1
|
Chen Z, Ou Y, Ding Y, Wang Y, Li H, Liu F, Li P, Lv D, Liu Y, Lang B, Zhao J, Guo W. Abnormal eye movement, brain regional homogeneity in schizophrenia and clinical high-risk individuals and their associated gene expression profiles. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:64. [PMID: 40246913 PMCID: PMC12006367 DOI: 10.1038/s41537-025-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Clinical high-risk (CHR) is a prodromal period before psychosis characterized by attenuated, transient, or intermittent psychotic symptoms and declining functioning. They exhibit eye movement abnormalities and brain functional damage compared with schizophrenia, potentially increasing vulnerability to psychosis. This study investigates eye movement dysfunction and brain activity alterations in CHR and first-episode schizophrenia (FSZ) individuals to identify early biomarkers for psychosis progression. Twenty-seven drug-naïve FSZ, 25 CHR, and 28 healthy controls (HCs) were recruited for eye-tracking tasks and resting-state functional magnetic resonance imaging to evaluate eye movement and regional homogeneity (ReHo) differences. Machine-learning algorithms were used to differentiate FSZ from CHR. In combination with the Allen Human Brain Atlas (AHBA), transcriptome-neuroimaging analysis was applied to identify ReHo-related gene expression profiles. FSZ exhibited a wide range of eye movement abnormalities across multiple tasks, while certain abnormalities were already present in CHR. Abnormal ReHo alterations were found in orbitofrontal gyrus, temporal gyrus, and cingulum among three groups, associated with specific eye movement parameters. These differences in eye movement and ReHo allowed for high-accuracy discrimination between them. Genetic analysis identified significant genes in FSZ and CHR, enriched in various biological functions and pathways (all corrected p < 0.05). FSZ and CHR exhibited different eye movement and ReHo patterns, indicating potential as early biomarkers. Our findings reveal correlations between these ReHo patterns and gene expression profiles using AHBA database, shedding light on possible genetic mechanisms underlying brain function in FSZ and CHR.
Collapse
Affiliation(s)
- Zhaobin Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dongsheng Lv
- Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Zhang D, Xu L, Liu X, Cui H, Wei Y, Zheng W, Hong Y, Qian Z, Hu Y, Tang Y, Li C, Liu Z, Chen T, Liu H, Zhang T, Wang J. Eye Movement Characteristics for Predicting a Transition to Psychosis: Longitudinal Changes and Implications. Schizophr Bull 2025; 51:422-431. [PMID: 38245498 PMCID: PMC11908855 DOI: 10.1093/schbul/sbae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Substantive inquiry into the predictive power of eye movement (EM) features for clinical high-risk (CHR) conversion and their longitudinal trajectories is currently sparse. This study aimed to investigate the efficiency of machine learning predictive models relying on EM indices and examine the longitudinal alterations of these indices across the temporal continuum. STUDY DESIGN EM assessments (fixation stability, free-viewing, and smooth pursuit tasks) were performed on 140 CHR and 98 healthy control participants at baseline, followed by a 1-year longitudinal observational study. We adopted Cox regression analysis and constructed random forest prediction models. We also employed linear mixed-effects models (LMMs) to analyze longitudinal changes of indices while stratifying by group and time. STUDY RESULTS Of the 123 CHR participants who underwent a 1-year clinical follow-up, 25 progressed to full-blown psychosis, while 98 remained non-converters. Compared with the non-converters, the converters exhibited prolonged fixation durations, decreased saccade amplitudes during the free-viewing task; larger saccades, and reduced velocity gain during the smooth pursuit task. Furthermore, based on 4 baseline EM measures, a random forest model classified converters and non-converters with an accuracy of 0.776 (95% CI: 0.633, 0.882). Finally, LMMs demonstrated no significant longitudinal alterations in the aforementioned indices among converters after 1 year. CONCLUSIONS Aberrant EMs may precede psychosis onset and remain stable after 1 year, and applying eye-tracking technology combined with a modeling approach could potentially aid in predicting CHRs evolution into overt psychosis.
Collapse
Affiliation(s)
- Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhi Liu
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, PR China
- School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Tao Chen
- Labor and Worklife Program, Harvard University, Cambridge, MA, USA
- Big Data Research Lab, University of Waterloo, Waterloo, ON, Canada
- Niacin (Shanghai) Technology Co., Ltd., Shanghai, PR China
| | - Haichun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
3
|
Llapashtica E, Barbur JL, Haenschel C. Reduced Visual Function in Schizotypal Traits: An Exploratory Study. Schizophr Bull 2025; 51:S205-S213. [PMID: 40037828 PMCID: PMC11879504 DOI: 10.1093/schbul/sbae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND HYPOTHESIS Visual impairments have been proposed as risk factors for psychotic symptoms and illnesses. Visual impairments can considerably impact people's daily lives, but little is known about the impact and diagnostic sensitivity of such abnormalities for schizotypal personality traits. This study aims to explore possible relationships between schizotypy and visual acuity (VA), contrast sensitivity, and parameters that describe eye movements and visual processing times. STUDY DESIGN Schizotypy was assessed in 37 participants with the Multidimensional Schizotypy Scale-Brief (MSS-B). For the visual function measures, we used the Acuity-Plus test and the new Eye Movement and Integrated Saccade Latency (EMAIL) test. The latter measures oculomotor performance during an eye movement task, including the visual processing time at the end of each saccade. STUDY RESULTS The disorganized dimension of the schizotypy scores predicted VA when measured with black optotypes. Additionally, we found that participants who had higher disorganized scores showed an increased response variability, as assessed through the goodness of fit measure from the EMAIL test. CONCLUSIONS These results from this exploratory study extend upon earlier findings from both general and patient samples, highlighting the clinical and subclinical importance of understanding how spatial vision can be affected in people with schizotypal disorganized behavior.
Collapse
Affiliation(s)
| | - John L Barbur
- The Henry Wellcome Laboratories for Vision Science, Centre for Applied Vision Research, School of Health and Psychological Sciences, City, University of London, London, UK
| | | |
Collapse
|
4
|
Zhu J, Zhou L, Zhou Y, Lin Y, Cai Y, Wu J, Shi C. Diagnosis of schizophrenia by integrated saccade scores and associations with psychiatric symptoms, and functioning. Medicine (Baltimore) 2024; 103:e39935. [PMID: 39465854 PMCID: PMC11479490 DOI: 10.1097/md.0000000000039935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Eye movement as a neurobiological biomarker of schizophrenia. We aim to estimate diagnostic accuracy of integrated pro/antisaccade eye movement measurements to discriminate between healthy individuals and schizophrenic patients. We compared the eye movement performance of 85 healthy individuals and 116 schizophrenia-stable patients during prosaccade and antisaccade tasks. The difference eye movement measurements were accumulated by stepwise discriminant analysis to produce an integrated score. Finally, the diagnostic value of the integrated score was calculated by the receiver operating characteristic (ROC) area under the curve (AUC), and the best sensitivity and specificity were calculated based on the given cutoff values. Using discriminant analysis, an integrated score included the residual gain and latency (step) during the prosaccade test, the error rate, and the corrected error rate during the antisaccade test. We found that the integrated score could well classify schizophrenia patients and healthy individuals with an accuracy of 80.6%. In the ROC, Youden's index was 0.634 (sensitivity = 81.0%, specificity = 82.4%) and AUC was 0.871. There were significant difference patterns of correlation between the severity of psychiatric symptoms and daily functioning and diagnostic eye movement measurements. Using only 2 saccade tasks to discriminate well between schizophrenia patients and healthy controls, suggesting that abnormalities in saccade behavior is a potential biomarker and efficient diagnostic tool for identifying schizophrenia. The underlying neuropathologic mechanisms associated with abnormal saccades may provide insights into the intervention and diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Jiahui Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Li Zhou
- School of Education, Xinjiang Normal University, Xinjiang, China
| | - Yuanyuan Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yunhan Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yumei Cai
- Peking University Institute of Population Research, Beijing, China
| | - Jiayuan Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Christofalos AL, Laks M, Wolfer S, Dias EC, Javitt DC, Sheridan H. Lower-level oculomotor deficits in schizophrenia during multi-line reading: Evidence from return-sweeps. Q J Exp Psychol (Hove) 2024; 77:1533-1543. [PMID: 38053311 PMCID: PMC11214805 DOI: 10.1177/17470218231220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Reading fluency deficits in schizophrenia (Sz) have been attributed to dysfunction in both lower-level, oculomotor processing and higher-level, lexical processing, according to the two-hit deficit model. Given that prior work examining reading deficits in individuals with Sz has primarily focused on single-line and single-word reading tasks, eye movements that are unique to passage reading, such as return-sweep saccades, have not yet been examined in Sz. Return-sweep saccades are large eye movements that are made when readers move from the end of one line to the beginning of the next line during natural passage reading. Examining return-sweeps provides an opportunity to examine lower-level, oculomotor deficits during reading under circumstances when upcoming higher-level, lexical information is not available for visual processing because visual acuity constraints do not permit detailed lexical processing of line-initial words when return-sweeps are programmed. To examine the source of reading deficits in Sz, we analysed an existing data set in which participants read multi-line passages with manipulations to line spacing. Readers with Sz made significantly more return-sweep targeting errors followed by corrective saccades compared with healthy controls. Both groups showed similar effects of line spacing on return-sweep targeting accuracy, suggesting similar sensitivities to visual crowding during reading. Furthermore, the patterns of fixation durations in readers with Sz corroborate prior work indicating reduced parafoveal processing of upcoming words. Together, these findings suggest that lower-level visual and oculomotor dysfunction contribute to reading deficits in Sz, providing support for the two-hit deficit model.
Collapse
Affiliation(s)
- Andriana L Christofalos
- Department of Psychology, University at Albany, State University of New York, Albany, NY, USA
| | - Madison Laks
- Department of Psychology, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie Wolfer
- Program in Cognitive Neuroscience and Schizophrenia, Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elisa C Dias
- Program in Cognitive Neuroscience and Schizophrenia, Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Daniel C Javitt
- Program in Cognitive Neuroscience and Schizophrenia, Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Heather Sheridan
- Department of Psychology, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
6
|
Ekin M, Akdal G, Bora E. Antisaccade error rates in first-episode psychosis, ultra-high risk for psychosis and unaffected relatives of schizophrenia: A systematic review and meta-analysis. Schizophr Res 2024; 266:41-49. [PMID: 38367611 DOI: 10.1016/j.schres.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Antisaccade, which is described as looking at the opposite location of the target, is an eye movements paradigm used for assessing cognitive functions in schizophrenia. Initiation and sustainment of saccades in antisaccade are managed by frontal and parietal cortical areas. Antisaccade abnormalities are well-established findings in schizophrenia. However, studies in the early phases of psychotic disorders and clinical/familial risk for psychosis reported inconsistent findings. The current systematic review aimed to review the results of studies investigating antisaccade error rates in first-episode psychosis (FEP), individuals with ultra-high-risk for psychosis (UHRP), and familial-high-risk for psychosis (FHRP) compared to healthy controls. METHOD A meta-analysis of 17 studies was conducted to quantitatively review antisaccade errors in FEP, UHR-P and FHRP. The error rate (Hedges'g) was compared between the total of 860 FEP, UHRP, FHRP, and 817 healthy controls. Hedges' g for effect size, I2 for estimating the percentage of variability, and publication bias were evaluated through the R software. RESULTS The outcomes of this meta-analysis suggested that FEP is associated with a robust deficit in the antisaccade error rate (g = 1.16, CI = 0.95-1.38). Additionally, both the clinical and familial high-risk groups showed small but significant increases in AS errors (g = 0.26, CI = 0.02-0.52 and g = 0.34, CI = 0.13-0.55, respectively). CONCLUSION The large effect size estimated for FEP was compatible with previously reported results in chronic schizophrenia patients. Additionally, relatives had abnormalities with small to medium effect sizes and significant differences. The current findings suggest that antisaccade errors might be a potential endophenotype for psychotic disorders.
Collapse
Affiliation(s)
- Merve Ekin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey; Institude of Psychology, SWPS University, Warsaw, Poland.
| | - Gülden Akdal
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey; Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
8
|
Chen X, Wang S, Yang X, Yu C, Ni F, Yang J, Tian Y, Ye J, Liu H, Luo R. Utilizing artificial intelligence-based eye tracking technology for screening ADHD symptoms in children. Front Psychiatry 2023; 14:1260031. [PMID: 38034916 PMCID: PMC10682190 DOI: 10.3389/fpsyt.2023.1260031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Objective To explore the potential of using artificial intelligence (AI)-based eye tracking technology on a tablet for screening Attention-deficit/hyperactivity disorder (ADHD) symptoms in children. Methods We recruited 112 children diagnosed with ADHD (ADHD group; mean age: 9.40 ± 1.70 years old) and 325 typically developing children (TD group; mean age: 9.45 ± 1.59 years old). We designed a data-driven end-to-end convolutional neural network appearance-based model to predict eye gaze to permit eye-tracking under low resolution and sampling rates. The participants then completed the eye tracking task on a tablet, which consisted of a simple fixation task as well as 14 prosaccade (looking toward target) and 14 antisaccade (looking away from target) trials, measuring attention and inhibition, respectively. Results Two-way MANOVA analyses demonstrated that diagnosis and age had significant effects on performance on the fixation task [diagnosis: F(2, 432) = 8.231, ***p < 0.001; Wilks' Λ = 0.963; age: F(2, 432) = 3.999, *p < 0.019; Wilks' Λ = 0.982], prosaccade task [age: F(16, 418) = 3.847, ***p < 0.001; Wilks' Λ = 0.872], and antisaccade task [diagnosis: F(16, 418) = 1.738, *p = 0.038; Wilks' Λ = 0.938; age: F(16, 418) = 4.508, ***p < 0.001; Wilks' Λ = 0.853]. Correlational analyses revealed that participants with higher SNAP-IV score were more likely to have shorter fixation duration and more fixation intervals (r = -0.160, 95% CI [0.250, 0.067], ***p < 0.001), poorer scores on adjusted prosaccade accuracy, and poorer scores on antisaccade accuracy (Accuracy: r = -0.105, 95% CI [-0.197, -0.011], *p = 0.029; Adjusted accuracy: r = -0.108, 95% CI [-0.200, -0.015], *p = 0.024). Conclusion Our AI-based eye tracking technology implemented on a tablet could reliably discriminate eye movements of the TD group and the ADHD group, providing a potential solution for ADHD screening outside of clinical settings.
Collapse
Affiliation(s)
- Xiaolu Chen
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | | | - Xiaowen Yang
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Chunmei Yu
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Fang Ni
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Jie Yang
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Yu Tian
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Jiucai Ye
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Hao Liu
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| | - Rong Luo
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Le Boterff Q, Rabah A, Carment L, Bendjemaa N, Térémetz M, Alouit A, Levy A, Tanguy G, Morin V, Amado I, Cuenca M, Turc G, Maier MA, Krebs MO, Lindberg PG. A tablet-based quantitative assessment of manual dexterity for detection of early psychosis. Front Psychiatry 2023; 14:1200864. [PMID: 37435404 PMCID: PMC10330763 DOI: 10.3389/fpsyt.2023.1200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background We performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP. Methods Behavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (N = 20), schizophrenia (SCZ, N = 20), autism spectrum disorder (ASD, N = 20), and in healthy control subjects (N = 20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation. Results Compared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUC = 0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUC = 0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracy = 92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP. Conclusion FEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice.
Collapse
Affiliation(s)
- Quentin Le Boterff
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Ayah Rabah
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Loïc Carment
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Narjes Bendjemaa
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Maxime Térémetz
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Anaëlle Alouit
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Agnes Levy
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | | | | | | | | | - Guillaume Turc
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Marc A. Maier
- CNRS, Integrative Neuroscience and Cognition Center, Université Paris Cité, Paris, France
| | - Marie-Odile Krebs
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Påvel G. Lindberg
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
10
|
Lyu H, St Clair D, Wu R, Benson PJ, Guo W, Wang G, Liu Y, Hu S, Zhao J. Eye Movement Abnormalities Can Distinguish First-Episode Schizophrenia, Chronic Schizophrenia, and Prodromal Patients From Healthy Controls. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgac076. [PMID: 39145342 PMCID: PMC11207660 DOI: 10.1093/schizbullopen/sgac076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background This study attempts to replicate in a Chinese population an earlier UK report that eye movement abnormalities can accurately distinguish schizophrenia (SCZ) cases from healthy controls (HCs). It also seeks to determine whether first-episode SCZ differ from chronic SCZ and whether these eye movement abnormalities are enriched in psychosis risk syndrome (PRS). Methods The training set included 104 Chinese HC and 60 Chinese patients with SCZ, and the testing set included 20 SCZ patients and 20 HC from a UK cohort. An additional 16 individuals with PRS were also enrolled. Eye movements of all participants were recorded during free-viewing, smooth pursuit, and fixation stability tasks. Group differences in 55 performance measures were compared and a gradient-boosted decision tree model was built for predictive analyses. Results Extensive eye-movement abnormalities were observed in patients with SCZ on almost all eye-movement tests. On almost all individual variables, first-episode patients showed no statistically significant differences compared with chronic patients. The classification model was able to discriminate patients from controls with an area under the curve of 0.87; the model also classified 88% of PRS individuals as SCZ-like. Conclusions Our findings replicate and extend the UK results. The overall accuracy of the Chinese study is virtually identical to the UK findings. We conclude that eye-movement abnormalities appear early in the natural history of the disorder and can be considered as potential trait markers for SCZ diathesis.
Collapse
Affiliation(s)
- Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - David St Clair
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Renrong Wu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Philip J Benson
- Department of Psychology, University of Aberdeen, Aberdeen, UK
| | - Wenbin Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guodong Wang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
| | - Jingping Zhao
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Zhang D, Guo Q, Xu L, Liu X, Zhang T, Liu X, Chen H, Li G, Wang J. The impact of COVID-19 pandemic on individuals at clinical high-risk for psychosis: Evidence from eye-tracking measures. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110578. [PMID: 35618148 PMCID: PMC9126616 DOI: 10.1016/j.pnpbp.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggested that people with severe mental disorders were more vulnerable to the negative effects of the COVID-19 pandemic. However, few researches investigated the influence of global pandemics on people at clinical high risk (CHR) for psychosis. This study aimed to investigate the impact of the COVID-19 pandemic on clinical symptoms, psychological distress, and eye-tracking characteristics in CHR individuals and healthy participants. Forty-nine CHR individuals and 50 healthy controls (HC) were assessed by PTSD Checklist for DSM-5 (PCL-5), Perceived Stress Scale, 10-item version (PSS-10), and Coronavirus Impact Scale (CIS). Eye movement performances were measured by the tests of fixation stability, free-viewing, and anti-saccade. According to the mean score of CIS, participants were stratified into high-impact (n = 35) and low-impact (n = 64) subgroups. Compared with the HC group, CHR participants reported significantly higher levels of post-traumatic symptoms caused by the COVID-19 pandemic and showed abnormalities in most of the eye movement indexes. Among the altered indexes, the saccade amplitude of fixation stability test (far distractor), the scan path length of free-viewing test, and the accuracy of anti-saccade test were negatively affected by the severity of impact level in the CHR group. Moreover, the altered eye movement indexes were significantly associated with the total scores of CIS, PCL-5, and subscales of the Scale of Prodromal Syndromes (SOPS) among CHR individuals. Overall, our findings suggested the negative impact of the COVID-19 pandemic on the eye movement characteristics of CHR individuals. The present study provides valuable information on physiological distress related to the COVID-19 pandemic and sensitive neuropsychological biomarkers that interacted with social and environment stress in the CHR population.
Collapse
Affiliation(s)
- Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - TianHong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xiaohua Liu
- Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Haiying Chen
- Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Guanjun Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 201203, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
12
|
Zhang D, Xu L, Xie Y, Tang X, Hu Y, Liu X, Wu G, Qian Z, Tang Y, Liu Z, Chen T, Liu H, Zhang T, Wang J. Eye movement indices as predictors of conversion to psychosis in individuals at clinical high risk. Eur Arch Psychiatry Clin Neurosci 2022; 273:553-563. [PMID: 35857090 DOI: 10.1007/s00406-022-01463-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Eye movement abnormalities have been established as an "endophenotype" of schizophrenia. However, less is known about the possibility of these abnormalities as biomarkers for psychosis conversion among clinical high risk (CHR) populations. In the present study, 108 CHR individuals and 70 healthy controls (HC) underwent clinical assessments and eye-tracking tests, comprising fixation stability and free-viewing tasks. According to three-year follow-up outcomes, CHR participants were further stratified into CHR-converter (CHR-C; n = 21) and CHR-nonconverter (CHR-NC; n = 87) subgroups. Prediction models were constructed using Cox regression and logistic regression. The CHR-C group showed more saccades of the fixation stability test (no distractor) and a reduced saccade amplitude of the free-viewing test than HC. Moreover, the CHR-NC group exhibited excessive saccades and an increased saccade amplitude of the fixation stability test (no distractor; with distractor) compared with HC. Furthermore, two indices could effectively discriminate CHR-C from CHR-NC with an area under the receiver-operating characteristic (ROC) curve of 0.80, including the saccade number of the fixation stability test (no distractor) and the saccade amplitude of the free-viewing test. Combined with negative symptom scores of the Scale of Prodromal Symptoms, the area was 0.81. These findings support that eye movement alterations might emerge before the onset of clinically overt psychosis and could assist in predicting psychosis transition among CHR populations.
Collapse
Affiliation(s)
- Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Yuou Xie
- First Clinical Medical College of Nanjing Medical University, Nanjing, 211103, People's Republic of China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Guisen Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhi Liu
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Tao Chen
- Senior Research Fellow, Labor and Worklife Program, Harvard University, Cambridge, MA, USA.,Big Data Research Lab, University of Waterloo, Waterloo, ON, Canada.,Niacin (Shanghai) Technology Co., Ltd., Shanghai, People's Republic of China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, People's Republic of China. .,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Markers of Schizophrenia—A Critical Narrative Update. J Clin Med 2022; 11:jcm11143964. [PMID: 35887728 PMCID: PMC9323796 DOI: 10.3390/jcm11143964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a long-term mental disease, associated with functional impairment. Therefore, it is important to make an accurate diagnosis and implement the proper treatment. Biomarkers may be a potential tool for these purposes. Regarding advances in biomarker studies in psychosis, the current symptom-based criteria seem to be no longer sufficient in clinical settings. This narrative review describes biomarkers of psychosis focusing on the biochemical (peripheral and central), neurophysiological, neuropsychological and neuroimaging findings as well as the multimodal approach related with them. Endophenotype markers (especially neuropsychological and occulomotor disturbances) can be currently used in a clinical settings, whereas neuroimaging glutamate/glutamine and D2/D3 receptor density changes, as well as immunological Th2 and PRL levels, seem to be potential biomarkers that need further accuracy tests. When searching for biochemical/immunological markers in the diagnosis of psychosis, the appropriate time of body fluid collection needs to be considered to minimize the influence of the stress axis on their concentrations. In schizophrenia diagnostics, a multimodal approach seems to be highly recommended.
Collapse
|
14
|
Smith ES, Crawford TJ. Positive and Negative Symptoms Are Associated with Distinct Effects on Predictive Saccades. Brain Sci 2022; 12:brainsci12040418. [PMID: 35447950 PMCID: PMC9025332 DOI: 10.3390/brainsci12040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023] Open
Abstract
The predictive saccade task is a motor learning paradigm requiring saccades to track a visual target moving in a predictable pattern. Previous research has explored extensively anti-saccade deficits observed across psychosis, but less is known about predictive saccade-related mechanisms. The dataset analysed came from the studies of Crawford et al, published in 1995, where neuroleptically medicated schizophrenia and bipolar affective disorder patients were compared with non-medicated patients and control participants using a predictive saccade paradigm. The participant groups consisted of medicated schizophrenia patients (n = 40), non-medicated schizophrenia patients (n = 18), medicated bipolar disorder patients (n = 14), non-medicated bipolar disorder patients (n = 18), and controls (n = 31). The current analyses explore relationships between predictive saccades and symptomatology, and the potential interaction of medication. Analyses revealed that the schizophrenia and bipolar disorder diagnostic categories are indistinguishable in patterns of predictive control across several saccadic parameters, supporting a dimensional hypothesis. Once collapsed into predominantly high-/low- negative/positive symptoms, regardless of diagnosis, differences were revealed, with significant hypometria and lower gain in those with more negative symptoms. This illustrates how the presentation of the deficits is homogeneous across diagnosis, but heterogeneous when surveyed by symptomatology; attesting that a diagnostic label is less informative than symptomatology when exploring predictive saccades.
Collapse
Affiliation(s)
- Eleanor S. Smith
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Trevor J. Crawford
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK
- Correspondence:
| |
Collapse
|
15
|
Zhou J, Li J, Zhao Q, Ou P, Zhao W. Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Front Psychiatry 2022; 13:899344. [PMID: 35990059 PMCID: PMC9389215 DOI: 10.3389/fpsyt.2022.899344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The negative influence on the cognitive ability of schizophrenia is one of the issues widely discussed in recent years. Working memory deficits are thought to be a core cognitive symptom of schizophrenia and lead to poorer social functions and worse academic performance. Previous studies have confirmed that working memory deficits tend to appear in the prodromal phase of schizophrenia. Therefore, considering that children with schizophrenia have better brain plasticity, it is critical to explore the development of their working memory. Although the research in this field developed gradually in recent years, few researchers have summarized these findings. The current study aims to review the recent studies from both behavior and neuroimaging aspects to summarize the working memory deficits of children with schizophrenia and to discuss the pathogenic factors such as genetic susceptibility. In addition, this study put forward some practicable interventions to improve cognitive symptoms of schizophrenia from psychological and neural perspectives.
Collapse
Affiliation(s)
- Jintao Zhou
- School of Psychology, Nanjing Normal University, Nanjing, China.,Department of Psychology, Fudan University, Shanghai, China
| | - Jingfangzhou Li
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Peixin Ou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Smith ES, Crawford TJ. Memory-Guided Saccades in Psychosis: Effects of Medication and Stimulus Location. Brain Sci 2021; 11:1071. [PMID: 34439693 PMCID: PMC8393375 DOI: 10.3390/brainsci11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The memory-guided saccade task requires the remembrance of a peripheral target location, whilst inhibiting the urge to make a saccade ahead of an auditory cue. The literature has explored the endophenotypic deficits associated with differences in target laterality, but less is known about target amplitude. The data presented came from Crawford et al. (1995), employing a memory-guided saccade task among neuroleptically medicated and non-medicated patients with schizophrenia (n = 31, n = 12), neuroleptically medicated and non-medicated bipolar affective disorder (n = 12, n = 17), and neurotypical controls (n = 30). The current analyses explore the relationships between memory-guided saccades toward targets with different eccentricities (7.5° and 15°), the discernible behaviour exhibited amongst diagnostic groups, and cohorts distinguished based on psychotic symptomatology. Saccade gain control and final eye position were reduced among medicated-schizophrenia patients. These metrics were reduced further among targets with greater amplitudes (15°), indicating greater deficit. The medicated cohort exhibited reduced gain control and final eye positions in both amplitudes compared to the non-medicated cohort, with deficits markedly observed for the furthest targets. No group differences in symptomatology (positive and negative) were reported, however, a greater deficit was observed toward the larger amplitude. This suggests that within the memory-guided saccade paradigm, diagnostic classification is more prominent in characterising disparities in saccade performance than symptomatology.
Collapse
Affiliation(s)
- Eleanor S. Smith
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor J. Crawford
- Department of Psychology, Centre for Ageing Research, Lancaster University, Lancaster LA1 4YF, UK;
| |
Collapse
|
17
|
Ultrasound for Gaze Estimation-A Modeling and Empirical Study. SENSORS 2021; 21:s21134502. [PMID: 34209332 PMCID: PMC8272146 DOI: 10.3390/s21134502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
Most eye tracking methods are light-based. As such, they can suffer from ambient light changes when used outdoors, especially for use cases where eye trackers are embedded in Augmented Reality glasses. It has been recently suggested that ultrasound could provide a low power, fast, light-insensitive alternative to camera-based sensors for eye tracking. Here, we report on our work on modeling ultrasound sensor integration into a glasses form factor AR device to evaluate the feasibility of estimating eye-gaze in various configurations. Next, we designed a benchtop experimental setup to collect empirical data on time of flight and amplitude signals for reflected ultrasound waves for a range of gaze angles of a model eye. We used this data as input for a low-complexity gradient-boosted tree machine learning regression model and demonstrate that we can effectively estimate gaze (gaze RMSE error of 0.965 ± 0.178 degrees with an adjusted R2 score of 90.2 ± 4.6).
Collapse
|
18
|
Athanasopoulos F, Saprikis OV, Margeli M, Klein C, Smyrnis N. Towards Clinically Relevant Oculomotor Biomarkers in Early Schizophrenia. Front Behav Neurosci 2021; 15:688683. [PMID: 34177483 PMCID: PMC8222521 DOI: 10.3389/fnbeh.2021.688683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
In recent years, psychiatric research has focused on the evaluation and implementation of biomarkers in the clinical praxis. Oculomotor function deviances are among the most consistent and replicable cognitive deficits in schizophrenia and have been suggested as viable candidates for biomarkers. In this narrative review, we focus on oculomotor function in first-episode psychosis, recent onset schizophrenia as well as individuals at high risk for developing psychosis. We critically discuss the evidence for the possible utilization of oculomotor function measures as diagnostic, susceptibility, predictive, monitoring, and prognostic biomarkers for these conditions. Based on the current state of research we conclude that there are not sufficient data to unequivocally support the use of oculomotor function measures as biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Fotios Athanasopoulos
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Orionas-Vasilis Saprikis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Myrto Margeli
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Christoph Klein
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| |
Collapse
|
19
|
Giersch A, Huard T, Park S, Rosen C. The Strasbourg Visual Scale: A Novel Method to Assess Visual Hallucinations. Front Psychiatry 2021; 12:685018. [PMID: 34177666 PMCID: PMC8219930 DOI: 10.3389/fpsyt.2021.685018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The experience of oneself in the world is based on sensory afferences, enabling us to reach a first-perspective perception of our environment and to differentiate oneself from the world. Visual hallucinations may arise from a difficulty in differentiating one's own mental imagery from externally-induced perceptions. To specify the relationship between hallucinations and the disorders of the self, we need to understand the mechanisms of hallucinations. However, visual hallucinations are often under reported in individuals with psychosis, who sometimes appear to experience difficulties describing them. We developed the "Strasbourg Visual Scale (SVS)," a novel computerized tool that allows us to explore and capture the subjective experience of visual hallucinations by circumventing the difficulties associated with verbal descriptions. This scale reconstructs the hallucinated image of the participants by presenting distinct physical properties of visual information, step-by-step to help them communicate their internal experience. The strategy that underlies the SVS is to present a sequence of images to the participants whose choice at each step provides a feedback toward re-creating the internal image held by them. The SVS displays simple images on a computer screen that provide choices for the participants. Each step focuses on one physical property of an image, and the successive choices made by the participants help them to progressively build an image close to his/her hallucination, similar to the tools commonly used to generate facial composites. The SVS was constructed based on our knowledge of the visual pathways leading to an integrated perception of our environment. We discuss the rationale for the successive steps of the scale, and to which extent it could complement existing scales.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Strasbourg, France.,Department of Psychiatry, University Hospital of Strasbourg, Strasbourg, France
| | - Thomas Huard
- University of Strasbourg, INSERM U1114, Strasbourg, France
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Cherise Rosen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Carment L, Dupin L, Guedj L, Térémetz M, Krebs MO, Cuenca M, Maier MA, Amado I, Lindberg PG. Impaired attentional modulation of sensorimotor control and cortical excitability in schizophrenia. Brain 2020; 142:2149-2164. [PMID: 31099820 PMCID: PMC6598624 DOI: 10.1093/brain/awz127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 03/10/2019] [Indexed: 11/14/2022] Open
Abstract
Impairments in attentional, working memory and sensorimotor processing have been consistently reported in schizophrenia. However, the interaction between cognitive and sensorimotor impairments and the underlying neural mechanisms remains largely uncharted. We hypothesized that altered attentional processing in patients with schizophrenia, probed through saccadic inhibition, would partly explain impaired sensorimotor control and would be reflected as altered task-dependent modulation of cortical excitability and inhibition. Twenty-five stabilized patients with schizophrenia, 17 unaffected siblings and 25 healthy control subjects were recruited. Subjects performed visuomotor grip force-tracking alone (single-task condition) and with increased cognitive load (dual-task condition). In the dual-task condition, two types of trials were randomly presented: trials with visual distractors (requiring inhibition of saccades) or trials with addition of numbers (requiring saccades and addition). Both dual-task trial types required divided visual attention to the force-tracking target and to the distractor or number. Gaze was measured during force-tracking tasks, and task-dependent modulation of cortical excitability and inhibition were assessed using transcranial magnetic stimulation. In the single-task, patients with schizophrenia showed increased force-tracking error. In dual-task distraction trials, force-tracking error increased further in patients, but not in the other two groups. Patients inhibited fewer saccades to distractors, and the capacity to inhibit saccades explained group differences in force-tracking performance. Cortical excitability at rest was not different between groups and increased for all groups during single-task force-tracking, although, to a greater extent in patients (80%) compared to controls (40%). Compared to single-task force-tracking, the dual-task increased cortical excitability in control subjects, whereas patients showed decreased excitability. Again, the group differences in cortical excitability were no longer significant when failure to inhibit saccades was included as a covariate. Cortical inhibition was reduced in patients in all conditions, and only healthy controls increased inhibition in the dual-task. Siblings had similar force-tracking and gaze performance as controls but showed altered task-related modulation of cortical excitability and inhibition in dual-task conditions. In patients, neuropsychological scores of attention correlated with visuomotor performance and with task-dependant modulation of cortical excitability. Disorganization symptoms were greatest in patients with weakest task-dependent modulation of cortical excitability. This study provides insights into neurobiological mechanisms of impaired sensorimotor control in schizophrenia showing that deficient divided visual attention contributes to impaired visuomotor performance and is reflected in impaired modulation of cortical excitability and inhibition. In siblings, altered modulation of cortical excitability and inhibition is consistent with a genetic risk for cortical abnormality.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Laura Guedj
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Macarena Cuenca
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS GDR3557, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Life Sciences, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| |
Collapse
|
21
|
Suh DY, Vandekar SN, Heckers S, Avery SN. Visual exploration differences during relational memory encoding in early psychosis. Psychiatry Res 2020; 287:112910. [PMID: 32200141 PMCID: PMC7176542 DOI: 10.1016/j.psychres.2020.112910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/17/2023]
Abstract
Relational memory, or the ability to form contextual associations among items encountered closely in time, is impaired in schizophrenia. The ability to bind items into a relational memory is dependent on the hippocampus, a region that is abnormal in schizophrenia. However, the hippocampus is also involved in exploratory behavior, leaving open the question whether relational memory deficits in schizophrenia are due to failure of relational binding or diminished visual exploration of individual items during encoding. We studied visual exploration patterns during the encoding of face-scene pairs in 66 healthy control subjects and 69 early psychosis patients, to test the hypothesis that differences in visual exploration during the encoding phase can explain task accuracy differences between the two groups. Psychosis patients had lower explicit test accuracy and were less likely to transition from mouth to eyes during encoding. The visual exploration pattern differences between groups did not mediate the relationship between group and explicit test accuracy. We conclude that early psychosis patients have an abnormal pattern of binding items together during encoding that warrants further research.
Collapse
Affiliation(s)
- David Y Suh
- Vanderbilt University School of Medicine, Nashville, TN USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA.
| |
Collapse
|
22
|
Kleineidam L, Frommann I, Ruhrmann S, Klosterkötter J, Brockhaus-Dumke A, Wölwer W, Gaebel W, Maier W, Wagner M, Ettinger U. Antisaccade and prosaccade eye movements in individuals clinically at risk for psychosis: comparison with first-episode schizophrenia and prediction of conversion. Eur Arch Psychiatry Clin Neurosci 2019; 269:921-930. [PMID: 30635714 DOI: 10.1007/s00406-018-0973-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/19/2018] [Indexed: 02/03/2023]
Abstract
Saccadic eye movements are well-described markers of cerebral function and have been widely studied in schizophrenia spectrum populations. However, less is known about saccades in individuals clinically at risk for schizophrenia. Therefore, we studied individuals in an at-risk mental state (ARMS) (N = 160), patients in their first episode of schizophrenia (N = 32) and healthy controls (N = 75). N = 88 ARMS participants showed an early at-risk mental state (E-ARMS), defined by cognitive-perceptive basic symptoms (COPER) or a combination of risk and loss of function, whereas N = 72 were in a late at-risk mental state (L-ARMS), defined by attenuated psychotic symptoms or brief limited intermittent psychotic symptoms. We examined prosaccades, reflecting overt attentional shifts, and antisaccades, measuring inhibitory control, as well as their relationship as an indicator of the interplay of bottom-up and top-down influences. L-ARMS but not E-ARMS participants had increased antisaccade latencies compared to controls. First-episode patients had higher antisaccade error rates compared to E-ARMS participants and controls, and increased latencies compared to all other groups. Prosaccade latencies did not differ between groups. We observed the expected negative correlation between prosaccade latency and antisaccade error rate, indicating that individuals with shorter prosaccade latencies made more antisaccade errors. The magnitude of the association did not differ between groups. No saccadic measure predicted conversion to psychosis within 2 years. These findings confirm the existence of antisaccade impairments in patients with schizophrenia and provide evidence that volitional response generation in the antisaccade task may be affected even before onset of clinically overt psychosis.
Collapse
Affiliation(s)
- Luca Kleineidam
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Ingo Frommann
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Joachim Klosterkötter
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Anke Brockhaus-Dumke
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Rheinhessen-Fachklinik Alzey, Dautenheimer Landstraße 66, 55232, Alzey, Germany
| | - Wolfgang Wölwer
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| |
Collapse
|
23
|
Obyedkov I, Skuhareuskaya M, Skugarevsky O, Obyedkov V, Buslauski P, Skuhareuskaya T, Waszkiewicz N. Saccadic eye movements in different dimensions of schizophrenia and in clinical high-risk state for psychosis. BMC Psychiatry 2019; 19:110. [PMID: 30961571 PMCID: PMC6454611 DOI: 10.1186/s12888-019-2093-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oculomotor dysfunction is one of the most replicated findings in schizophrenia. However the association between saccadic abnormalities and particular clinical syndromes remains unclear. The assessment of saccadic movements in schizophrenia patients as well as in clinical high-risk state for psychosis individuals (CHR) as a part of schizophrenia continuum may be useful in validation of saccadic movements as a possible biomarker. METHODS The study included 156 patients who met the ICD-10 criteria for schizophrenia: 42 individuals at clinical high-risk-state for psychosis and 61 healthy controls. The schizophrenia patients had three subgroups based on the sum of the global SAPS and SANS scores: (1) patients with predominantly negative symptoms (NS, n = 62); (2) patients with predominantly positive symptoms (PS, n = 54) (3) patients with predominantly disorganization symptoms (DS, n = 40). CHR subjects were characterized by the presence of one of the groups of criteria: (1) Ultra High Risk criteria, (2) Basic Symptoms criteria or (3) negative symptoms and formal thought disorders. Horizontal eye movements were recorded by using videonystagmograph. We measured peak velocity, latency and accuracy in prosaccade, antisaccade and predictive saccade tasks as well as error rates in the antisaccade task. RESULTS Schizophrenia patients performed worse than controls in predictive, reflexive and antisaccade tasks. Oculomotor parameters of NS were different from the other groups of patients. Latencies of predictive and reflexive saccades were significantly longer than in controls only in the NS group. The accuracy of predictive saccades was also different from controls only in the NS schizophrenia group. More prominent loss of accuracy of reflexive saccades was found in the DS group and it significantly differed from the one in other groups. Participants from DS group made more errors in antisaccade task compared to NS and PS groups. CHR subjects performed worse than controls as measured by the accuracy of reflexive saccades and antisaccades. CONCLUSIONS The study confirms the existence of different relations between the symptom dimensions of schizophrenia and saccades tasks performances. Saccadic abnormalities were revealed in the clinical (schizophrenia) and pre-clinical (clinical high risk) populations that provide further evidence for assessing saccadic abnormalities as a possible neurobiological marker for schizophrenia.
Collapse
Affiliation(s)
- Ilya Obyedkov
- Republican Research and Practice Center for Mental Health, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Maryna Skuhareuskaya
- Republican Research and Practice Center for Mental Health, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Oleg Skugarevsky
- 0000 0004 0452 5023grid.21354.31Department of Psychiatry and Medical Psychology, Belarusian State Medical University, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Victor Obyedkov
- 0000 0004 0452 5023grid.21354.31Department of Psychiatry and Medical Psychology, Belarusian State Medical University, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Pavel Buslauski
- Republican Research and Practice Center for Mental Health, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Tatsiana Skuhareuskaya
- 0000 0004 0452 5023grid.21354.31Department of Psychiatry and Medical Psychology, Belarusian State Medical University, Dolginovsky Tract, 152, 220053 Minsk, Belarus
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Plac Brodowicza 1, 16-070, Choroszcz, Poland.
| |
Collapse
|
24
|
Shiferaw B, Downey L, Crewther D. A review of gaze entropy as a measure of visual scanning efficiency. Neurosci Biobehav Rev 2019; 96:353-366. [DOI: 10.1016/j.neubiorev.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022]
|
25
|
Hirjak D, Meyer-Lindenberg A, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as research domain in the period preceding manifest schizophrenia: A systematic review. Neurosci Biobehav Rev 2018; 87:87-105. [DOI: 10.1016/j.neubiorev.2018.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
|
26
|
Galindo L, Bergé D, Murray GK, Mané A, Bulbena A, Pérez V, Vilarroya O. Default Mode Network Aberrant Connectivity Associated with Neurological Soft Signs in Schizophrenia Patients and Unaffected Relatives. Front Psychiatry 2017; 8:298. [PMID: 29375404 PMCID: PMC5767074 DOI: 10.3389/fpsyt.2017.00298] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Brain connectivity and neurological soft signs (NSS) are reportedly abnormal in schizophrenia and unaffected relatives, suggesting they might be useful neurobiological markers of the illness. NSS are discrete sensorimotor impairments thought to correspond to deviant brain development. Although NSS support the hypothesis that schizophrenia involves disruption in functional circuits involving several hetero modal association areas, little is known about the relationship between NSS and brain connectivity. We explored functional connectivity abnormalities of the default mode network (DMN) related to NSS in schizophrenia. A cross-sectional study was performed with 27 patients diagnosed with schizophrenia, 23 unaffected relatives who were unrelated to the schizophrenia subjects included in the study, and 35 healthy controls. Subjects underwent magnetic resonance imaging scans including a functional resting-state acquisition and NSS evaluation. Seed-to-voxel and independent component analyses were used to study brain connectivity. NSS scores were significantly different between groups, ranging from a higher to lower scores for patients, unaffected relatives, and healthy controls, respectively (analysis of variance effect of group F = 56.51, p < 0.001). The connectivity analysis revealed significant hyperconnectivity in the fusiform gyrus, insular and dorsolateral prefrontal cortices, inferior and middle frontal gyri, middle and superior temporal gyri, and posterior cingulate cortex [minimum p-family wise error (FWE) < 0.05 for all clusters] in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE < 0.05 for all clusters) in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE = 0.001) and in the anterior prefrontal cortex (42 voxels, p-FWE = 0.047). A negative correlation was found between left caudate connectivity and NSS [p-FWE = 0.044, cluster size (k) = 110 voxels]. These findings support the theory of widespread abnormal connectivity in schizophrenia, reinforcing DMN hyperconnectivity and NSS as neurobiological markers of schizophrenia. The results also indicate the caudate nucleus as the gateway to the motor consequences of abnormal DMN connectivity.
Collapse
Affiliation(s)
- Liliana Galindo
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Bergé
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom.,Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anna Mané
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Antonio Bulbena
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Pérez
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Oscar Vilarroya
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|