1
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity as an Index of Auditory Short-Term Plasticity: Associations with Cortisol, Inflammation, and Gray Matter Volume in Youth at Clinical High Risk for Psychosis. Clin EEG Neurosci 2025; 56:46-59. [PMID: 39552576 DOI: 10.1177/15500594241294035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mismatch negativity (MMN) event-related potential (ERP) component reduction, indexing N-methyl-D-aspartate receptor (NMDAR)-dependent auditory echoic memory and short-term plasticity, is a well-established biomarker of schizophrenia that is sensitive to psychosis risk among individuals at clinical high-risk (CHR-P). Based on the NMDAR-hypofunction model of schizophrenia, NMDAR-dependent plasticity is predicted to contribute to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia during late adolescence or young adulthood, including gray matter loss. Moreover, stress and inflammation disrupt plasticity. Therefore, using data collected during the 8-center North American Prodrome Longitudinal Study (NAPLS-2), we explored relationships between MMN amplitudes and salivary cortisol, gray matter volumes, and inflammatory cytokines. Participants included 303 CHR-P individuals with baseline electroencephalography (EEG) data recorded during an MMN paradigm as well as structural magnetic resonance imaging (MRI) and salivary cortisol, of which a subsample (n = 57) also completed blood draws. More deficient MMN amplitudes were associated with greater salivary cortisol and pro-inflammatory cytokine levels in future CHR-Converters, but not among those who did not convert to psychosis within the next two years. More deficient MMN amplitude was also associated with smaller total gray matter volume across participants regardless of future clinical outcomes, and with subcortical gray matter volumes among future CHR-Converters only. These findings are consistent with the theory that deficient NMDAR-dependent plasticity results in an overabundance of weak synapses that are subject to over-pruning during psychosis onset, contributing to gray matter loss. Further, MMN plasticity mechanisms may interact with stress, cortisol, and neuroinflammatory processes, representing a proximal influence of psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Peter M Bachman
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
| | - Erica Duncan
- Mental Health Service, Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason K Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Mental Health Service, Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| | - Margaret A Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
- Mental Health Service, Veterans Affairs Boston Health Care System, Brockton, MA, USA
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
2
|
Song P, Yuan X, Li X, Song X, Wang Y. Multi-Loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia. IEEE J Biomed Health Inform 2024; 28:6395-6404. [PMID: 38117620 DOI: 10.1109/jbhi.2023.3337661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported combining multimodal data can offer complementary information for better depicting the abnormalities of SCZ. However, the existing multimodal-based methods have multiple limitations. First, most approaches cannot fully use the relationships among different modalities for the downstream tasks. Second, representing multimodal data by the modality-common and modality-specific components can improve the performance of multimodal analysis but often be ignored. Third, most methods conduct the model for classification or regression, thus a unified model is needed for finishing these tasks simultaneously. To this end, a multi-loss disentangled generative-discriminative learning (MDGDL) model was developed to tackle these issues. Specifically, using disentangled learning method, the genes and gut microbial biomarkers were represented and separated into two modality-specific vectors and one modality-common vector. Then, a generative-discriminative framework was introduced to uncover the relationships between fMRI features and these three latent vectors, further producing the attentive vectors, which can help fMRI features for the downstream tasks. To validate the performance of MDGDL, an SCZ classification task and a cognitive score regression task were conducted. Results showed the MDGDL achieved superior performance and identified the most important multimodal biomarkers for the SCZ. Our proposed model could be a supplementary approach for multimodal data analysis. Based on this method, we could analyze the SCZ by combining multimodal data, and further obtain some interesting findings.
Collapse
|
3
|
Wei Y, Su W, Zhang T, Webler R, Tang X, Zheng Y, Tang Y, Xu L, Cui H, Zhu J, Qian Z, Ju M, Long B, Zhao J, Chen C, Zeng L, Zhang T, Wang J. Structural and functional abnormalities across clinical stages of psychosis: A multimodal neuroimaging investigation. Asian J Psychiatr 2024; 99:104153. [PMID: 39047353 DOI: 10.1016/j.ajp.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Structural and functional neurobiological abnormalities have been observed in schizophrenia. Previous studies have concentrated on specific illness stages, obscuring relationships between functional/structural changes and disorder progression. The present study aimed to quantify structural and functional abnormalities across different clinical stages using functional near-infrared spectroscopy (fNIRS) and structural magnetic resonance imaging (sMRI). METHODS Fifty-four participants with first-episode schizophrenia (FES), 120 with clinically high risk of psychosis (CHR), and 111 healthy controls (HCs) underwent functional near-infrared spectroscopy (fNIRS) to measure oxyhemoglobin (Oxy-Hb) during the verbal fluency task. Among them, 28FES, 64CHR and 55HC also finished sMRI. Oxy-Hb and gray matter volume (GMV) were compared among the three groups while controlling for covariates, including age, sex, years of education, and task performance. Mediation analysis was utilized to determine the mediating effect of GMV on Oxy-Hb and cognition. RESULTS Compared with the HC group, CHR and FES groups showed significantly reduced brain activity. However, there were no significant differences between the FES and CHR. Pronounced GMV increase in the right frontal pole area (F = 4.234, p = 0.016) was identified in the CHR and FES groups. Mediation analysis showed a significant mediation effect of the right frontal pole GMV between Channel 31 Oxy-Hb and processing speed (z = 2.105, p = 0.035) and attention/vigilance (z = 1.992, p = 0.046). CONCLUSIONS Brain activation and anatomical deficits were observed in different brain regions, suggesting that anatomical and functional abnormalities are dissociated in the early stages of psychosis. The relationship between neural activity and anatomy may reflect a specific pathophysiology related to cognitive deterioration in schizophrenia.
Collapse
Affiliation(s)
- Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tingyu Zhang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Ryan Webler
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, United States
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuchen Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Junjuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mingliang Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bin Long
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jian Zhao
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Chen
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyun Zeng
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, ShenZhen, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
4
|
Thalhammer M, Schulz J, Scheulen F, Oubaggi MEM, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Avram M, Brandl F, Sorg C. Distinct Volume Alterations of Thalamic Nuclei Across the Schizophrenia Spectrum. Schizophr Bull 2024; 50:1208-1222. [PMID: 38577901 PMCID: PMC11349018 DOI: 10.1093/schbul/sbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal thalamic nuclei volumes and their link to cognitive impairments have been observed in schizophrenia. However, whether and how this finding extends to the schizophrenia spectrum is unknown. We hypothesized a distinct pattern of aberrant thalamic nuclei volume across the spectrum and examined its potential associations with cognitive symptoms. STUDY DESIGN We performed a FreeSurfer-based volumetry of T1-weighted brain MRIs from 137 healthy controls, 66 at-risk mental state (ARMS) subjects, 89 first-episode psychosis (FEP) individuals, and 126 patients with schizophrenia to estimate thalamic nuclei volumes of six nuclei groups (anterior, lateral, ventral, intralaminar, medial, and pulvinar). We used linear regression models, controlling for sex, age, and estimated total intracranial volume, both to compare thalamic nuclei volumes across groups and to investigate their associations with positive, negative, and cognitive symptoms. STUDY RESULTS We observed significant volume alterations in medial and lateral thalamic nuclei. Medial nuclei displayed consistently reduced volumes across the spectrum compared to controls, while lower lateral nuclei volumes were only observed in schizophrenia. Whereas positive and negative symptoms were not associated with reduced nuclei volumes across all groups, higher cognitive scores were linked to lower volumes of medial nuclei in ARMS. In FEP, cognition was not linked to nuclei volumes. In schizophrenia, lower cognitive performance was associated with lower medial volumes. CONCLUSIONS Results demonstrate distinct thalamic nuclei volume reductions across the schizophrenia spectrum, with lower medial nuclei volumes linked to cognitive deficits in ARMS and schizophrenia. Data suggest a distinctive trajectory of thalamic nuclei abnormalities along the course of schizophrenia.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Scheulen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed El Mehdi Oubaggi
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kirschner
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Felix Brandl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Wang Y, Fan L, He Y, Yuan L, Li Z, Zheng W, Tang J, Li C, Jin K, Liu W, Chen X, Ouyang L, Ma X. Compensatory thickening of cortical thickness in early stage of schizophrenia. Cereb Cortex 2024; 34:bhae255. [PMID: 38897816 DOI: 10.1093/cercor/bhae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Brain structural abnormality has been observed in the prodromal and early stages of schizophrenia, but the mechanism behind it is not clear. In this study, to explore the association between cortical abnormalities, metabolite levels, inflammation levels and clinical symptoms of schizophrenia, 51 drug-naive first-episode schizophrenia (FES) patients, 51 ultra-high risk for psychosis (UHR), and 51 healthy controls (HC) were recruited. We estimated gray matter volume (GMV), cortical thickness (CT), concentrations of different metabolites, and inflammatory marks among four groups (UHR converted to psychosis [UHR-C], UHR unconverted to psychosis [UHR-NC], FES, HC). UHR-C group had more CT in the right lateral occipital cortex and the right medial orbito-frontal cortex (rMOF), while a significant reduction in CT of the right fusiform cortex was observed in FES group. UHR-C group had significantly higher concentration of IL-6, while IL-17 could significantly predict CT of the right fusiform and IL-4 and IL-17 were significant predictors of CT in the rMOF. To conclude, it is reasonable to speculate that the increased CT in UHR-C group is related to the inflammatory response, and may participate in some compensatory mechanism, but might become exhaustive with the progress of the disease due to potential neurotoxic effects.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 Bd LaSalle, Verdun, Montreal, QC H4H 1R3, Canada
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, #165 Sanlin road, Pudong New Area,Shanghai 200124, China
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
6
|
Zhu Y, Maikusa N, Radua J, Sämann PG, Fusar-Poli P, Agartz I, Andreassen OA, Bachman P, Baeza I, Chen X, Choi S, Corcoran CM, Ebdrup BH, Fortea A, Garani RR, Glenthøj BY, Glenthøj LB, Haas SS, Hamilton HK, Hayes RA, He Y, Heekeren K, Kasai K, Katagiri N, Kim M, Kristensen TD, Kwon JS, Lawrie SM, Lebedeva I, Lee J, Loewy RL, Mathalon DH, McGuire P, Mizrahi R, Mizuno M, Møller P, Nemoto T, Nordholm D, Omelchenko MA, Raghava JM, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Smigielski L, Sugranyes G, Takahashi T, Tamnes CK, Tang J, Theodoridou A, Tomyshev AS, Uhlhaas PJ, Værnes TG, van Amelsvoort TAMJ, Waltz JA, Westlye LT, Zhou JH, Thompson PM, Hernaus D, Jalbrzikowski M, Koike S. Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk. Mol Psychiatry 2024; 29:1465-1477. [PMID: 38332374 PMCID: PMC11189817 DOI: 10.1038/s41380-024-02426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain
| | | | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bachman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J Peters VA Medical Center, New York City, NY, USA
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Ranjini Rg Garani
- Douglas Research Center; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Karsten Heekeren
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Tina D Kristensen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Romina Mizrahi
- Douglas Research Center; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Maria A Omelchenko
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russian Federation
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Jan I Røssberg
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tor G Værnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore County, Baltimore, MD, USA
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Si S, Bi A, Yu Z, See C, Kelly S, Ambrogi S, Arango C, Baeza I, Banaj N, Berk M, Castro-Fornieles J, Crespo-Facorro B, Crouse JJ, Díaz-Caneja CM, Fett AK, Fortea A, Frangou S, Goldstein BI, Hickie IB, Janssen J, Kennedy KG, Krabbendam L, Kyriakopoulos M, MacIntosh BJ, Morgado P, Nerland S, Pascual-Diaz S, Picó-Pérez M, Piras F, Rund BR, de la Serna E, Spalletta G, Sugranyes G, Suo C, Tordesillas-Gutiérrez D, Vecchio D, Radua J, McGuire P, Thomopoulos SI, Jahanshad N, Thompson PM, Barth C, Agartz I, James A, Kempton MJ. Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study. Mol Psychiatry 2024; 29:496-504. [PMID: 38195979 PMCID: PMC11116097 DOI: 10.1038/s41380-023-02343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Regional gray matter (GM) alterations have been reported in early-onset psychosis (EOP, onset before age 18), but previous studies have yielded conflicting results, likely due to small sample sizes and the different brain regions examined. In this study, we conducted a whole brain voxel-based morphometry (VBM) analysis in a large sample of individuals with EOP, using the newly developed ENIGMA-VBM tool. METHODS 15 independent cohorts from the ENIGMA-EOP working group participated in the study. The overall sample comprised T1-weighted MRI data from 482 individuals with EOP and 469 healthy controls. Each site performed the VBM analysis locally using the standardized ENIGMA-VBM tool. Statistical parametric T-maps were generated from each cohort and meta-analyzed to reveal voxel-wise differences between EOP and healthy controls as well as the individual-based association between GM volume and age of onset, chlorpromazine (CPZ) equivalent dose, and other clinical variables. RESULTS Compared with healthy controls, individuals with EOP showed widespread lower GM volume encompassing most of the cortex, with the most marked effect in the left median cingulate (Hedges' g = 0.55, p = 0.001 corrected), as well as small clusters of lower white matter (WM), whereas no regional GM or WM volumes were higher in EOP. Lower GM volume in the cerebellum, thalamus and left inferior parietal gyrus was associated with older age of onset. Deficits in GM in the left inferior frontal gyrus, right insula, right precentral gyrus and right superior frontal gyrus were also associated with higher CPZ equivalent doses. CONCLUSION EOP is associated with widespread reductions in cortical GM volume, while WM is affected to a smaller extent. GM volume alterations are associated with age of onset and CPZ equivalent dose but these effects are small compared to case-control differences. Mapping anatomical abnormalities in EOP may lead to a better understanding of the role of psychosis in brain development during childhood and adolescence.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01 MH121246 NIMH NIH HHS
- R01 MH134004 NIMH NIH HHS
- P50 MH115846 NIMH NIH HHS
- U01 MH124639 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz. YTOP cohort is suppoprted by The Research Council of Norway (223273, 213700, 250358, 288083); South-Eastern Norway Regional Health Authority (2017112); KG Jebsen Stiftelsen (SKGJ-MED-008).
- the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, (PI18/00976, PI20/00654, PI02100330), Ajut a la Recerca Pons Bartran, the Alicia Koplowitz Foundation, Brain and Behaviour Research Foundation (NARSAD Young Investigator Award 2017) and Strategic Research and Innovation Plan in Health (PERIS), Department of Health, Government of Catalonia.
- NHMRC Senior Principal Research Fellowship and Leadership 3 Investigator grant (1156072 and 2017131)
- Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024,. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz.
- the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024,. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz.
Collapse
Affiliation(s)
- Shuqing Si
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Anbreen Bi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Zhaoying Yu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Cheryl See
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sinead Kelly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Department of Psychiatry, CIBERSAM, IBiS-CSIC, Sevilla, Spain
| | - Jacob J Crouse
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Anne-Kathrin Fett
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, City, University of London, London, UK
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sophia Frangou
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lydia Krabbendam
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour (IBBA) Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marinos Kyriakopoulos
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 2CA-Braga Cinical Academic Center, Hospital de Braga, 4710-243, Braga, Portugal
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Saül Pascual-Diaz
- Laboratory of Surgical Neuroanatomy, Universitat de Barcelona, Barcelona, Spain
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Bjørn Rishovd Rund
- Research Department, Vestre Viken Hospital Trust, 3004, Drammen, Norway
- Department of Psychology, University of Oslo, P. O. box 1094, Blindern, 0317, Oslo, Norway
| | - Elena de la Serna
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chao Suo
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Diana Tordesillas-Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander (Cantabria), Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC), Santander (Cantabria), Spain
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Anthony James
- Department of Psychiatry, University of Oxford, Oxford, UK
- Highfield Unit, Warneford Hospital, Oxford, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Rasser PE, Ehlkes T, Schall U. Fronto-temporal cortical grey matter thickness and surface area in the at-risk mental state and recent-onset schizophrenia: a magnetic resonance imaging study. BMC Psychiatry 2024; 24:33. [PMID: 38191320 PMCID: PMC10775434 DOI: 10.1186/s12888-024-05494-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Studies to date examining cortical thickness and surface area in young individuals At Risk Mental State (ARMS) of developing psychosis have revealed inconsistent findings, either reporting increased, decreased or no differences compared to mentally healthy individuals. The inconsistencies may be attributed to small sample sizes, varying age ranges, different ARMS identification criteria, lack of control for recreational substance use and antipsychotic pharmacotherapy, as well as different methods for deriving morphological brain measures. METHODS A surfaced-based approach was employed to calculate fronto-temporal cortical grey matter thickness and surface area derived from magnetic resonance imaging (MRI) data collected from 44 young antipsychotic-naïve ARMS individuals, 19 young people with recent onset schizophrenia, and 36 age-matched healthy volunteers. We conducted group comparisons of the morphological measures and explored their association with symptom severity, global and socio-occupational function levels, and the degree of alcohol and cannabis use in the ARMS group. RESULTS Grey matter thickness and surface areas in ARMS individuals did not significantly differ from their age-matched healthy counterparts. However, reduced left-frontal grey matter thickness was correlated with greater symptom severity and lower function levels; the latter being also correlated with smaller left-frontal surface areas. ARMS individuals with more severe symptoms showed greater similarities to the recent onset schizophrenia group. The morphological measures in ARMS did not correlate with the lifetime level of alcohol or cannabis use. CONCLUSIONS Our findings suggest that a decline in function levels and worsening mental state are associated with morphological changes in the left frontal cortex in ARMS but to a lesser extent than those seen in recent onset schizophrenia. Alcohol and cannabis use did not confound these findings. However, the cross-sectional nature of our study limits our ability to draw conclusions about the potential progressive nature of these morphological changes in ARMS.
Collapse
Affiliation(s)
- Paul E Rasser
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tim Ehlkes
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
| | - Ulrich Schall
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- Centre for Brain & Mental Health Research, McAuley Centre, Mater Hospital, Waratah, NSW, 2298, Australia.
| |
Collapse
|
9
|
Moon SY, Park H, Lee W, Lee S, Lho SK, Kim M, Kim KW, Kwon JS. Magnetic resonance texture analysis reveals stagewise nonlinear alterations of the frontal gray matter in patients with early psychosis. Mol Psychiatry 2023; 28:5309-5318. [PMID: 37500824 DOI: 10.1038/s41380-023-02163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Although gray matter (GM) abnormalities are present from the early stages of psychosis, subtle/miniscule changes may not be detected by conventional volumetry. Texture analysis (TA), which permits quantification of the complex interrelationship between contrasts at the individual voxel level, may capture subtle GM changes with more sensitivity than does volume or cortical thickness (CTh). We performed three-dimensional TA in nine GM regions of interest (ROIs) using T1 magnetic resonance images from 101 patients with first-episode psychosis (FEP), 85 patients at clinical high risk (CHR) for psychosis, and 147 controls. Via principal component analysis, three features of gray-level cooccurrence matrix - informational measure of correlation 1 (IMC1), autocorrelation (AC), and inverse difference (ID) - were selected to analyze cortical texture in the ROIs that showed a significant change in volume or CTh in the study groups. Significant reductions in GM volume and CTh of various frontotemporal regions were found in the FEP compared with the controls. Increased frontal AC was found in the FEP group compared to the controls after adjusting for volume and CTh changes. While volume and CTh were preserved in the CHR group, a stagewise nonlinear increase in frontal IMC1 was found, which exceeded both the controls and FEP group. Increased frontal IMC1 was also associated with a lesser severity of attenuated positive symptoms in the CHR group, while neither volume nor CTh was. The results of the current study suggest that frontal IMC1 may reflect subtle, dynamic GM changes and the symptomatology of the CHR stage with greater sensitivity, even in the absence of gross GM abnormalities. Some structural mechanisms that may contribute to texture changes (e.g., macrostructural cortical lamina, neuropil/myelination, cortical reorganization) and their possible implications are explored and discussed. Texture may be a useful tool to investigate subtle and dynamic GM abnormalities, especially during the CHR period.
Collapse
Affiliation(s)
- Sun Young Moon
- Department of Public Health Service, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyungyou Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Won Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Subin Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | | | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Woong Kim
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Gangadin SS, Germann M, de Witte LD, Gelderman KA, Mandl RCW, Sommer IEC. Complement component 4A protein levels are negatively related to frontal volumes in patients with schizophrenia spectrum disorders. Schizophr Res 2023; 261:6-14. [PMID: 37678145 DOI: 10.1016/j.schres.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive C4A-gene expression may result in increased microglia-mediated synaptic pruning. As C4A overexpression is observed in schizophrenia spectrum disorders (SSD), this mechanism may account for the altered brain morphology (i.e. reduced volume and cortical thickness) and cognitive symptoms that characterize SSD. Therefore, this study investigates the association of C4A serum protein levels with brain morphology and cognition, and in particular whether this association differs between recent-onset SSD (n = 69) and HC (n = 40). METHODS Serum C4A protein levels were compared between groups. Main outcomes included total gray matter volume, mean cortical thickness and cognitive performance. Regression analysis on these outcomes included C4A level, group (SSD vs. HC), and C4A*Group interactions. All statistical tests were corrected for age, sex, BMI, and antipsychotic medication dose. Follow-up analyses were performed on separate brain regions and scores on cognitive sub-tasks. RESULTS The group difference in C4A levels was not statistically significant (p = 0.86). The main outcomes did not show a significant interaction effect (p > 0.13) or a C4A main effect (p > 0.27). Follow-up analyses revealed significant interaction effects for the left medial orbitofrontal and left frontal pole volumes (p < 0.001): C4A was negatively related to these volumes in SSD, but positively in HC. CONCLUSION This study demonstrated that C4A was negatively related to - specifically - frontal brain volumes in SSD, but this relation was inverse for HC. The results support the hypothesis of complement-mediated brain volume reduction in SSD. The results also suggest that C4A has a differential association with brain morphology in SSD compared to HC.
Collapse
Affiliation(s)
- S S Gangadin
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| | - M Germann
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - L D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - K A Gelderman
- Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - R C W Mandl
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - I E C Sommer
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
11
|
Melazzini L, Mazzocchi L, Vecchio A, Paredes A, Mensi MM, Ballante E, Paoletti M, Bastianello S, Balottin U, Borgatti R, Pichiecchio A. Magnetic resonance advanced imaging analysis in adolescents: cortical thickness study to identify attenuated psychosis syndrome. Neuroradiology 2023; 65:1447-1458. [PMID: 37524967 DOI: 10.1007/s00234-023-03200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Psychosis is a symptom common to several mental illnesses and a defining feature of schizophrenia spectrum disorders, whose onset typically occurs in adolescence. Neuroradiological studies have reported evidence of brain structural abnormalities in patients with overt psychosis. However, early identification of brain structural changes in young subjects at risk for developing psychosis (such as those with Attenuated Psychosis Syndrome -APS) is currently lacking. METHODS Brain 3D T1-weighted and 64 directions diffusion-weighted images were acquired on 55 help-seeking adolescents (12-17 years old) with psychiatric disorders who referred to our Institute. Patients were divided into three groups: non-APS (n = 20), APS (n = 20), and Early-Onset Psychosis (n = 15). Cortical thickness was calculated from T1w images, and Tract-Based Spatial Statistics analysis was performed to study the distribution of white matter fractional anisotropy and all diffusivity metrics. A thorough neuropsychological test battery was adopted to investigate cognitive performance in several domains. RESULTS In patients with Attenuated Psychotic Syndrome, the left superior frontal gyrus was significantly thinner compared to patients with non-APS (p = 0.048), and their right medial orbitofrontal cortex thickness was associated with lower working memory scores (p = 0.0025, r = -0.668 for the working memory index and p = 0.001, r = -0.738 for the digit span). Early-Onset Psychosis patients showed thinner left pars triangularis compared to non-APS individuals (p = 0.024), and their left pars orbitalis was associated with impaired performance at the symbol search test (p = 0.005, r = -0.726). No differences in diffusivity along main tracts were found between sub-groups (p > 0.05). CONCLUSION This study showed specific associations between structural imaging features and cognitive performance in patients with APS. Characterizing this disorder using neuroimaging could reveal useful information that may aid in the development and evaluation of preventive strategies in these individuals.
Collapse
Affiliation(s)
- Luca Melazzini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Laura Mazzocchi
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.
| | - Arianna Vecchio
- Child and Adolescent Neuropsychiatric Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Alexandra Paredes
- Faculty of Medicine and Surgery, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Martina M Mensi
- Child and Adolescent Neuropsychiatric Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Ballante
- BioData Science Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Stefano Bastianello
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Umberto Balottin
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Renato Borgatti
- Child and Adolescent Neuropsychiatric Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Holton KM, Chan SY, Brockmeier AJ, Öngür D, Hall MH. Exploring the influence of functional architecture on cortical thickness networks in early psychosis - A longitudinal study. Neuroimage 2023; 274:120127. [PMID: 37086876 DOI: 10.1016/j.neuroimage.2023.120127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Cortical thickness reductions differ between individuals with psychotic disorders and comparison subjects even in early stages of illness. Whether these reductions covary as expected by functional network membership or simply by spatial proximity has not been fully elucidated. Through orthonormal projective non-negative matrix factorization, cortical thickness measurements in functionally-annotated regions from MRI scans of early-stage psychosis and matched healthy controls were reduced in dimensionality into features capturing positive covariance. Rather than matching the functional networks, the covarying regions in each feature displayed a more localized spatial organization. With Bayesian belief networks, the covarying regions per feature were arranged into a network topology to visualize the dependency structure and identify key driving regions. The features demonstrated diagnosis-specific differences in cortical thickness distributions per feature, identifying reduction-vulnerable spatial regions. Differences in key cortical thickness features between psychosis and control groups were delineated, as well as those between affective and non-affective psychosis. Clustering of the participants, stratified by diagnosis and clinical variables, characterized the clinical traits that define the cortical thickness patterns. Longitudinal follow-up revealed that in select clusters with low baseline cortical thickness, clinical traits improved over time. Our study represents a novel effort to characterize brain structure in relation to functional networks in healthy and clinical populations and to map patterns of cortical thickness alterations among ESP patients onto clinical variables for a better understanding of brain pathophysiology.
Collapse
Affiliation(s)
- Kristina M Holton
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA.
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Austin J Brockmeier
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA.
| |
Collapse
|
13
|
Knolle F, Arumugham SS, Barker RA, Chee MWL, Justicia A, Kamble N, Lee J, Liu S, Lenka A, Lewis SJG, Murray GK, Pal PK, Saini J, Szeto J, Yadav R, Zhou JH, Koch K. A multicentre study on grey matter morphometric biomarkers for classifying early schizophrenia and parkinson's disease psychosis. NPJ Parkinsons Dis 2023; 9:87. [PMID: 37291143 PMCID: PMC10250419 DOI: 10.1038/s41531-023-00522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Psychotic symptoms occur in a majority of schizophrenia patients and in ~50% of all Parkinson's disease (PD) patients. Altered grey matter (GM) structure within several brain areas and networks may contribute to their pathogenesis. Little is known, however, about transdiagnostic similarities when psychotic symptoms occur in different disorders, such as in schizophrenia and PD. The present study investigated a large, multicenter sample containing 722 participants: 146 patients with first episode psychosis, FEP; 106 individuals in at-risk mental state for developing psychosis, ARMS; 145 healthy controls matching FEP and ARMS, Con-Psy; 92 PD patients with psychotic symptoms, PDP; 145 PD patients without psychotic symptoms, PDN; 88 healthy controls matching PDN and PDP, Con-PD. We applied source-based morphometry in association with receiver operating curves (ROC) analyses to identify common GM structural covariance networks (SCN) and investigated their accuracy in identifying the different patient groups. We assessed group-specific homogeneity and variability across the different networks and potential associations with clinical symptoms. SCN-extracted GM values differed significantly between FEP and Con-Psy, PDP and Con-PD, PDN and Con-PD, as well as PDN and PDP, indicating significant overall grey matter reductions in PD and early schizophrenia. ROC analyses showed that SCN-based classification algorithms allow good classification (AUC ~0.80) of FEP and Con-Psy, and fair performance (AUC ~0.72) when differentiating PDP from Con-PD. Importantly, the best performance was found in partly the same networks, including the thalamus. Alterations within selected SCNs may be related to the presence of psychotic symptoms in both early schizophrenia and PD psychosis, indicating some commonality of underlying mechanisms. Furthermore, results provide evidence that GM volume within specific SCNs may serve as a biomarker for identifying FEP and PDP.
Collapse
Affiliation(s)
- Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - Shyam S Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Roger A Barker
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Azucena Justicia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jimmy Lee
- Research Division, Institute of Mental Health, Singapore, Singapore
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Neuroscience and Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhishek Lenka
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
- Department of Neurology, Medstar Georgetown University School of Medicine, Washington, DC, USA
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jennifer Szeto
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Ravi Yadav
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
14
|
Prasad KM, Muldoon B, Theis N, Iyengar S, Keshavan MS. Multipronged investigation of morphometry and connectivity of hippocampal network in relation to risk for psychosis using ultrahigh field MRI. Schizophr Res 2023; 256:88-97. [PMID: 37196534 PMCID: PMC10363272 DOI: 10.1016/j.schres.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Hippocampal abnormalities are associated with psychosis-risk states. Given the complexity of hippocampal anatomy, we conducted a multipronged examination of morphometry of regions connected with hippocampus, and structural covariance network (SCN) and diffusion-weighted circuitry among 27 familial high-risk (FHR) individuals who were past the highest risk for conversion to psychoses and 41 healthy controls using ultrahigh-field high-resolution 7 Tesla (7T) structural and diffusion MRI data. We obtained fractional anisotropy and diffusion streams of white matter connections and examined correspondence of diffusion streams with SCN edges. Nearly 89 % of the FHR group had an axis-I disorder including 5 with schizophrenia. Therefore, we compared the entire FHR group regardless of the diagnosis (All_FHR = 27) and FHR-without-schizophrenia (n = 22) with 41 controls in this integrative multimodal analysis. We found striking volume loss in bilateral hippocampus, particularly the head, bilateral thalamus, caudate, and prefrontal regions. All_FHR and FHR-without-SZ SCNs showed significantly lower assortativity and transitivity but higher diameter compared to controls, but FHR-without-SZ SCN differed on every graph metric compared to All_FHR suggesting disarrayed network with no hippocampal hubs. Fractional anisotropy and diffusion streams were lower in FHR suggesting white matter network impairment. White matter edges showed significantly higher correspondence with SCN edges in FHR compared to controls. These differences correlated with psychopathology and cognitive measures. Our data suggest that hippocampus may be a "neural hub" contributing to psychosis risk. Higher correspondence of white matter tracts with SCN edges suggest that shared volume loss may be more coordinated among regions within the hippocampal white matter circuitry.
Collapse
Affiliation(s)
- Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States of America; VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America.
| | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
15
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Etyemez S, Narita Z, Mihaljevic M, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Cascella NG, Batt FD, Hua J, Faria A, Ishizuka K, Kamath V, Yang K, Sawa A. Brain regions associated with olfactory dysfunction in first episode psychosis patients. World J Biol Psychiatry 2023; 24:178-186. [PMID: 35678361 PMCID: PMC10503825 DOI: 10.1080/15622975.2022.2082526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Olfactory dysfunction is reproducibly reported in psychotic disorders, particularly in association with negative symptoms. The superior frontal gyrus (SFG) has been frequently studied in patients with psychotic disorders, in particular with their associations with negative symptoms. The relationship between olfactory functions and brain structure has been studied in healthy controls (HCs). Nevertheless, the studies with patients with psychotic disorders are limited. Here we report the olfactory-brain relationship in a first episode psychosis (FEP) cohort through both hypothesis-driven (centred on the SFG) and data-driven approaches. METHODS Using data from 88 HCs and 76 FEP patients, we evaluated the correlation between olfactory functions and structural/resting-state functional magnetic resonance imaging (MRI) data. RESULTS We found a significant correlation between the left SFG volume and odour discrimination in FEP patients, but not in HCs. We also observed a significant correlation between rs-fMRI connectivity involving the left SFG and odour discrimination in FEP patients, but not in HCs. The data-driven approach didn't observe any significant correlations, possibly due to insufficient statistical power. CONCLUSION The left SFG may be a promising brain region in the context of olfactory dysfunction and negative symptoms in FEP.
Collapse
Affiliation(s)
- Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marina Mihaljevic
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer M. Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frederick C. Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas W. Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Finn-Davis Batt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Andreia Faria
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
17
|
Longitudinal Changes in Cortical Surface Area Associated With Transition to Psychosis in Adolescents at Clinical High Risk for the Disease. J Am Acad Child Adolesc Psychiatry 2023; 62:593-600. [PMID: 36638884 DOI: 10.1016/j.jaac.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Identifying biomarkers of transition to psychosis in individuals at clinical high risk for psychosis (CHR-P) is essential to understanding the mechanisms underlying the disease. Although cross-sectional abnormalities in cortical surface area (CSA) have been demonstrated in individuals at CHR-P who transition to psychosis (CHR-P-T) compared with those who do not (CHR-P-NT), how CSA longitudinally develops remains unclear, especially in younger individuals. We set out to compare CSA in adolescents at CHR-P and healthy controls (HC) over 2 points in time. METHOD A longitudinal multicenter study was performed in adolescents at CHR-P in comparison to HC and according to transition to psychosis. Magnetic resonance imaging scans were acquired at baseline, at 18-month follow-up, or at the time of transition. Images were pre-processed and hemisphere and regional CSA were computed using FreeSurfer. Between-group analyses were performed with linear mixed-effects models. RESULTS A total of 313 scans (107 CHR-P and 102 HC) were included in the analysis. At 18 months, the rate of transition to psychosis in CHR-P was 23.4%. Adolescents at CHR-P-T presented greater age-related decrease in CSA in the left parietal and occipital lobes compared with HC, and in the bilateral parietal lobe and right frontal lobe relative to CHR-P-NT. These results were not influenced by antipsychotic treatment, cannabis use, or intelligence quotient (IQ). CONCLUSION Adolescents at CHR-P that developed a psychotic disorder presented different developmental trajectories of CSA relative to those who did not. A relatively greater decrease in CSA in the parietal and frontal lobes may index clinical transition to psychosis in adolescents at CHR-P.
Collapse
|
18
|
Lin B, Li XB, Ruan S, Wu YX, Zhang CY, Wang CY, Wang LB. Convergent and divergent gray matter volume abnormalities in unaffected first-degree relatives and ultra-high risk individuals of schizophrenia. SCHIZOPHRENIA 2022; 8:55. [PMID: 35853913 PMCID: PMC9261104 DOI: 10.1038/s41537-022-00261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
High-risk populations of schizophrenia can be mainly identified as genetic high-risk based on putative endophenotypes or ultra-high-risk (UHR) based on clinically manifested symptoms. Previous studies have consistently shown brain structural abnormalities in both genetic high-risk and UHR individuals. In this study, we aimed to disentangle the convergent and divergent pattern of gray matter alterations between UHR and unaffected first-degree relatives from genetic high-risk individuals. We used structural MRI scans and voxel-based morphometry method to examine gray matter volume (GMV) differences among 23 UHR subjects meeting the Structured Interview for Prodromal Syndromes (SIPS) criteria, 18 unaffected first-degree relatives (UFDR), 26 first-episode schizophrenia patients (FES) and 54 healthy controls (CN). We found that a number of brain regions exhibited a monotonically decreasing trend of GMV from CN to UFDR to UHR to FES. Compared with CN, the UHR subjects showed significant decreases of GMV similar to the patients in the inferior temporal gyrus, fusiform gyrus, middle occipital gyrus, insula, and limbic regions. Moreover, the UHR transformed subgroup had significantly lower GMV than UHR non-transformed subgroup in the right inferior temporal/fusiform gyrus. On the other hand, the UFDR subjects only showed significant GMV decreases in the inferior temporal gyrus and fusiform. Moreover, we found GMV in the occipital lobe was negatively correlated with the UHR subjects’ composite positive symptom of SIPS, and GMV in the cerebellum was positively correlated with FES subjects’ symptom severity. Our results suggest that GMV deficits and regional dysfunction are evident prior to the onset of psychosis and are more prominent in the UHR than the UFDR individuals.
Collapse
|
19
|
Cheung JP, Tubbs JD, Sham PC. Extended gene set analysis of human neuro-psychiatric traits shows enrichment in brain-expressed human accelerated regions across development. Schizophr Res 2022; 246:148-155. [PMID: 35779326 DOI: 10.1016/j.schres.2022.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
Human neuropsychiatric disorders are associated with genetic and environmental factors affecting the brain, which has been subjected to strong evolutionary pressures resulting in an enlarged cerebral cortex and improved cognitive performance. Thus, genes involved in human brain evolution may also play a role in neuropsychiatric disorders. We test whether genes associated with 7 neuropsychiatric phenotypes are enriched in genomic regions that have experienced rapid changes in human evolution (HARs) and importantly, whether HAR status interacts with developmental brain expression to predict associated genes. We used the most recent publicly available GWAS and gene expression data to test for enrichment of HARs, brain expression, and their interaction. These revealed significant interactions between HAR status and whole-brain expression across developmental stages, indicating that the relationship between brain expression and association with schizophrenia and intelligence is stronger among HAR than non-HAR genes. Follow-up regional analyses indicated that predicted HAR-expression interaction effects may vary substantially across regions and developmental stages. Although depression indicated significant enrichment of HAR genes, little support was found for HAR enrichment among bipolar, autism, ADHD, or Alzheimer's associated genes. Our results indicate that intelligence, schizophrenia, and depression-associated genes are enriched for those involved in the evolution of the human brain. These findings highlight promising candidates for follow-up study and considerations for novel drug development, but also caution careful assessment of the translational ability of animal models for studying neuropsychiatric traits in the context of HARs, and the importance of using humanized animal models or human-derived tissues when researching these traits.
Collapse
Affiliation(s)
- Justin P Cheung
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Baldwin H, Radua J, Antoniades M, Haas SS, Frangou S, Agartz I, Allen P, Andreassen OA, Atkinson K, Bachman P, Baeza I, Bartholomeusz CF, Chee MWL, Colibazzi T, Cooper RE, Corcoran CM, Cropley VL, Ebdrup BH, Fortea A, Glenthøj LB, Hamilton HK, Haut KM, Hayes RA, He Y, Heekeren K, Kaess M, Kasai K, Katagiri N, Kim M, Kindler J, Klaunig MJ, Koike S, Koppel A, Kristensen TD, Bin Kwak Y, Kwon JS, Lawrie SM, Lebedeva I, Lee J, Lin A, Loewy RL, Mathalon DH, Michel C, Mizrahi R, Møller P, Nelson B, Nemoto T, Nordholm D, Omelchenko MA, Pantelis C, Raghava JM, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Smigielski L, Sugranyes G, Suzuki M, Takahashi T, Tamnes CK, Tang J, Theodoridou A, Thomopoulos SI, Tomyshev AS, Uhlhaas PJ, Værnes TG, van Amelsvoort TAMJ, Van Erp TGM, Waltz JA, Westlye LT, Wood SJ, Zhou JH, McGuire P, Thompson PM, Jalbrzikowski M, Hernaus D, Fusar-Poli P. Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis. Transl Psychiatry 2022; 12:297. [PMID: 35882855 PMCID: PMC9325730 DOI: 10.1038/s41398-022-02057-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.
Collapse
Affiliation(s)
- Helen Baldwin
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK.
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Barcelona, Spain
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Cali F Bartholomeusz
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
| | - Michael W L Chee
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, New York City, NY, USA
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Carlton South, VIC, Australia
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J Peters VA Medical Center, New York City, NY, USA
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Carlton South, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Kristen M Haut
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Karsten Heekeren
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Kaess
- Department of Child and Adolescent Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Mallory J Klaunig
- Department of Psychology, University of Maryland, Baltimore County, MD, USA
| | - Shinsuke Koike
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Tina D Kristensen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Romina Mizrahi
- Douglas Research Center, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Maria A Omelchenko
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russian Federation
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Center for Mental Health, Parkville, VIC, Australia
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Glostrup, Denmark
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jan I Røssberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre Grow Up Well, The University of Newcastle, Newcastle, NSW, Australia
| | - Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Tor G Værnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Theo G M Van Erp
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Juan H Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Luna LP, Radua J, Fortea L, Sugranyes G, Fortea A, Fusar-Poli P, Smith L, Firth J, Shin JI, Brunoni AR, Husain MI, Husian MO, Sair HI, Mendes WO, Uchoa LRA, Berk M, Maes M, Daskalakis ZJ, Frangou S, Fornaro M, Vieta E, Stubbs B, Solmi M, Carvalho AF. A systematic review and meta-analysis of structural and functional brain alterations in individuals with genetic and clinical high-risk for psychosis and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110540. [PMID: 35240226 DOI: 10.1016/j.pnpbp.2022.110540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Neuroimaging findings in people at either genetic risk or at clinical high-risk for psychosis (CHR-P) or bipolar disorder (CHR-B) remain unclear. A meta-analytic review of whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies in individuals with genetic risk or CHR-P or CHR-B and controls identified 94 datasets (N = 7942). Notwithstanding no significant findings were observed following adjustment for multiple comparisons, several findings were noted at a more liberal threshold. Subjects at genetic risk for schizophrenia or bipolar disorder or at CHR-P exhibited lower gray matter (GM) volumes in the gyrus rectus (Hedges' g = -0.19). Genetic risk for psychosis was associated with GM reductions in the right cerebellum and left amygdala. CHR-P was associated with decreased GM volumes in the frontal superior gyrus and hypoactivation in the right precuneus, the superior frontal gyrus and the right inferior frontal gyrus. Genetic and CHR-P were associated with small structural and functional alterations involving regions implicated in psychosis. Further neuroimaging studies in individuals with genetic or CHR-B are warranted.
Collapse
Affiliation(s)
- Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Division of Neuroradiology, Postal Mail: 600 N Wolfe Street Phipps B100F, 21287 Baltimore, USA
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lydia Fortea
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | - Gisela Sugranyes
- Multimodal neuroimaging in high risk and early psychosis, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic, Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Barcelona, Spain
| | - Adriana Fortea
- Multimodal neuroimaging in high risk and early psychosis, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic, Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom; OASIS Service, South London and Maudsley National Health Service (NHS) Foundation Trust, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Maudsley Biomedical Research Centre, National Institute for Health Research, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Joseph Firth
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seodaemun-gu, C.P.O., Seoul, Republic of Korea
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, São Paulo 05403-000, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
| | - Muhammad I Husain
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Muhammad O Husian
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Haris I Sair
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Division of Neuroradiology, Postal Mail: 600 N Wolfe Street Phipps B100F, 21287 Baltimore, USA
| | - Walber O Mendes
- Department of Radiology, Hospital Universitário Walter Cantídio, Postal Mail: 1290 Pastor Samuel Munguba St, Rodolfo Teófilo, 60430-372 Fortaleza, Brazil
| | - Luiz Ricardo A Uchoa
- Department of Radiology, Hospital Geral de Fortaleza, Postal Mail: 900 Ávila Goulart Street, Papicu, Fortaleza 60175-295, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sophia Frangou
- Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; University of Barcelona, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Michele Fornaro
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Psychiatr, University School of Medicine Federico II, Naples, Italy
| | - Eduard Vieta
- Bipolar and depressive disorders group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Marco Solmi
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom; Department of Psychiatry, University of Ottawa, Ontario, Canada.; Department of Mental Health, The Ottawa Hospital, Ontario, Canada.; Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa Ontario.; School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Andre F Carvalho
- IMPACT Strategic Research Centre, Barwon Health, Deakin University School of Medicine, Geelong, Victoria, Australia.
| |
Collapse
|
22
|
Song P, Wang Y, Yuan X, Wang S, Song X. Exploring Brain Structural and Functional Biomarkers in Schizophrenia via Brain-Network-Constrained Multi-View SCCA. Front Neurosci 2022; 16:879703. [PMID: 35794950 PMCID: PMC9252525 DOI: 10.3389/fnins.2022.879703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have proved that dynamic regional measures extracted from the resting-state functional magnetic resonance imaging, such as the dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), could provide a great insight into brain dynamic characteristics of the schizophrenia. However, the unimodal feature is limited for delineating the complex patterns of brain deficits. Thus, functional and structural imaging data are usually analyzed together for uncovering the neural mechanism of schizophrenia. Investigation of neural function-structure coupling enables to find the potential biomarkers and further helps to understand the biological basis of schizophrenia. Here, a brain-network-constrained multi-view sparse canonical correlation analysis (BN-MSCCA) was proposed to explore the intrinsic associations between brain structure and dynamic brain function. Specifically, the d-fALFF was first acquired based on the sliding window method, whereas the gray matter map was computed based on voxel-based morphometry analysis. Then, the region-of-interest (ROI)-based features were extracted and further selected by performing the multi-view sparse canonical correlation analysis jointly with the diagnosis information. Moreover, the brain-network-based structural constraint was introduced to prompt the detected biomarkers more interpretable. The experiments were conducted on 191 patients with schizophrenia and 191 matched healthy controls. Results showed that the BN-MSCCA could identify the critical ROIs with more sparse canonical weight patterns, which are corresponding to the specific brain networks. These are biologically meaningful findings and could be treated as the potential biomarkers. The proposed method also obtained a higher canonical correlation coefficient for the testing data, which is more consistent with the results on training data, demonstrating its promising capability for the association identification. To demonstrate the effectiveness of the potential clinical applications, the detected biomarkers were further analyzed on a schizophrenia-control classification task and a correlation analysis task. The experimental results showed that our method had a superior performance with a 5-8% increment in accuracy and 6-10% improvement in area under the curve. Furthermore, two of the top-ranked biomarkers were significantly negatively correlated with the positive symptom score of Positive and Negative Syndrome Scale (PANSS). Overall, the proposed method could find the association between brain structure and dynamic brain function, and also help to identify the biological meaningful biomarkers of schizophrenia. The findings enable our further understanding of this disease.
Collapse
Affiliation(s)
- Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Hou J, Schmitt S, Zhao X, Wang J, Chen J, Mao Z, Qi A, Lu Z, Kircher T, Yang Y, Shi J. Neural Correlates of Facial Emotion Recognition in Non-help-seeking University Students With Ultra-High Risk for Psychosis. Front Psychol 2022; 13:812208. [PMID: 35756282 PMCID: PMC9226575 DOI: 10.3389/fpsyg.2022.812208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Since the introduction of the neurodevelopmental perspective of schizophrenia research on individuals at ultra-high risk for psychosis (UHR) has gained increasing interest, aiming at early detection and intervention. Results from fMRI studies investigating behavioral and brain functional changes in UHR during facial emotion recognition, an essential component of social cognition, showed heterogenous results, probably due clinical diversity across these investigations. This fMRI study investigated emotion recognition in a sub-group of the UHR spectrum, namely non-help-seeking, drug-naïve UHR with high cognitive functioning to reveal the neurofunctional underpinnings of their social functioning in comparison to healthy controls. Methods Two large cohorts of students from an elite University (n 1 = 4,040, n 2 = 4,364) were screened firstly with the Prodromal Questionnaires and by surpassing predefined cut-offs then interviewed with the semi-structured Interview for Psychosis-Risk Syndromes to verify their UHR status. Twenty-one identified non-help-seeking UHR and 23 non-UHR control subjects were scanned with functional magnetic resonance imaging while classifying emotions (i.e., neutral, happy, disgust and fear) in a facial emotion recognition task. Results Behaviorally, no group differences were found concerning accuracy, reaction times, sensitivity or specificity, except that non-help-seeking UHR showed higher specificity when recognizing neutral facial expressions. In comparison to healthy non-UHR controls, non-help-seeking UHR showed generally higher activation in the superior temporal and left Heschl's gyrus as well as in the somatosensory, insular and midcingulate cortex than the control subjects during the entire recognition task regardless of the emotion categories. In an exploratory analysis, in the non-help-seeking UHR group, functional activity in the left superior temporal gyrus was significantly correlated with deficits in the ability to experience emotions at uncorrected statistical thresholds. Conclusions Compared to healthy controls, non-help-seeking UHR show no behavioral deficits during facial emotion recognition, but functional hyperactivities in brain regions associated with this cognitive process. Our study may inspire future early intervention and provide loci for treatment using neural stimulation.
Collapse
Affiliation(s)
- Jiaojiao Hou
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Hannover Medical School, Clinics for Psychiatry, Social Psychiatry and Psychotherapy, Hannover, Germany
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Tongji University School of Medicine, Shanghai, China
| | - Jianxing Chen
- Tongji University School of Medicine, Shanghai, China
| | - Ziyu Mao
- Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ansi Qi
- Department of Medical Psychology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Lu
- Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Jingyu Shi
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
- Division of Medical Humanities and Behavioral Sciences, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Shared Transdiagnostic Neuroanatomical Signatures Across First-episode Patients with Major Psychiatric Diseases and Individuals at Familial Risk. Neuroimage Clin 2022; 35:103074. [PMID: 35691252 PMCID: PMC9194955 DOI: 10.1016/j.nicl.2022.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Nowadays, increasing evidence has found transdiagnostic neuroimaging biomarkers across major psychiatric disorders (MPDs). However, it remains to be known whether this transdiagnostic pattern of abnormalities could also be seen in individuals at familial high-risk for MPDs (FHR). We aimed to examine shared neuroanatomical endophenotypes and protective biomarkers for MPDs. METHODS This study examined brain grey matter volume (GMV) of individuals by voxel-based morphometry method. A total of 287 individuals were included, involving 100 first-episode medication-naive MPDs, 87 FHR, and 110 healthy controls (HC). They all underwent high-resolution structural magnetic resonance imaging (MRI). RESULTS At the group level, we found MPDs were characterized by decreased GMV in the right fusiform gyrus, the right inferior occipital gyrus, and the left anterior and middle cingulate gyri compared to HC and FHR. Of note, the GMV of the left superior temporal gyrus was increased in FHR relative to MPDs and HC. At the subgroup level, the comparisons within the FHR group did not return any significant difference, and we found GMV difference among subgroups within the MPDs group only in the opercular part of the right inferior frontal gyrus. CONCLUSION Together, our findings uncover common structural disturbances across MPDs and substantial changes in grey matter that may relate to high hereditary risk across FHR, potentially underscoring the importance of a transdiagnostic way to explore the neurobiological mechanisms of major psychiatric disorders.
Collapse
|
25
|
Zhao Y, Zhang Q, Shah C, Li Q, Sweeney JA, Li F, Gong Q. Cortical Thickness Abnormalities at Different Stages of the Illness Course in Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:560-570. [PMID: 35476125 PMCID: PMC9047772 DOI: 10.1001/jamapsychiatry.2022.0799] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
IMPORTANCE Questions of whether and how cortical thickness (CTh) alterations differ over the course of schizophrenia (SCZ) have yet to be resolved. OBJECTIVE To characterize CTh alterations across illness stages in SCZ. DATA SOURCES PubMed, Embase, Web of Science, and Science Direct were screened for CTh studies published before June 15, 2021. STUDY SELECTION Original studies comparing whole-brain CTh alterations from healthy controls in individuals at clinical high-risk (CHR), first episode of psychosis (FEP), and long-term illness stages of SCZ were included. DATA EXTRACTION AND SYNTHESIS This preregistered systematic review and meta-analysis followed PRISMA reporting guidelines. Separate and pooled meta-analyses were performed using seed-based d mapping. Meta-regression analyses were conducted. MAIN OUTCOMES AND MEASURES Cortical thickness differences from healthy control individuals across illness stages. RESULTS Ten studies comprising 859 individuals with CHR (mean [SD] age, 21.02 [2.66] years; male, 573 [66.7%]), 12 studies including 671 individuals with FEP (mean [SD] age, 22.87 [3.99] years; male, 439 [65.4%]), and 10 studies comprising 579 individuals with long-term SCZ (mean [SD] age, 41.58 [6.95] years; male, 396 [68.4%]) were included. Compared with healthy control individuals, individuals with CHR showed cortical thinning in bilateral medial prefrontal cortex (z = -1.01; P < .001). Individuals with FEP showed cortical thinning in right lateral superior temporal cortex (z = -1.34; P < .001), right anterior cingulate cortex (z = -1.44; P < .001), and right insula (z = -1.14; P = .002). Individuals with long-term SCZ demonstrated CTh reductions in right insula (z = -3.25; P < .001), right inferior frontal cortex (z = -2.19; P < .001), and left (z = -2.37; P < .001) and right (z = -1.94; P = .002) temporal pole. There were no significant CTh differences between CHR and FEP. Individuals with long-term SCZ showed greater cortical thinning in right insula (z = -2.58; P < .001), right inferior frontal cortex (z = -2.32; P < .001), left lateral temporal cortex (z = -1.91; P = .002), and right temporal pole (z = -1.82; P = .002) than individuals with FEP. Combining all studies on SCZ, accelerated age-related CTh reductions were found in bilateral lateral middle temporal cortex and right pars orbitalis in inferior frontal cortex. CONCLUSIONS AND RELEVANCE The absence of significant differences between FEP and CHR noted in this systematic review and meta-analysis suggests that the onset of psychosis was not associated with robust CTh reduction. The greater cortical thinning in long-term SCZ compared with FEP with accelerated age-related reduction in CTh suggests progressive neuroanatomic alterations following illness onset. Caution in interpretation is needed because heterogeneity in samples and antipsychotic treatment may confound these results.
Collapse
Affiliation(s)
- Youjin Zhao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Chandan Shah
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A. Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Fei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
26
|
Thalamic and striato-pallidal volumes in schizophrenia patients and individuals at risk for psychosis: A multi-atlas segmentation study. Schizophr Res 2022; 243:268-275. [PMID: 32448678 DOI: 10.1016/j.schres.2020.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Despite previous neuroimaging studies demonstrating morphological abnormalities of the thalamus and other subcortical structures in patients with schizophrenia, the potential role of the thalamus and its subdivisions in the pathophysiology of this illness remains elusive. It is also unclear whether similar changes of these structures occur in individuals at high risk for psychosis. In this study, magnetic resonance imaging was employed with the Multiple Automatically Generated Templates (MAGeT) brain segmentation algorithm to determine volumes of the thalamic subdivisions, the striatum (caudate, putamen, and nucleus accumbens), and the globus pallidus in 62 patients with schizophrenia, 38 individuals with an at-risk mental state (ARMS) [4 of whom (10.5%) subsequently developed schizophrenia], and 61 healthy subjects. Cognitive function of the patients was assessed by using the Brief Assessment of Cognition in Schizophrenia (BACS) and the Schizophrenia Cognition Rating Scale (SCoRS). Thalamic volume (particularly the medial dorsal and ventral lateral nuclei) was smaller in the schizophrenia group than the ARMS and control groups, while there were no differences for the striatum and globus pallidus. In the schizophrenia group, the reduction of thalamic ventral lateral nucleus volume was significantly associated with lower BACS score. The pallidal volume was positively correlated with the dose of antipsychotic treatment in the schizophrenia group. These results suggest that patients with schizophrenia, but not those with ARMS, exhibit volume reduction in specific thalamic subdivisions, which may underlie core clinical features of this illness.
Collapse
|
27
|
Morimoto C, Uematsu A, Nakatani H, Takano Y, Iwashiro N, Abe O, Yamasue H, Kasai K, Koike S. Volumetric differences in gray and white matter of cerebellar Crus I/II across the different clinical stages of schizophrenia. Psychiatry Clin Neurosci 2021; 75:256-264. [PMID: 34081816 DOI: 10.1111/pcn.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
AIM Schizophrenia is considered to be a disorder of progressive structural brain abnormalities. Previous studies have indicated that the cerebellar Crus I/II plays a critical role in schizophrenia. We aimed to investigate how specific morphological features in the Crus I/II at different critical stages of the schizophrenia spectrum contribute to the disease. METHODS The study involved 73 participants on the schizophrenia spectrum (28 with ultra-high risk for psychosis [UHR], 17 with first-episode schizophrenia [FES], and 28 with chronic schizophrenia) and 79 healthy controls. We undertook a detailed investigation into differences in Crus I/II volume using a semiautomated segmentation method optimized for the cerebellum. We analyzed the effects of group and sex, as well as their interaction, on Crus I/II volume in gray matter (GM) and white matter (WM). RESULTS Significant group × sex interactions were found in WM volumes of the bilateral Crus I/II; the males with UHR demonstrated significantly larger WM volumes compared with the other male groups, whereas no significant group differences were found in the female groups. Additionally, WM and GM volumes of the Crus I/II had positive associations with symptom severity in the UHR group, whereas, in contrast, GM volumes in the FES group were negatively associated with symptom severity. CONCLUSIONS The present findings provide evidence that the morphology of Crus I/II is involved in schizophrenia in a sex- and disease stage-dependent manner. Additionally, alterations of WM volumes of Crus I/II may have potential as a biological marker of early detection and treatment for individuals with UHR.
Collapse
Affiliation(s)
- Chie Morimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hironori Nakatani
- Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, Tokyo, Japan
| | - Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| |
Collapse
|
28
|
Fortea A, Batalla A, Radua J, van Eijndhoven P, Baeza I, Albajes-Eizagirre A, Fusar-Poli P, Castro-Fornieles J, De la Serna E, Luna LP, Carvalho AF, Vieta E, Sugranyes G. Cortical gray matter reduction precedes transition to psychosis in individuals at clinical high-risk for psychosis: A voxel-based meta-analysis. Schizophr Res 2021; 232:98-106. [PMID: 34029948 DOI: 10.1016/j.schres.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Gray matter and cortical thickness reductions have been documented in individuals at clinical high-risk for psychosis and may be more pronounced in those who transition to psychosis. However, these findings rely on small samples and are inconsistent across studies. In this review and meta-analysis we aimed to investigate neuroanatomical correlates of clinical high-risk for psychosis and potential predictors of transition, using a novel meta-analytic method (Seed-based d Mapping with Permutation of Subject Images) and cortical mask, combining data from surface-based and voxel-based morphometry studies. Individuals at clinical high-risk for psychosis who later transitioned to psychosis were compared to those who did not and to controls, and included three statistical maps. Overall, individuals at clinical high-risk for psychosis did not differ from controls, however, within the clinical high-risk for psychosis group, transition to psychosis was associated with less cortical gray matter in the right temporal lobe (Hedges' g = -0.377), anterior cingulate and paracingulate (Hedges' g = -0.391). These findings have the potential to help refine prognostic and etiopathological research in early psychosis.
Collapse
Affiliation(s)
- Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Center for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behavior, Center for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Anton Albajes-Eizagirre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Elena De la Serna
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Division of Neuroradiology, 600 N Wolfe Street Phipps B100F, 21287 Baltimore, MD, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Center of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
29
|
Germann M, Brederoo SG, Sommer IEC. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Curr Opin Psychiatry 2021; 34:222-227. [PMID: 33560023 PMCID: PMC8048735 DOI: 10.1097/yco.0000000000000696] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Excessive synaptic pruning has first been suggested by Irwin Feinberg (1982) as an important pillar in the pathophysiology in schizophrenia (SCZ). This article reviews recent developments highlighting factors implicated in aberrant synaptic pruning and its contribution to disease onset and emergence of cognitive symptoms in SCZ. Unraveling these factors provides new insights for potential prevention and treatment strategies for psychotic disorders. RECENT FINDINGS Increased pruning in SCZ was recently confirmed by a positron emission tomography-study employing the novel tracer [11C]UCB-J, demonstrating the consequential loss of synaptic density. Recent evidence supports the contributing role of astrocytes and increased complement-mediated microglial pruning in disease onset and cognitive symptoms in SCZ. Increased microglial pruning is mediated specifically by C4. Furthermore, environmental factors (e.g., infections and stress) can lead to dysbiosis which was recently linked to microglial activation and pruning in SCZ. SUMMARY Recent findings render the pruning machinery a potential target for early treatment and prevention in individuals at high risk for SCZ. Minocycline can improve cognition in SCZ, probably by reducing excessive pruning. Probiotics might also have beneficial effects on cognition, although recent findings are not encouraging. N-acetyl-cysteine recovers functional connectivity in SCZ both in vitro and in vivo, making it an interesting candidate.
Collapse
Affiliation(s)
- Monique Germann
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Wolf RC, Hildebrandt V, Schmitgen MM, Pycha R, Kirchler E, Macina C, Karner M, Hirjak D, Kubera KM, Romanov D, Freudenmann RW, Huber M. Aberrant Gray Matter Volume and Cortical Surface in Paranoid-Type Delusional Disorder. Neuropsychobiology 2021; 79:335-344. [PMID: 32160619 DOI: 10.1159/000505601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Delusions are core symptoms of schizophrenia-spectrum and related disorders. Despite their clinical relevance, the neural correlates underlying such phenomena are unclear. Recent research suggests that specific delusional content may be associated with distinct neural substrates. OBJECTIVE Here, we used structural magnetic resonance imaging to investigate multiple parameters of brain morphology in patients presenting with paranoid type delusional disorder (pt-DD, n = 14) compared to those of healthy controls (HC, n = 25). METHODS Voxel- and surface-based morphometry for structural data was used to investigate gray matter volume (GMV), cortical thickness (CT) and gyrification. RESULTS Compared to HC, patients with pt-DD showed reduced GMV in bilateral amygdala and right inferior frontal gyrus. Higher GMV in patients was found in bilateral orbitofrontal and in left superior frontal cortices. Patients also had lower CT in frontal and temporal regions. Abnormal gyrification in patients was evident in frontal and temporal areas, as well as in bilateral insula. CONCLUSIONS The data suggest the presence of aberrant GMV in a right prefrontal region associated with belief evaluation, as well as distinct structural abnormalities in areas that essentially subserve processing of fear, anxiety and threat in patients with pt-DD. It is possible that cortical features of distinct evolutionary and genetic origin, i.e. CT and gyrification, contribute differently to the pathogenesis of pt-DD.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany,
| | - Viviane Hildebrandt
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Roger Pycha
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Erwin Kirchler
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Christian Macina
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Martin Karner
- Department of Radiology, General Hospital Bruneck, Bruneck, Italy
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dmitry Romanov
- Department of Psychiatry and Psychosomatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Markus Huber
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| |
Collapse
|
31
|
Jacob MS, Roach BJ, Hamilton HK, Carrión RE, Belger A, Duncan E, Johannesen J, Keshavan M, Loo S, Niznikiewicz M, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Stone W, Tsuang M, Walker EF, Woods SW, Mathalon DH. Visual cortical plasticity and the risk for psychosis: An interim analysis of the North American Prodrome Longitudinal Study. Schizophr Res 2021; 230:26-37. [PMID: 33667856 PMCID: PMC8328744 DOI: 10.1016/j.schres.2021.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/08/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adolescence/early adulthood coincides with accelerated pruning of cortical synapses and the onset of schizophrenia. Cortical gray matter reduction and dysconnectivity in schizophrenia are hypothesized to result from impaired synaptic plasticity mechanisms, including long-term potentiation (LTP), since deficient LTP may result in too many weak synapses that are then subject to over-pruning. Deficient plasticity has already been observed in schizophrenia. Here, we assessed whether such deficits are present in the psychosis risk syndrome (PRS), particularly those who subsequently convert to full psychosis. METHODS An interim analysis was performed on a sub-sample from the NAPLS-3 study, including 46 healthy controls (HC) and 246 PRS participants. All participants performed an LTP-like visual cortical plasticity paradigm involving assessment of visual evoked potentials (VEPs) elicited by vertical and horizontal line gratings before and after high frequency ("tetanizing") visual stimulation with one of the gratings to induce "input-specific" neuroplasticity (i.e., VEP changes specific to the tetanized stimulus). Non-parametric, cluster-based permutation testing was used to identify electrodes and timepoints that demonstrated input-specific plasticity effects. RESULTS Input-specific pre-post VEP changes (i.e., increased negative voltage) were found in a single spatio-temporal cluster covering multiple occipital electrodes in a 126-223 ms time window. This plasticity effect was deficient in PRS individuals who subsequently converted to psychosis, relative to PRS non-converters and HC. CONCLUSIONS Input-specific LTP-like visual plasticity can be measured from VEPs in adolescents and young adults. Interim analyses suggest that deficient visual cortical plasticity is evident in those PRS individuals at greatest risk for transition to psychosis.
Collapse
Affiliation(s)
- Michael S. Jacob
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brian J. Roach
- VA San Francisco Healthcare System, San Francisco, CA, USA
| | - Holly K. Hamilton
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo E. Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jason Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Sandra Loo
- Semel Institute for Neuroscience and Human Behavior, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Tyrone D. Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA,Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, USA,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Thomas H. McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | | - Scott W. Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H. Mathalon
- VA San Francisco Healthcare System, San Francisco, CA, USA,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Antoniades M, Haas SS, Modabbernia A, Bykowsky O, Frangou S, Borgwardt S, Schmidt A. Personalized Estimates of Brain Structural Variability in Individuals With Early Psychosis. Schizophr Bull 2021; 47:1029-1038. [PMID: 33547470 PMCID: PMC8266574 DOI: 10.1093/schbul/sbab005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early psychosis in first-episode psychosis (FEP) and clinical high-risk (CHR) individuals has been associated with alterations in mean regional measures of brain morphology. Examination of variability in brain morphology could assist in quantifying the degree of brain structural heterogeneity in clinical relative to healthy control (HC) samples. METHODS Structural magnetic resonance imaging data were obtained from CHR (n = 71), FEP (n = 72), and HC individuals (n = 55). Regional brain variability in cortical thickness (CT), surface area (SA), and subcortical volume (SV) was assessed with the coefficient of variation (CV). Furthermore, the person-based similarity index (PBSI) was employed to quantify the similarity of CT, SA, and SV profile of each individual to others within the same diagnostic group. Normative modeling of the PBSI-CT, PBSI-SA, and PBSI-SV was used to identify CHR and FEP individuals whose scores deviated markedly from those of the healthy individuals. RESULTS There was no effect of diagnosis on the CV for any regional measure (P > .38). CHR and FEP individuals differed significantly from the HC group in terms of PBSI-CT (P < .0001), PBSI-SA (P < .0001), and PBSI-SV (P = .01). In the clinical groups, normative modeling identified 32 (22%) individuals with deviant PBSI-CT, 12 (8.4%) with deviant PBSI-SA, and 21 (15%) with deviant PBSI-SV; differences of small effect size indicated that individuals with deviant PBSI scores had lower IQ and higher psychopathology. CONCLUSIONS Examination of brain structural variability in early psychosis indicated heterogeneity at the level of individual profiles and encourages further large-scale examination to identify individuals that deviate markedly from normative reference data.
Collapse
Affiliation(s)
- Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Oleg Bykowsky
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
- Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- To whom correspondence should be addressed; Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; tel: +41 0(61) 325 59 29, fax: +41 (0)61 325 55 82, e-mail:
| |
Collapse
|
33
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Merritt K, Luque Laguna P, Irfan A, David AS. Longitudinal Structural MRI Findings in Individuals at Genetic and Clinical High Risk for Psychosis: A Systematic Review. Front Psychiatry 2021; 12:620401. [PMID: 33603688 PMCID: PMC7884337 DOI: 10.3389/fpsyt.2021.620401] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Several cross-sectional studies report brain structure differences between healthy volunteers and subjects at genetic or clinical high risk of developing schizophrenia. However, longitudinal studies are important to determine whether altered trajectories of brain development precede psychosis onset. Methods: We conducted a systematic review to determine if brain trajectories differ between (i) those with psychotic experiences (PE), genetic (GHR) or clinical high risk (CHR), compared to healthy volunteers, and (ii) those who transition to psychosis compared to those who do not. Results: Thirty-eight studies measured gray matter and 18 studies measured white matter in 2,473 high risk subjects and 990 healthy volunteers. GHR, CHR, and PE subjects show an accelerated decline in gray matter primarily in temporal, and also frontal, cingulate and parietal cortex. In those who remain symptomatic or transition to psychosis, gray matter loss is more pronounced in these brain regions. White matter volume and fractional anisotropy, which typically increase until early adulthood, did not change or reduced in high risk subjects in the cingulum, thalamic radiation, cerebellum, retrolenticular part of internal capsule, and hippocampal-thalamic tracts. In those who transitioned, white matter volume and fractional anisotropy reduced over time in the inferior and superior fronto-occipital fasciculus, corpus callosum, anterior limb of the internal capsule, superior corona radiate, and calcarine cortex. Conclusion: High risk subjects show deficits in white matter maturation and an accelerated decline in gray matter. Gray matter loss is more pronounced in those who transition to psychosis, but may normalize by early adulthood in remitters.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, United Kingdom
| | - Pedro Luque Laguna
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Ayela Irfan
- Division of Psychiatry, Institute of Mental Health, University College London, London, United Kingdom
| | - Anthony S David
- Division of Psychiatry, Institute of Mental Health, University College London, London, United Kingdom
| |
Collapse
|
35
|
Rek-Owodziń K, Tyburski E, Waszczuk K, Samochowiec J, Mak M. Neurocognition and Social Cognition- Possibilities for Diagnosis and Treatment in Ultra-High Risk for Psychosis State. Front Psychiatry 2021; 12:765126. [PMID: 34880793 PMCID: PMC8645604 DOI: 10.3389/fpsyt.2021.765126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
In recent decades, clinicians have developed the construct of ultra-high risk (UHR) for psychosis to characterize the prodromal phase of psychosis or classify people with weakly expressed psychotic symptoms. In this conceptual analysis, we have gathered up-to-date data about the clinical picture of neurocognition and social cognition in people at UHR for psychosis. We also discuss treatment options. A well-chosen therapeutic approach can help to deal with difficulties and delay or even prevent the development of full-blown psychotic disorders in the UHR group. Despite much evidence supporting the benefits of therapy, early interventions are still not as widely used as they should be. Thus, a better understanding of the UHR state is very important for all healthcare workers.
Collapse
Affiliation(s)
- Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
36
|
Cui X, Deng Q, Lang B, Su Q, Liu F, Zhang Z, Chen J, Zhao J, Guo W. Less reduced gray matter volume in the subregions of superior temporal gyrus predicts better treatment efficacy in drug-naive, first-episode schizophrenia. Brain Imaging Behav 2020; 15:1997-2004. [PMID: 33033986 DOI: 10.1007/s11682-020-00393-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Decreased gray matter volume (GMV) in the superior temporal gyrus (STG) has been implicated in the neurophysiology of schizophrenia. However, it remains unclear whether volumetric reduction in the subregions of the STG can predict treatment efficacy for schizophrenia. Our cohort included 44 drug-naive, first-episode patients, 42 unaffected siblings and 44 healthy controls. Voxel-based morphometry and pattern classification were utilized to analyze the acquired imaging data as per the anatomical subdivision by a well-defined brainnetome atlas. The patients presented lower GMV values in left TE1.0/1.2 (TE, anterior temporal visual association area) than the siblings, and lower GMV values in the left/right TE1.0/1.2 and left A22r (rostral area 22) than the controls. A positive correlation is observed between the GMV values in the right A38l (lateral area 38) and baseline Positive and Negative Syndrome Scale (PANSS) total scores in the patients. Support vector regression (SVR) results exhibited a significant association between predicted (based on the GMV values in the right A38l) and actual symptomatic improvement based on the reduction ratio of the PANSS total scores (r = 0.498, p = 0.001). Our results suggest that normal structure in the right A38l of the STG may be an important factor indicative of the effects of antipsychotic drugs, which can be potentially used to monitor drug effects for first-episode patients at an early stage in clinical practice.
Collapse
Affiliation(s)
- Xilong Cui
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qijian Deng
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bing Lang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qinji Su
- Mental Health Center, the Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, the Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jindong Chen
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingping Zhao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenbin Guo
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- The Third People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| |
Collapse
|
37
|
Pu C, Wang Y, Zheng H, Shi C, Cheung EFC, Chan RCK, Yu X. Altered cerebellocerebral structural covariance in individuals with attenuated psychosis syndrome. Asian J Psychiatr 2020; 53:102238. [PMID: 32585631 DOI: 10.1016/j.ajp.2020.102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Reduced cerebellar volumes and altered cerebellocerebral structural covariance have been reported in patients with schizophrenia. However, it is not clear whether such altered cerebellocerebral structural covariance would be observed before the onset of psychosis. We examined brain structural changes, including cerebral and cerebellar volumes, and cerebellocerebral structural covariance in individuals with attenuated psychosis syndrome (APS). MATERIALS AND METHODS Twenty-one individuals with APS and 24 healthy controls (HC) were recruited and underwent structural MRI brain scan. Differences in voxel-based grey matter (GM) volume and cerebellar volume between the APS and HC groups were examined. The correlation between cerebellar volumes and voxel-based cerebral GM volumes were calculated to measure cerebellocerebral structural covariance in each group followed by group comparisons. RESULTS Compared with HC, individuals with APS exhibited extensive GM volume reduction in the frontal and striatal areas and reduced cerebellar volume. Structural covariance analysis indicated that the anterior and posterior parts of the cerebellum showed disparate correlation with cerebral voxel-based GM volumes. Abnormal cerebellar-cerebral correlation was also found in individuals with APS at the medial prefrontal gyrus. CONCLUSIONS Our findings suggest that prefrontal and striatal structural changes as well as cerebellar structural covariance at the medial prefrontal gyrus may underpin the risk for psychosis and may serve as a potential target for early intervention in individuals at-risk for psychosis.
Collapse
Affiliation(s)
- Chengcheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zheng
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), China
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), China.
| |
Collapse
|
38
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
39
|
Zhang Y, Zhao Y, Song X, Luo H, Sun J, Han C, Gu X, Li J, Cai G, Zhu Y, Liu Z, Wei L, Wei ZZ. Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments. Front Psychiatry 2020; 11:80. [PMID: 32425815 PMCID: PMC7205035 DOI: 10.3389/fpsyt.2020.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Severe mental illnesses (SMI) such as schizophrenia and bipolar disorder affect 2-4% of the world population. Current medications and diagnostic methods for mental illnesses are not satisfying. In animal studies, stem cell therapy is promising for some neuropsychiatric disorders and cognitive/social deficits, not only treating during development (targeting modulation and balancing) but also following neurodegeneration (cell replacement and regenerating support). We believe that novel interventions such as modulation of particular cell populations to develop cell-based treatment can improve cognitive and social functions in SMI. With pathological synaptic/myelin damage, oligodendrocytes seem to play a role. In this review, we have summarized oligodendrogenesis mechanisms and some related calcium signals in neural cells and stem/progenitor cells. The related benefits from endogenous stem/progenitor cells within the brain and exogenous stem cells, including multipotent mesenchymal-derived stromal cells (MSC), fetal neural stem cells (NSC), pluripotent stem cells (PSC), and differentiated progenitors, are discussed. These also include stimulating mechanisms of oligodendrocyte proliferation, maturation, and myelination, responsive to the regenerative effects by both endogenous stem cells and transplanted cells. Among the mechanisms, calcium signaling regulates the neuronal/glial progenitor cell (NPC/GPC)/oligodendrocyte precursor cell (OPC) proliferation, migration, and differentiation, dendrite development, and synaptic plasticity, which are involved in many neuropsychiatric diseases in human. On the basis of numerous protein annotation and protein-protein interaction databases, a total of 119 calcium-dependent/activated proteins that are related to neuropsychiatry in human are summarized in this investigation. One of the advanced methods, the calcium/cation-channel-optogenetics-based stimulation of stem cells and transplanted cells, can take advantage of calcium signaling regulations. Intranasal-to-brain delivery of drugs and stem cells or local delivery with the guidance of brain imaging techniques may provide a unique new approach for treating psychiatric disorders. It is also expected that preconditioning stem cell therapy following precise brain imaging as pathological confirmation has high potential if translated to cell clinic use. Generally, modulable cell transplantation followed by stimulations should provide paracrine protection, synaptic modulation, and myelin repair for the brain in SMI.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingying Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Hua Luo
- Emory Critical Care Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chunyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jun Li
- Department of Biological Psychiatry, Peking University Sixth Hospital, Beijing, China
- Department of Biological Psychiatry, Peking University Institute of Mental Health, Beijing, China
- Department of Biological Psychiatry, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Department of Biological Psychiatry, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Guilan Cai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhandong Liu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
40
|
Li H, Ou Y, Liu F, Su Q, Zhang Z, Chen J, Zhu F, Zhao J, Guo W. Region-specific insular volumetric decreases in drug-naive, first-episode schizophrenia and their unaffected siblings. Am J Med Genet B Neuropsychiatr Genet 2020; 183:106-112. [PMID: 31626393 DOI: 10.1002/ajmg.b.32765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022]
Abstract
Decreased insular volume may be one of the anatomical alterations caused by schizophrenia. The possibility of region-specific insular volumetric reduction as an endophenotype and/or a possible treatment predictor is a critical issue with great implications for the diagnosis and prognosis of the disease. The sample of the current study comprised 44 drug-naive and first-episode patients, 42 unaffected siblings, and 44 healthy controls. A computational anatomy toolbox (CAT12) was applied to analyze the structural images with a fine-grained, cross-validated brainnetome atlas. Correlation analysis and support vector regression (SVR) were used to determine the relationship between insular deficits and symptomatic severity among patients. The gray matter volume (GMV) values in the left hypergranular insula (G) exhibited the following pattern: patients < siblings < controls. GMV values in the right ventral agranular insula (vIa) and baseline Positive and Negative Syndrome Scale negative symptoms subscale scores among patients showed a positive correlation (r = 0.384, p = .010). Further SVR analysis exhibited a significantly positive correlation between GMV values in the right vIa and negative symptomatic improvement among patients (r = 0.537, p < .001). Results suggested the presence of region-specific insular volumetric decreases in first-episode schizophrenia. Thus, volumetric decrease in left G might be a potential endophenotype for schizophrenia, and GMV values in right vIa might be used to predict negative symptomatic improvement in schizophrenia.
Collapse
Affiliation(s)
- Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinji Su
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| |
Collapse
|
41
|
Nenadić I. [Brain imaging in schizophrenia : A review of current trends and developments]. DER NERVENARZT 2020; 91:18-25. [PMID: 31919551 DOI: 10.1007/s00115-019-00857-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging methods have become the main approach for identifying dysfunctional neuronal networks in schizophrenia. This review article presents recent results of disorders of neuronal networks at structural and functional levels and summarizes the current developments. Large multicenter analyses have further established patterns of regional brain alterations, while novel methods in magnetic resonance (MR) morphometry have contributed to differentiating early from delayed brain structural changes. The use of machine learning approaches has not only enabled the establishment of classification models using biological data for future differential diagnostic use, it has also facilitated multivariate models for outcome prediction following therapeutic interventions. Novel methods, such as BrainAGE, a surrogate marker of accelerated brain aging processes, have added to longitudinal studies to gain insights into the brain structural dynamics from early brain developmental alterations to progressive structural brain changes after disease onset.
Collapse
Affiliation(s)
- Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps Universität Marburg & Universitätsklinikum Gießen und Marburg (UKGM), Rudolf-Bultmann-Straße 8, 35039, Marburg, Deutschland.
| |
Collapse
|
42
|
Walger H, Antonucci LA, Pigoni A, Upthegrove R, Salokangas RKR, Lencer R, Chisholm K, Riecher-Rössler A, Haidl T, Meisenzahl E, Rosen M, Ruhrmann S, Kambeitz J, Kambeitz-Ilankovic L, Falkai P, Ruef A, Hietala J, Pantelis C, Wood SJ, Brambilla P, Bertolino A, Borgwardt S, Koutsouleris N, Schultze-Lutter F. Basic Symptoms Are Associated With Age in Patients With a Clinical High-Risk State for Psychosis: Results From the PRONIA Study. Front Psychiatry 2020; 11:552175. [PMID: 33312133 PMCID: PMC7707000 DOI: 10.3389/fpsyt.2020.552175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
In community studies, both attenuated psychotic symptoms (APS) and basic symptoms (BS) were more frequent but less clinically relevant in children and adolescents compared to adults. In doing so, they displayed differential age thresholds that were around age 16 for APS, around age 18 for perceptive BS, and within the early twenties for cognitive BS. Only the age effect has previously been studied and replicated in clinical samples for APS. Thus, we examined the reported age effect on and age thresholds of 14 criteria-relevant BS in a patient sample at clinical-high risk of psychosis (N = 261, age 15-40 yrs.), recruited within the European multicenter PRONIA-study. BS and the BS criteria, "Cognitive Disturbances" (COGDIS) and "Cognitive-perceptive BS" (COPER), were assessed with the "Schizophrenia Proneness Instrument, Adult version" (SPI-A). Using logistic regressions, prevalence rates of perceptive and cognitive BS, and of COGDIS and COPER, as well as the impact of social and role functioning on the association between age and BS were studied in three age groups (15-18 years, 19-23 years, 24-40 years). Most patients (91.2%) reported any BS, 55.9% any perceptive and 87.4% any cognitive BS. Furthermore, 56.3% met COGDIS and 80.5% COPER. Not exhibiting the reported differential age thresholds, both perceptive and cognitive BS, and, at trend level only, COPER were less prevalent in the oldest age group (24-40 years); COGDIS was most frequent in the youngest group (15-18 years). Functional deficits did not better explain the association with age, particularly in perceptive BS and cognitive BS meeting the frequency requirement of BS criteria. Our findings broadly confirmed an age threshold in BS and, thus, the earlier assumed link between presence of BS and brain maturation processes. Yet, age thresholds of perceptive and cognitive BS did not differ. This lack of differential age thresholds might be due to more pronounced the brain abnormalities in this clinical sample compared to earlier community samples. These might have also shown in more frequently occurring and persistent BS that, however, also resulted from a sampling toward these, i.e., toward COGDIS. Future studies should address the neurobiological basis of CHR criteria in relation to age.
Collapse
Affiliation(s)
- Helene Walger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Linda A Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Foundation Major Hospital Polyclinic, University of Milan, Milan, Italy.,MoMiLab Research Unit, Institutions, Markets, Technologies (IMT) School for Advanced Studies Lucca, Lucca, Italy
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Katharine Chisholm
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom.,Department of Psychology, Aston University, Birmingham, United Kingdom
| | - Anita Riecher-Rössler
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - Theresa Haidl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Marlene Rosen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Jarmo Hietala
- Department of Psychiatry, Medical Faculty, University of Turku, Turku, Finland
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
| | - Stephen J Wood
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom.,Orygen, The National Centre of Excellence for Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Foundation Major Hospital Polyclinic, University of Milan, Milan, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Frauke Schultze-Lutter
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy.,Department of Psychology and Mental Health, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
43
|
Gao S, Ming Y, Wang J, Gu Y, Ni S, Lu S, Zhang R, Sun J, Zhang N, Xu X. Enhanced Prefrontal Regional Homogeneity and Its Correlations With Cognitive Dysfunction/Psychopathology in Patients With First-Diagnosed and Drug-Naive Schizophrenia. Front Psychiatry 2020; 11:580570. [PMID: 33192722 PMCID: PMC7649771 DOI: 10.3389/fpsyt.2020.580570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Schizophrenia, regarded as a neurodevelopmental disorder, is characterized by positive symptoms, negative symptoms, and cognitive dysfunction. Investigating the spontaneous brain activity in patients with schizophrenia can help us understand the underlying pathophysiologic mechanism of schizophrenia. However, results concerning abnormal neural activities and their correlations with cognitive dysfunction/psychopathology of patients with schizophrenia were inconsistent. Methods: We recruited 57 first-diagnosed and drug-naive patients with schizophrenia and 50 matched healthy controls underwent magnetic resonance imaging. The Positive and Negative Syndrome Scale (PANSS) and the MATRICS Consensus Cognitive Battery were used to assess the psychopathology/cognitive dysfunction. Regional homogeneity (ReHo) was used to explore neural activities. Correlation analyses were calculated between abnormal ReHo values and PANSS scores/standardized cognitive scores. Lastly, support vector machine analyses were conducted to evaluate the accuracy of abnormal ReHo values in distinguishing patients with schizophrenia from healthy controls. Results: Patients with schizophrenia showed cognitive dysfunction, and increased ReHo values in the right gyrus rectus, right inferior frontal gyrus/insula and left inferior frontal gyrus/insula compared with those of healthy controls. The ReHo values in the right inferior frontal gyrus/insula were positively correlated with negative symptom scores and negatively correlated with Hopkins verbal learning test-revised/verbal learning. Our results showed that the combination of increased ReHo values in the left inferior frontal gyrus/insula and right gyrus rectus had 78.5% (84/107) accuracy, 85.96% (49/57) sensitivity, and 70.00% specificity, which were higher than other combinations. Conclusions: Hyperactivities were primarily located in the prefrontal regions, and increased ReHo values in the right inferior frontal gyrus/insula might reflect the severity of negative symptoms and verbal learning abilities. The combined increases of ReHo values in these regions might be an underlying biomarker in differentiating patients with schizophrenia from healthy controls.
Collapse
Affiliation(s)
- Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yidan Ming
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayin Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Gu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Sulin Ni
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuiping Lu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Sun
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Meisenzahl E, Walger P, Schmidt SJ, Koutsouleris N, Schultze-Lutter F. [Early recognition and prevention of schizophrenia and other psychoses]. DER NERVENARZT 2019; 91:10-17. [PMID: 31858162 DOI: 10.1007/s00115-019-00836-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The last two decades of clinical research have clearly demonstrated the comprehensive benefits of the early recognition and treatment of psychotic disorders. The attenuated and transient positive symptoms according to the ultrahigh risk criteria and the basic symptom criterion "Cognitive disturbances" are the main approaches for an indicated prevention. They have recently been recommended as criteria for a clinical high-risk (CHR) state of psychosis by the European Psychiatric Association (EPA) and, following these, in the German S3 guidelines for the treatment of schizophrenia by the German Association for Psychiatry, Psychotherapy and Psychosomatics (DGPPN); however, the efficacy of early treatment of patients with a CHR for psychoses critically depends on the development of prognostic instruments, which enable healthcare professionals to reliably identify these patients based on the individual objective risk profiles. An important goal is the treatment of functional deficits, which can be identified by an individual risk profile. The treatment of existing comorbid mental disorders, psychosocial problems and the prevention of potential future disorders also characterizes the recommendations of the EPA and DGPPN for early treatment, which favor psychotherapeutic, especially cognitive behavioral interventions over pharmacological treatment. The close interdisciplinary cross-sectoral cooperation between the disciplines of child and adolescent psychiatry, and adult psychiatry is of outstanding importance in this context.
Collapse
Affiliation(s)
- E Meisenzahl
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland.
| | - P Walger
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland
| | - S J Schmidt
- Abtlg. für Klinische Psychologie und Psychotherapie, Institut für Psychologie, Universität Bern, Bern, Schweiz
| | - N Koutsouleris
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - F Schultze-Lutter
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland
| |
Collapse
|