ketamine-induced behavior deficits. Ketamine also reduced mobilization of eCB by pyramidal neurons, while unexpectedly reducing their inhibitory inputs, and these effects of ketamine were blocked or occluded by PTP1B ablation in glutamatergic neurons. While ablation of PTP1B in glutamatergic neurons prevented ketamine-induced deficits in memory and sensorimotor gating, it failed to prevent hyperlocomotion (a psychosis-like phenotype). Taken together, these results suggest that PTP1B in glutamatergic neurons mediates ketamine-induced deficits in eCB mobilization, memory and sensorimotor gating whereas PTP1B in other cell types contributes to hyperlocomotion. Our study suggests that the PTP1B inhibitor Trodusquemine may represent a new class of fast-acting antipsychotic drugs to treat schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Li Zhang
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington D.C. 2007, USA
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
6
|
Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110096. [PMID: 32898588 PMCID: PMC8582009 DOI: 10.1016/j.pnpbp.2020.110096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Despite widespread evidence of endocannabinoid system involvement in the pathophysiology of psychiatric disorders, our understanding remains rudimentary. Here we review studies of the endocannabinoid system in humans with psychotic and mood disorders. Postmortem, peripheral, cerebrospinal fluid and in vivo imaging studies provide evidence for the involvement of the endocannabinoid system in psychotic and mood disorders. Psychotic disorders and major depressive disorder exhibit alterations of brain cannabinoid CB1 receptors and peripheral blood endocannabinoids. Further, these changes may be sensitive to treatment status, disease state, and symptom severity. Evidence from psychotic disorder extend to endocannabinoid metabolizing enzymes in the brain and periphery, whereas these lines of evidence remain poorly developed in mood disorders. A paucity of studies examining this system in bipolar disorder represents a notable gap in the literature. Despite a growing body of productive work in this field of research, there is a clear need for investigation beyond the CB1 receptor in order to more fully elucidate the role of the endocannabinoid system in psychotic and mood disorders.
Collapse
|
7
|
Di Bartolomeo M, Stark T, Maurel OM, Iannotti FA, Kuchar M, Ruda-Kucerova J, Piscitelli F, Laudani S, Pekarik V, Salomone S, Arosio B, Mechoulam R, Maccarrone M, Drago F, Wotjak CT, Di Marzo V, Vismara M, Dell'Osso B, D'Addario C, Micale V. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol Res 2021; 164:105357. [PMID: 33285233 DOI: 10.1016/j.phrs.2020.105357] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/07/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023]
Abstract
Perinatal exposure to Δ9-tetrahydrocannabinol (THC) affects brain development and might increase the incidence of psychopathology later in life, which seems to be related to a dysregulation of endocannabinoid and/or dopaminergic systems. We here evaluated the transcriptional regulation of the genes encoding for the cannabinoid CB1 receptor (Cnr1) and the dopamine D2 receptor (Drd2) in perinatal THC-(pTHC) exposed male rats, focusing on the role of DNA methylation analyzed by pyrosequencing. Simultaneously, the molecular and behavioral abnormalities at two different time points (i.e., neonatal age and adulthood) and the potential preventive effect of peripubertal treatment with cannabidiol, a non-euphoric component of Cannabis, were assessed. The DRD2 methylation was also evaluated in a cohort of subjects with schizophrenia. We observed an increase in both Cnr1 and Drd2 mRNA levels selectively in the prefrontal cortex of adult pTHC-exposed rats with a consistent reduction in DNA methylation at the Drd2 regulatory region, paralleled by social withdrawal and cognitive impairment which were reversed by cannabidiol treatment. These adult abnormalities were preceded at neonatal age by delayed appearance of neonatal reflexes, higher Drd2 mRNA and lower 2-arachidonoylglycerol (2-AG) brain levels, which persisted till adulthood. Alterations of the epigenetic mark for DRD2 were also found in subjects with schizophrenia. Overall, reported data add further evidence to the dopamine-cannabinoid interaction in terms of DRD2 and CNR1 dysregulation which could be implicated in the pathogenesis of schizophrenia spectrum disorders, suggesting that cannabidiol treatment may normalize pTHC-induced psychopathology by modulating the altered dopaminergic activity.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Oriana Maria Maurel
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic, Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), between Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy; Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy; Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, California, USA
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
8
|
Roman KM, Jenkins AK, Lewis DA, Volk DW. Involvement of the nuclear factor-κB transcriptional complex in prefrontal cortex immune activation in bipolar disorder. Transl Psychiatry 2021; 11:40. [PMID: 33436571 PMCID: PMC7804457 DOI: 10.1038/s41398-020-01092-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder and schizophrenia have multiple clinical and genetic features in common, including shared risk associated with overlapping susceptibility loci in immune-related genes. Higher activity of the nuclear factor-κB (NF-κB) transcription factor complex, which regulates the transcription of multiple immune markers, has been reported to contribute to immune activation in the prefrontal cortex in schizophrenia. These findings suggest the hypothesis that elevated NF-κB activity is present in the prefrontal cortex in bipolar disorder in a manner similar to that seen in schizophrenia. Therefore, we quantified levels of NF-κB-related mRNAs in the prefrontal cortex of 35 matched pairs of bipolar disorder and unaffected comparison subjects using quantitative PCR. We found that transcript levels were higher in the prefrontal cortex of bipolar disorder subjects for several NF-κB family members, NF-κB activation receptors, and NF-κB-regulated mRNAs, and were lower for an NF-κB inhibitor. Transcript levels for NF-κB family members, NF-κB activation receptors, and NF-κB-regulated mRNAs levels were also highly correlated with each other. This pattern of elevated transcript levels for NF-κB-related markers in bipolar disorder is similar to that previously reported in schizophrenia, suggesting that cortical immune activation is a shared pathophysiological feature between the two disorders.
Collapse
Affiliation(s)
- Kaitlyn M Roman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aaron K Jenkins
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Veterans Integrated Service Network 4 Mental Illness Research Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
9
|
Zhou CH, Xue SS, Xue F, Liu L, Liu JC, Ma QR, Qin JH, Tan QR, Wang HN, Peng ZW. The impact of quetiapine on the brain lipidome in a cuprizone-induced mouse model of schizophrenia. Biomed Pharmacother 2020; 131:110707. [PMID: 32905942 DOI: 10.1016/j.biopha.2020.110707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
The antipsychotic effect of Quetiapine (Que) has been extensively studied and growing evidence suggests that Que has a beneficial effect, improving cognitive functions and promoting myelin repair. However, the effects of Que on the brain lipidome and the association between Que-associated cognitive improvement and changes in lipids remain elusive. In the present study, we assessed the cognitive protective effects of Que treatment and used a mass spectrometry-based lipidomic approach to evaluated changes in lipid composition in the hippocampus, prefrontal cortex (PFC), and striatum in a mouse model of cuprizone (CPZ)-induced demyelination. CPZ induces cognitive impairment and remarkable lipid changes in the brain, specifically in lipid species of glycerophospholipids and sphingolipids. Moreover, the changes in lipid classes of the PFC were more extensive than those observed in the hippocampus and striatum. Notably, Que treatment ameliorated cuprizone-induced cognitive impairment and partly normalized CPZ-induced lipid changes. Taken together, our data suggest that Que may rescue cognitive behavioral changes from CPZ-induced demyelination through modulation of the brain lipidome, providing new insights into the pharmacological mechanism of Que for schizophrenia.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Quan-Rui Ma
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, 750004, China
| | - Jun-Hui Qin
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology 2020; 45:1884-1895. [PMID: 32610340 PMCID: PMC7608138 DOI: 10.1038/s41386-020-0755-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a debilitating disorder affecting young adults displaying symptoms of cognitive impairment, anxiety, and early social isolation prior to episodes of auditory hallucinations. Cannabis use has been tied to schizophrenia-like symptoms, indicating that dysregulated endogenous cannabinoid signaling may be causally linked to schizophrenia. Previously, we reported that glutamatergic neuron-selective ablation of Lmo4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, impairs endocannabinoid (eCB) production from the metabotropic glutamate receptor mGluR5. These Lmo4-deficient mice display anxiety-like behaviors that are alleviated by local shRNA knockdown or pharmacological inhibition of PTP1B that restores mGluR5-dependent eCB production in the amygdala. Here, we report that these Lmo4-deficient mice also display schizophrenia-like behaviors: impaired working memory assessed in the Y maze and defective sensory gating by prepulse inhibition of the acoustic startle response. Modulation of inhibitory inputs onto layer 2/3 pyramidal neurons of the prefrontal cortex relies on eCB signaling from the brain-derived neurotrophic factor receptor trkB, rather than mGluR5, and this mechanism was defective in Lmo4-deficient mice. Genetic ablation of PTP1B in the glutamatergic neurons lacking Lmo4 restored tyrosine phosphorylation of trkB, trkB-mediated eCB signaling, and ameliorated schizophrenia-like behaviors. Pharmacological inhibition of PTP1B with trodusquemine also restored trkB phosphorylation and improved schizophrenia-like behaviors by restoring eCB signaling, since the CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide blocked this effect. Thus, activation of PTP1B in pyramidal neurons contributes to schizophrenia-like behaviors in Lmo4-deficient mice and genetic or pharmacological intervention targeting PTP1B ameliorates schizophrenia-related deficits.
Collapse
|
11
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
12
|
Muguruza C, Morentin B, Meana JJ, Alexander SP, Callado LF. Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. J Psychopharmacol 2019; 33:1132-1140. [PMID: 31237179 DOI: 10.1177/0269881119857205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endocannabinoid system - comprising cannabinoid receptors, endocannabinoid ligands and their synthesis and inactivation enzymes - has been widely implicated in the pathophysiology of schizophrenia. However, little is known regarding the status of the different elements of the endocannabinoid system in the brain of schizophrenic patients. We have previously reported altered endocannabinoid levels in the postmortem brain of subjects with schizophrenia compared with matched controls. AIMS Our aim was to further examine the status of the main elements of the endocannabinoid system in the postmortem prefrontal cortex of the same cohort of subjects. METHODS Gene expression and function of the cannabinoid receptor type-1 (CB1) and the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have been assessed. RESULTS A significant decrease in CB1 mRNA levels in schizophrenia was found, without alteration of FAAH or MAGL mRNA expression. Moreover, positive correlations among mRNA expressions of the three genes studied were found in the prefrontal cortex of controls but not in schizophrenic subjects. No alteration was found in CB1 receptor mediated functional coupling to G-proteins, but a significant increase of FAAH activity was found in schizophrenic subjects compared with controls. 2-arachidonoylglycerol levels and MAGL activity were found to positively correlate in controls but not in schizophrenic subjects. CONCLUSIONS The present findings reveal an imbalance in the expression and function of different elements of the endocannabinoid system in schizophrenia. This outcome highlights the relevance of the endocannabinoid system in the pathophysiology of schizophrenia and emphasises its elements as potential targets in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Stephen Ph Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
13
|
Jacobson MR, Watts JJ, Boileau I, Tong J, Mizrahi R. A systematic review of phytocannabinoid exposure on the endocannabinoid system: Implications for psychosis. Eur Neuropsychopharmacol 2019; 29:330-348. [PMID: 30635160 DOI: 10.1016/j.euroneuro.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Cannabis, the most widely used illicit drug worldwide, produces psychoactive effects through its component cannabinoids, which act on the endocannabinoid system. Research on how cannabinoid exposure affects the endocannabinoid system is limited. Substantial evidence indicates cannabis use as a risk factor for psychosis, and the mechanism(s) by which this is occurring is/are currently unknown. Here, we conduct the first review of the effects of exogenous cannabinoids on the endocannabinoid system in humans with and without psychotic disorders. The most well established finding is the down-regulation of cannabinoid CB1 receptors (CB1R) after chronic and recent cannabis exposure, but it remains uncertain whether this effect is present in cannabis users with schizophrenia. We highlight where cannabis exposure affects the endocannabinoid system in a pattern that may mirror what is seen in psychosis, and how further research can push this field forward. In these times of changing cannabis legislation, research highlighting the biological effects of cannabinoids is greatly needed.
Collapse
Affiliation(s)
- Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada.
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
14
|
The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol 2018; 157:97-107. [DOI: 10.1016/j.bcp.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
|
15
|
Chesworth R, Long LE, Weickert CS, Karl T. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice. Front Psychiatry 2018; 9:11. [PMID: 29467679 PMCID: PMC5808294 DOI: 10.3389/fpsyt.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1). We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET), which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs) 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R) and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα), monoglyceride lipase (MGLL), and α/β-hydrolase domain-containing 6 (ABHD6)]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21-35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the endocannabinoid markers assessed, suggesting that other mechanisms may be responsible for the exaggerated cannabinoid susceptibility in these mice.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Leonora E Long
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
16
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
17
|
Matsumoto J, Nakanishi H, Kunii Y, Sugiura Y, Yuki D, Wada A, Hino M, Niwa SI, Kondo T, Waki M, Hayasaka T, Masaki N, Akatsu H, Hashizume Y, Yamamoto S, Sato S, Sasaki T, Setou M, Yabe H. Decreased 16:0/20:4-phosphatidylinositol level in the post-mortem prefrontal cortex of elderly patients with schizophrenia. Sci Rep 2017; 7:45050. [PMID: 28332626 PMCID: PMC5362900 DOI: 10.1038/srep45050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/17/2017] [Indexed: 01/17/2023] Open
Abstract
The etiology of schizophrenia includes phospholipid abnormalities. Phospholipids are bioactive substances essential for brain function. To analyze differences in the quantity and types of phospholipids present in the brain tissue of patients with schizophrenia, we performed a global analysis of phospholipids in multiple brain samples using liquid chromatography electrospray ionization mass/mass spectrometry (LC-ESI/MS/MS) and imaging mass spectrometry (IMS). We found significantly decreased 16:0/20:4-phosphatidylinositol (PI) levels in the prefrontal cortex (PFC) in the brains from patients with schizophrenia in the LC-ESI/MS/MS, and that the 16:0/20:4-PI in grey matter was most prominently diminished according to the IMS experiments. Previous reports investigating PI pathology of schizophrenia did not identify differences in the sn-1 and sn-2 fatty acyl chains. This study is the first to clear the fatty acid composition of PI in brains from patients with schizophrenia. Alteration in the characteristic fatty acid composition of PI may also affect neuronal function, and could play a role in the etiology of schizophrenia. Although further studies are necessary to understand the role of reduced 16:0/20:4-PI levels within the prefrontal cortex in the etiology of schizophrenia, our results provide insight into the development of a novel therapy for the clinical treatment of schizophrenia.
Collapse
Affiliation(s)
- Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita, Akita 010-8543, Japan
- Akita Lipid Technologies, LLC.,1-2, Nukazuka, Yanagida, Akita, 010-0825, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
- Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Yazawa Kawahigashimachi, Aizuwakamatsu, Fukushima 969-3492, Japan
| | - Yuki Sugiura
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Dai Yuki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akira Wada
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
- Department of Neuropsychiatry, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Shin-Ichi Niwa
- Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Yazawa Kawahigashimachi, Aizuwakamatsu, Fukushima 969-3492, Japan
| | - Takeshi Kondo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Michihiko Waki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takahiro Hayasaka
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Noritaka Masaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
- Department of Community-based Medical Education/Department of Community-based Medicine, Nagoya City University Graduate School of Medical Science, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
| | - Sakon Yamamoto
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
| | - Shinji Sato
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
- Quests Research Institute, Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Tokushima 771-0192, Japan
| | - Takehiko Sasaki
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita, Akita 010-8543, Japan
- Akita Lipid Technologies, LLC.,1-2, Nukazuka, Yanagida, Akita, 010-0825, Japan
- Department of Medical Biology Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Tokushima 010-8543, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Anatomy, The university of Hong Kong, 6/F, William MW Mong Block 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Riken Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
18
|
Chase KA, Feiner B, Rosen C, Gavin DP, Sharma RP. Characterization of peripheral cannabinoid receptor expression and clinical correlates in schizophrenia. Psychiatry Res 2016; 245:346-353. [PMID: 27591408 DOI: 10.1016/j.psychres.2016.08.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/13/2023]
Abstract
The relationship between cannabinoid receptor signaling and psychosis vulnerability requires further exploration. The endocannabinoid signaling system is extensive, with receptors exerting regulatory functions in both immune and central nervous systems. In the brain, cannabinoid receptors (CBR) directly modulate neurotransmitter systems. In the peripheral lymphocyte, CBRs mediate cytokine release, with dysregulated cytokine levels demonstrated in schizophrenia. mRNA levels of CBRs were measured in human peripheral blood mononuclear cells (PBMCs) obtained from 70 participants (35 non-clinical controls, 35 participants with schizophrenia), who were recruited for the absence of marijuana use/abuse by self-report. Changes in mRNA expression were measured using qRT-PCR. Clinical measurements collected included the MATRICS Cognitive Battery and the Positive and Negative Syndrome Scale. Levels of CB1R and CB2R mRNA in PBMCs were significantly higher in participants with schizophrenia compared to the non-clinical controls. Additionally, CB1R and CB2R mRNA levels correlated with impairments in cognitive processing and clinical symptom severity in multiple domains. These results continue to support dysregulation of particular aspects of the endocannabinoid signaling system in participants with schizophrenia selected for the self-reported absence of marijuana abuse/dependence.
Collapse
Affiliation(s)
- Kayla A Chase
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; University of California, Department of Psychiatry, 9500 Gilman Drive, MC 8505, La Jolla, San Diego, CA 92037, USA
| | - Benjamin Feiner
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA
| | - Cherise Rosen
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA
| | - David P Gavin
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA
| | - Rajiv P Sharma
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Volk DW, Edelson JR, Lewis DA. Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophr Res 2016; 177:3-9. [PMID: 26972474 PMCID: PMC5018248 DOI: 10.1016/j.schres.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Dysfunction of prefrontal cortex (PFC) inhibitory neurons that express the calcium-binding protein parvalbumin or the neuropeptide somatostatin in schizophrenia may be related to disturbances in the migration, phenotypic specification, and/or maturation of these neurons. These pre- and postnatal developmental stages are regulated in a cell type-specific manner by various transcription factors and co-activators, fibroblast growth factor receptors (FgfR), and other molecular markers. Consequently, we used quantitative PCR to quantify mRNA levels for these developmental regulators in the PFC of 62 schizophrenia subjects in whom parvalbumin and somatostatin neuron disturbances were previously reported, and in antipsychotic-exposed monkeys. Relative to unaffected comparison subjects, subjects with schizophrenia exhibited elevated mRNA levels for 1) the transcription factor MafB, which is expressed by parvalbumin and somatostatin neurons as they migrate from the medial ganglionic eminence to the cortex, 2) the transcriptional coactivator PGC-1α, which is expressed postnatally by parvalbumin neurons to maintain parvalbumin levels and inhibitory function, and 3) FgfR1, which is required for the migration and phenotypic specification of parvalbumin and somatostatin neurons. Elevations in these markers were most prominent in younger schizophrenia subjects and were not present in antipsychotic-exposed monkeys. Finally, expression levels of other important developmental regulators (i.e. Dlx1, Dlx5, Dlx6, SATB1, Sip1/Zeb2, ST8SIA4, cMaf, Nkx6.2, and Arx) were not altered in schizophrenia. The over-expression of a subset of molecular markers with distinct roles in the pre- and postnatal development of parvalbumin and somatostatin neurons might reflect compensatory mechanisms to sustain the development of these neurons in the face of other insults.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Corresponding Author: David W. Volk, MD, PhD, W1655 BST, 3811 O'Hara St, Pittsburgh, PA 15213, Tel: 412-648-9617,
| | - Jessica R. Edelson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Volk DW, Sampson AR, Zhang Y, Edelson JR, Lewis DA. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders. Psychol Med 2016; 46:2501-12. [PMID: 27328999 PMCID: PMC5584051 DOI: 10.1017/s0033291716001446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. METHOD Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. RESULTS Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. CONCLUSIONS These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Allan R. Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yun Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jessica R. Edelson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
21
|
Abstract
Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol 1) is synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary type 1 cannabinoid receptor (CB1R); 3) binds to CB1R, which inhibits gamma-aminobutyric acid release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase. Investigations of the endogenous cannabinoid system in the prefrontal cortex of subjects with schizophrenia have found evidence of higher metabolism of 2-arachidonylglycerol, as well as both greater CB1R receptor binding and lower levels of CB1R messenger RNA and protein. Current views on the potential pathogenesis of these alterations, including disturbances in the development of the endogenous cannabinoid system, are discussed. In addition, how interactions between these alterations in the endocannabinoid system and those in other inhibitory neurons in the prefrontal cortex in subjects with schizophrenia might increase the liability to adverse outcomes with cannabis use is considered.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
22
|
Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA. Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry 2015; 172:1112-21. [PMID: 26133963 PMCID: PMC5063256 DOI: 10.1176/appi.ajp.2015.15010019] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Immune-related abnormalities are commonly reported in schizophrenia, including higher mRNA levels for the viral restriction factor interferon-induced transmembrane protein (IFITM) in the prefrontal cortex. The authors sought to clarify whether higher IFITM mRNA levels and other immune-related disturbances in the prefrontal cortex are the consequence of an ongoing molecular cascade contributing to immune activation or the reflection of a long-lasting maladaptive response to an in utero immune-related insult. METHOD Quantitative polymerase chain reaction was employed to measure mRNA levels for immune-related cytokines and transcriptional regulators, including those reported to regulate IFITM expression, in the prefrontal cortex from 62 schizophrenia and 62 healthy subjects and from adult mice exposed prenatally to maternal immune activation or in adulthood to the immune stimulant poly(I:C). RESULTS Schizophrenia subjects had markedly higher mRNA levels for interleukin 6 (IL-6) (+379%) and interferon-β (+29%), which induce IFITM expression; lower mRNA levels for Schnurri-2 (-10%), a transcriptional inhibitor that lowers IFITM expression; and higher mRNA levels for nuclear factor-κB (+86%), a critical transcription factor that mediates cytokine regulation of immune-related gene expression. In adult mice that received daily poly(I:C) injections, but not in offspring with prenatal exposure to maternal immune activation, frontal cortex mRNA levels were also markedly elevated for IFITM (+304%), multiple cytokines including IL-6 (+493%), and nuclear factor-κB (+151%). CONCLUSIONS These data suggest that higher prefrontal cortex IFITM mRNA levels in schizophrenia may be attributable to adult, but not prenatal, activation of multiple immune markers and encourage further investigation into the potential role of these and other immune markers as therapeutic targets in schizophrenia.
Collapse
Affiliation(s)
- David W Volk
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| | - Anjani Chitrapu
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| | - Jessica R Edelson
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| | - Kaitlyn M Roman
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| | - Annie E Moroco
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| | - David A Lewis
- From the Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pa
| |
Collapse
|
23
|
Volk DW, Chitrapu A, Edelson JR, Lewis DA. Chemokine receptors and cortical interneuron dysfunction in schizophrenia. Schizophr Res 2015; 167:12-7. [PMID: 25464914 PMCID: PMC4427549 DOI: 10.1016/j.schres.2014.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/30/2023]
Abstract
Alterations in inhibitory (GABA) neurons, including deficiencies in the GABA synthesizing enzyme GAD67, in the prefrontal cortex in schizophrenia are pronounced in the subpopulations of neurons that contain the calcium-binding protein parvalbumin or the neuropeptide somatostatin. The presence of similar illness-related deficits in the transcription factor Lhx6, which regulates prenatal development of parvalbumin and somatostatin neurons, suggests that cortical GABA neuron dysfunction may be related to disturbances in utero. Since the chemokine receptors CXCR4 and CXCR7 guide the migration of cortical parvalbumin and somatostatin neurons from their birthplace in the medial ganglionic eminence to their final destination in the neocortex, we sought to determine whether altered CXCR4 and/or CXCR7 mRNA levels were associated with disturbances in GABA-related markers in schizophrenia. Quantitative PCR was used to quantify CXCR4 and CXCR7 mRNA levels in the prefrontal cortex of 62 schizophrenia and 62 healthy comparison subjects that were previously characterized for markers of parvalbumin and somatostatin neurons and in antipsychotic-exposed monkeys. We found elevated mRNA levels for CXCR7 (+29%; p<.0001) and CXCR4 (+14%, p=.052) in schizophrenia subjects but not in antipsychotic-exposed monkeys. CXCR7 mRNA levels were inversely correlated with mRNA levels for GAD67, parvalbumin, somatostatin, and Lhx6 in schizophrenia but not in healthy subjects. These findings suggest that higher mRNA levels for CXCR7, and possibly CXCR4, may represent a compensatory mechanism to sustain the migration and correct positioning of cortical parvalbumin and somatostatin neurons in the face of other insults that disrupt the prenatal development of cortical GABA neurons in schizophrenia.
Collapse
Affiliation(s)
- David W. Volk
- Departments of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213,Corresponding Author: David W. Volk, MD, PhD, W1655 BST, 3811 O’Hara St, Pittsburgh, PA 15213, Tel: 412-648-9617
| | - Anjani Chitrapu
- Departments of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213
| | - Jessica R. Edelson
- Departments of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Departments of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213, Departments of Neuroscience University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
24
|
Sirrs S, van Karnebeek CDM, Peng X, Shyr C, Tarailo-Graovac M, Mandal R, Testa D, Dubin D, Carbonetti G, Glynn SE, Sayson B, Robinson WP, Han B, Wishart D, Ross CJ, Wasserman WW, Hurwitz TA, Sinclair G, Kaczocha M. Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis 2015; 10:38. [PMID: 25885783 PMCID: PMC4423390 DOI: 10.1186/s13023-015-0248-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Fatty acid amide hydrolase 2 (FAAH2) is a hydrolase that mediates the degradation of endocannabinoids in man. Alterations in the endocannabinoid system are associated with a wide variety of neurologic and psychiatric conditions, but the phenotype and biochemical characterization of patients with genetic defects of FAAH2 activity have not previously been described. We report a male with autistic features with an onset before the age of 2 years who subsequently developed additional features including anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities but was otherwise cognitively intact as an adult. Methods and results Whole exome sequencing identified a rare missense mutation in FAAH2, hg19: g.57475100G > T (c.1372G > T) resulting in an amino acid change (p.Ala458Ser), which was Sanger confirmed as maternally inherited and absent in his healthy brother. Alterations in lipid metabolism with abnormalities of the whole blood acyl carnitine profile were found. Biochemical and molecular modeling studies confirmed that the p.Ala458Ser mutation results in partial inactivation of FAAH2. Studies in patient derived fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites. Conclusions We propose that genetic alterations in FAAH2 activity contribute to neurologic and psychiatric disorders in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Sirrs
- Departments of Medicine, University of British Columbia, Vancouver, Canada.
| | - Clara D M van Karnebeek
- Departments of Pediatrics, University of British Columbia, Vancouver, Canada. .,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Division of Biochemical Diseases, Rm K3-201, Department of Pediatrics, B.C. Children's Hospital, Centre for Molecular Medicine & Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada.
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, USA.
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Maja Tarailo-Graovac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Rupasri Mandal
- Departments of Biological and Computing Sciences, University of Alberta, Edmonton, T6G 2E8, Canada.
| | - Daniel Testa
- Half Hollow Hills High School, Dix Hills, NY, 11746, USA.
| | - Devin Dubin
- Half Hollow Hills High School, Dix Hills, NY, 11746, USA.
| | - Gregory Carbonetti
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| | - Bryan Sayson
- Departments of Pediatrics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada.
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Beomsoo Han
- Departments of Biological and Computing Sciences, University of Alberta, Edmonton, T6G 2E8, Canada.
| | - David Wishart
- Departments of Biological and Computing Sciences, University of Alberta, Edmonton, T6G 2E8, Canada.
| | - Colin J Ross
- Departments of Pediatrics, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | | - Graham Sinclair
- Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794-8480, USA. .,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| |
Collapse
|
25
|
Vaughn SE, Foley C, Lu X, Patel ZH, Zoller EE, Magnusen AF, Williams AH, Ziegler JT, Comeau ME, Marion MC, Glenn SB, Adler A, Shen N, Nath S, Stevens AM, Freedman BI, Tsao BP, Jacob CO, Kamen DL, Brown EE, Gilkeson GS, Alarcón GS, Reveille JD, Anaya JM, James JA, Moser KL, Criswell LA, Vilá LM, Alarcón-Riquelme ME, Petri M, Scofield RH, Kimberly RP, Ramsey-Goldman R, Binjoo Y, Choi J, Bae SC, Boackle SA, Vyse TJ, Guthridge JM, Namjou B, Gaffney PM, Langefeld CD, Kaufman KM, Kelly JA, Harley ITW, Harley JB, Kottyan LC. Lupus risk variants in the PXK locus alter B-cell receptor internalization. Front Genet 2015; 5:450. [PMID: 25620976 PMCID: PMC4288052 DOI: 10.3389/fgene.2014.00450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023] Open
Abstract
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
Collapse
Affiliation(s)
- Samuel E Vaughn
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | | | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Zubin H Patel
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Erin E Zoller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Adrienne H Williams
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Julie T Ziegler
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Mary E Comeau
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Miranda C Marion
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Nan Shen
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences Shanghai, China
| | - Swapan Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Anne M Stevens
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute Seattle, WA, USA ; Division of Rheumatology, Department of Pediatrics, University of Washington Seattle, WA, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Chaim O Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Diane L Kamen
- Division of Rheumatology, Medical University of South Carolina Charleston, SC, USA
| | - Elizabeth E Brown
- Department of Epidemiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Gary S Gilkeson
- Division of Rheumatology, Medical University of South Carolina Charleston, SC, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, Universidad del Rosario Bogota, Colombia
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Department of Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | - Kathy L Moser
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Lindsey A Criswell
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Research Center, Department of Medicine, University of California, San Francisco San Francisco, CA, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA
| | - Marta E Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia Granada, Spain
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA ; Department of Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA ; United States Department of Veterans Affairs Medical Center Oklahoma City, OK, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Young Binjoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Jeongim Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases Seoul, Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine Aurora, CO, USA
| | - Timothy J Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London London, UK
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Carl D Langefeld
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK, USA
| | - Isaac T W Harley
- Immunology Graduate Program and Medical Scientist Training Program, University of Cincinnati College of Medicine Cincinnati, OH, USA ; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; United States Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| |
Collapse
|
26
|
Volk DW, Eggan SM, Horti AG, Wong DF, Lewis DA. Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophr Res 2014; 159:124-9. [PMID: 25107849 PMCID: PMC4177350 DOI: 10.1016/j.schres.2014.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
The deleterious effects of cannabis use in schizophrenia have been linked, in part, to underlying disturbances in endogenous cannabinoid signaling in the prefrontal cortex. However, while receptor autoradiography studies of the primary cannabinoid receptor (CB1R) have consistently found higher CB1R binding in the prefrontal cortex in schizophrenia, deficits in CB1R mRNA levels and protein immunoreactivity have also been reported in the illness. To investigate this apparent discrepancy, we quantified CB1R binding using receptor autoradiography with the selective CB1R ligand [(3)H]-OMAR in the prefrontal cortex of 21 subjects with schizophrenia who were previously found to have lower levels of both CB1R mRNA using in situ hybridization and CB1R protein using radioimmunocytochemistry relative to matched healthy comparison subjects. We observed higher levels of [(3)H]-OMAR binding in the prefrontal cortex of schizophrenia subjects that did not appear to be attributable to psychotropic medications or substance abuse. The combination of lower levels of CB1R mRNA and immunoreactivity with higher CB1R receptor binding may reflect 1) altered trafficking of the receptor resulting in higher levels of membrane-bound CB1R or 2) higher CB1R affinity. In either case, greater CB1R receptor availability may contribute to the increased susceptibility of schizophrenia subjects to the deleterious effects of cannabis use.
Collapse
Affiliation(s)
- David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Stephen M Eggan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Andrew G Horti
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21287, United States
| | - Dean F Wong
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21287, United States; Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, United States; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
27
|
Volk DW, Edelson JR, Lewis DA. Cortical inhibitory neuron disturbances in schizophrenia: role of the ontogenetic transcription factor Lhx6. Schizophr Bull 2014; 40:1053-61. [PMID: 24837792 PMCID: PMC4133682 DOI: 10.1093/schbul/sbu068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Disturbances in parvalbumin- and somatostatin-containing neurons, including deficits in the gamma-aminobutyric acid (GABA)-synthesizing enzyme GAD67 in the prefrontal cortex (PFC) in schizophrenia, may be related to disrupted pre- and/or postnatal development. Deficits in the transcription factor Lhx6, which regulates parvalbumin and somatostatin neuron development, are associated with GAD67 deficits in schizophrenia. Therefore, we investigated the potential pre- and postnatal roles of Lhx6 in GABA-related disturbances using qPCR and/or in situ hybridization to quantify PFC levels of (1) Lhx6 mRNA in a new cohort of schizophrenia subjects; (2) Lhx6 mRNA in monkeys across postnatal development; (3) GABA-related mRNAs in Lhx6 heterozygous (Lhx6+/−) mice, which model Lhx6 deficits in schizophrenia; and (4) Lhx6 mRNA in GAD67+/− mice, which model GAD67 deficits in schizophrenia. Lhx6 mRNA levels were lower (−15%) in schizophrenia and correlated with lower GAD67 mRNA levels. In addition, Lhx6 mRNA levels declined 24% from the perinatal to prepubertal periods then stabilized in monkeys. Finally, GAD67, parvalbumin, and somatostatin mRNAs were not altered in Lhx6+/− mice, and Lhx6 mRNA was not altered in GAD67+/− mice. These data suggest that PFC Lhx6 and GAD67 mRNA deficits are common components of GABA neuron pathology in schizophrenia. An excessive early postnatal decline in Lhx6 mRNA might contribute to Lhx6 mRNA deficits in schizophrenia. However, a partial loss of Lhx6 is not sufficient in isolation to produce deficits in GAD67 mRNA and vice versa, suggesting that the concurrence of Lhx6 and GAD67 mRNA deficits in schizophrenia may instead be the consequence of a common upstream factor.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;,*To whom correspondence should be addressed; Department of Psychiatry, University of Pittsburgh, W1655 BST, 3811 O’Hara St, Pittsburgh, PA 15213, US; tel: 412-648-9617, fax: 412-624-9910, e-mail:
| | | | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Siegel BI, Sengupta EJ, Edelson JR, Lewis DA, Volk DW. Elevated viral restriction factor levels in cortical blood vessels in schizophrenia. Biol Psychiatry 2014; 76:160-7. [PMID: 24209773 PMCID: PMC3969896 DOI: 10.1016/j.biopsych.2013.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Higher tissue transcript levels of immune-related markers-including the recently discovered viral restriction factor interferon-induced transmembrane protein (IFITM), which inhibits viral entry and replication-have been reported in the prefrontal cortex in schizophrenia. Interestingly, mouse models of neuroinflammation have higher IFITM levels and deficits in γ-aminobutyric acid (GABA)-related markers that are similar to findings in schizophrenia, suggesting that a shared pathogenetic process might underlie diverse cortical pathology in the disorder. However, the cell types that overexpress IFITM messenger RNA (mRNA) in schizophrenia are unknown, and it is unclear whether higher IFITM mRNA levels are associated with lower GABA-related marker levels in the same schizophrenia subjects. METHODS We used quantitative polymerase chain reaction and in situ hybridization with film and grain counting analyses to quantify IFITM mRNA levels in prefrontal cortex area 9 of 57 schizophrenia and 57 healthy comparison subjects and in antipsychotic-exposed monkeys. RESULTS Quantitative polymerase chain reaction and in situ hybridization film analysis revealed markedly elevated IFITM mRNA levels (+114% and +117%, respectively) in prefrontal gray matter in schizophrenia. Interestingly, emulsion-dipped, Nissl-stained sections from schizophrenia and comparison subjects revealed IFITM mRNA expression in pia mater and blood vessels. The IFITM grain density over blood vessels was 71% higher in schizophrenia. The IFITM mRNA levels were negatively correlated with GABA-related mRNAs in the same schizophrenia subjects. CONCLUSIONS The finding that schizophrenia subjects with higher IFITM mRNA levels in cortical blood vessels have greater disturbances in cortical GABA neurons suggests that these cell-type distinct pathological disturbances might be influenced by a shared upstream insult that involves immune activation.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jessica R Edelson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
[Clinical prognosis of schizophrenic patients with cannabis addiction. Between nihilism and hope]. DER NERVENARZT 2013; 85:1084-92. [PMID: 24343109 DOI: 10.1007/s00115-013-3926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Comorbid substance use disorders in schizophrenia are mostly associated with an unfavorable course of the disease and with difficulties in clinical management. Therefore, some therapists tend to react to these patients in a resigned manner. However, there is growing evidence for higher cognitive functioning and less severe deficits in brain morphology of these patients compared to patients without cannabis use. A common interpretation refers to relatively low vulnerability for psychosis in some of these patients, who mainly became schizophrenic because of the pro-psychotic properties of cannabis. Low vulnerability is reflected by a higher cognitive functioning; therefore, the pessimistic view of therapists seems unjustified for at least a subgroup of young patients. Provided that patients are treated in adequate therapeutic settings and that they stop using cannabis, a lower vulnerability may be associated with overall better socio-rehabilitative outcome parameters.
Collapse
|