1
|
Unimke AA, Okezie O, Mohammed SE, Mmuoegbulam AO, Abdullahi S, Ofon UA, Olim DM, Badamasi H, Galadima AI, Fatunla OK, Abdullahi A, Yahaya SM, Ibrahim MM, Muhammad AB, Iya NID, Ayanda OS. Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2870-2893. [PMID: 39612179 DOI: 10.2166/wst.2024.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.
Collapse
Affiliation(s)
- Augustine A Unimke
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria E-mail:
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Saidu Abdullahi
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - Denis M Olim
- Department of Soil Science, University of Calabar, Calabar, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Abdulsalam I Galadima
- Department of Physics, Faculty of Physical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Aminu Abdullahi
- Department of Biotechnology, Modibbo Adama University Yola, PMB 2076 Yola, Adamawa State, Nigeria
| | - Sharhabil M Yahaya
- Department of Soil Science, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Abba B Muhammad
- Department of Mechanical Engineering, University of Maiduguri, Maiduguri, Nigeria
| | - Naseer I Durumin Iya
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Olushola S Ayanda
- Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti, Nigeria
| |
Collapse
|
2
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Nithyapriya S, Sundaram L, Eswaran SUD, Perveen K, Alshaikh NA, Sayyed RZ, Mastinu A. Purification and Characterization of Desferrioxamine B of Pseudomonas fluorescens and Its Application to Improve Oil Content, Nutrient Uptake, and Plant Growth in Peanuts. MICROBIAL ECOLOGY 2024; 87:60. [PMID: 38630182 PMCID: PMC11024037 DOI: 10.1007/s00248-024-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.
Collapse
Affiliation(s)
- S Nithyapriya
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, 636011, India
| | | | | | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Najla A Alshaikh
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
- Faculty of Health and Life Sciences, INTI International University, Negeri Sembilan, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Malaysia.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy.
| |
Collapse
|
4
|
Świątczak J, Kalwasińska A, Brzezinska MS. Plant growth-promoting rhizobacteria: Peribacillus frigoritolerans 2RO30 and Pseudomonas sivasensis 2RO45 for their effect on canola growth under controlled as well as natural conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1233237. [PMID: 38259930 PMCID: PMC10800854 DOI: 10.3389/fpls.2023.1233237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Even though canola is one of the most important industrial crops worldwide, it has high nutrient requirements and is susceptible to pests and diseases. Therefore, natural methods are sought to support the development of these plants. One of those methods could be a plant growth-promoting rhizobacteria (PGPR) that have a beneficial effect on plant development. The aim of this study was a genomic comparison of two PGPR strains chosen based on their effect on canola growth: Peribacillus frigoritolerans 2RO30, which stimulated canola growth only in sterile conditions, and Pseudomonas sivasensis 2RO45, which promoted canola growth in both sterile and non-sterile conditions. First of all, six bacterial strains: RO33 (Pseudomonas sp.), RO37 (Pseudomonas poae), RO45 (Pseudomonas kairouanensis), 2RO30 (Peribacillus frigoritolerans), 2RO45 (Pseudomonas sivasensis), and 3RO30 (Pseudomonas migulae), demonstrating best PGP traits in vitro, were studied for their stimulating effect on canola growth under sterile conditions. P. frigoritolerans 2RO30 and P. sivasensis 2RO45 showed the best promoting effect, significantly improving chlorophyll content index (CCI) and roots length compared to the non-inoculated control and to other inoculated seedlings. Under non-sterile conditions, only P. sivasensis 2RO45 promoted the canola growth, significantly increasing CCI compared to the untreated control and to other inoculants. Genome comparison revealed that the genome of P. sivasensis 2RO45 was enriched with additional genes responsible for ACC deaminase (acdA), IAA (trpF, trpG), and siderophores production (fbpA, mbtH, and acrB) compared to 2RO30. Moreover, P. sivasensis 2RO45 showed antifungal effect against all the tested phytopathogens and harbored six more biosynthetic gene clusters (BGC), namely, syringomycin, pyoverdin, viscosin, arylpolyene, lankacidin C, and enterobactin, than P. frigoritolerans 2RO30. These BGCs are well known as antifungal agents; therefore, it can be assumed that these BGCs were responsible for the antifungal activity of P. sivasensis 2RO45 against all plant pathogens. This study is the first report describing P. sivasensis 2RO45 as a canola growth promoter, both under controlled and natural conditions, thus suggesting its application in improving canola yield, by improving nutrient availability, enhancing stress tolerance, and reducing environmental impact of farming practices.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
5
|
Shah IH, Sabir IA, Rehman A, Hameed MK, Albashar G, Manzoor MA, Shakoor A. Co-application of copper oxide nanoparticles and Trichoderma harzianum with physiological, enzymatic and ultrastructural responses for the mitigation of salt stress. CHEMOSPHERE 2023:139230. [PMID: 37343643 DOI: 10.1016/j.chemosphere.2023.139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Chemical contamination or nutrient pollution is concerning for health, environmental, and economic reasons. Ecofriendly surface modification of nanoparticles is a consistent challenge for agricultural purposes. In response to this environmental concern, CuO-NPs synthesized through biological method using green source and characterized for morphological and structural features through SEM (scanning electron microscope) and TEM (transmission electron microscope) spectroscopy. Our research findings illustrate that the presence of salt stress induces a notable decline in both physiological and biochemical parameters within plants. Nevertheless, the utilization of T. harzianum and CuO-NPs exhibited a mitigating effect on the detrimental consequences induced by salt stress in plants. The application of T. harzianum and the simultaneous co-inoculation with CuO-NPs notably enhanced fresh biomass and facilitated vegetative growth in comparison to the control group. Furthermore, the exposure of both T. harzianum inoculum and Copper oxide nanoparticles resulted in a significant reduction of oxidative stresses, including reactive oxygen species (ROS) levels, H2O2, and lipid peroxidation (MDA) levels in the above-ground parts of the plant, while also minimizing electrolyte leakage (EL) by reducing root growth. Additionally, the co-inoculation of the endophyte and CuO-NPs led to a significant enhancement in antioxidant enzymatic activities, such as superoxide dismutase (SOD) and chitinase (CAT) activity in the above-ground parts, under salt stress conditions. The inoculum, along with its combination with CuO-NPs, decreased electrolyte conductivity and improved total chlorophyll contents as compared to the control. The combined application of T. harzianum and CuO-NPs improved salt tolerance in A. thaliana plants by triggering salt-associated gene expression. These findings suggest that the application of T. harzianum and CuO-NPs can considerably promote leaf anatomical changes in A. thaliana and have ability to enhance salt tolerance, particularly in saline areas.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Gadah Albashar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
6
|
Świątczak J, Kalwasińska A, Wojciechowska A, Brzezinska MS. Physiological properties and genomic insights into the plant growth-promoting rhizobacterium Brevibacillus laterosporus K75 isolated from maize rhizosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1432-1441. [PMID: 36181696 DOI: 10.1002/jsfa.12238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND When looking for a safer alternative to pesticides that are potentially harmful to living organisms, one of the directions worth looking at are plant growth-promoting rhizobacteria. The purpose of the research was a comprehensive characterization of Brevibacillus laterosporus K75, a strain isolated from maize rhizosphere. Many studies have proved B. laterosporus to be a biocontrol agent; however, little is known about B. laterosporus as a plant growth-promoting rhizobacterium. RESULTS Ninety strains were screened for plant growth-promoting activities. Four strains with the best plant growth-promoting traits (Rhodococcus qingshengii K8, Bacillus subtilis subsp. stercoris K73, Brevibacillus laterosporus K75, and Brevibacillus laterosporus K89) were used to research their effect on maize growth. Under sterile conditions, B. laterosporus K75 showed the best stimulatory effect, significantly improving the weight of roots, shoots and leaves, and considerably increasing content of chlorophyll. In unsterilized soil, B. laterosporus K75 significantly improved length of roots and weight of leaves compared to the K73, K89, and untreated control. Moreover, B. laterosporus K75 significantly increased specific leaf area compared to the untreated control and to other inoculant treatments. The genome of B. laterosporus K75 was compared to the recently published B. laterosporus MG64. Genome-mining displayed differences in identified plant growth-promoting genes and biosynthetic gene clusters of secondary metabolites. The B. laterosporus K75 genome possessed additional genes involved in indole-3-acetic acid production and phosphate solubilization that could be attributed to its ability to enhance maize growth. CONCLUSION Our study demonstrated that B. laterosporus K75 is a promising candidate for use in inoculant formulation, effectively facilitating maize growth. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
7
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
8
|
Swiontek Brzezinska M, Świątczak J, Wojciechowska A, Burkowska-But A, Kalwasińska A. Consortium of plant growth-promoting rhizobacteria enhances oilseed rape (Brassica napus L.) growth under normal and saline conditions. Arch Microbiol 2022; 204:393. [PMID: 35704071 DOI: 10.1007/s00203-022-03018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
A preparation development, which stimulates plant growth under normal and saline conditions, and protects against fungal infections, would increase crop yields and reduce damage in agriculture. This study was conducted using bacterial isolates from rape rhizosphere as a plant growth promoter and an alternative to chemical fertilizers. Three from fifty bacterial isolates: B14 (Pseudomonas sp.), B16 (Sphingobacterium sp.), and B19 (Microbacterium sp.) showed the best in vitro plant growth-promoting (PGP) characteristics. B14 strain had the best antifungal activity against phytopathogens inhibiting growth of B. cinerea, C. acutatum, and P. lingam. Moreover, B14, B16 and B19 isolates coded for several genes involved in PGP activities, aimed at improving nutrient availability, resistance to abiotic stress, and fungal pathogen suppression. Microbial consortium (B14, B16, and B19) had the best effect on rape growth, significantly increasing number of live leaves, compared to the untreated control and single inoculant treatments. Moreover, the consortium induced significant increase in shoots length and chlorophyll content in comparison to Pseudomonas sp. B14 and Microbacterium sp. B19. The consortium also induced plants tolerance to salt stress. The genomic information as well as the observed traits, and beneficial attributes towards rape, make the rhizobacterial consortium an ideal candidate for further development as biofertilizers.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Gagarina 11, 87100, Torun, Poland.
| | - Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Gagarina 11, 87100, Torun, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Gagarina 11, 87 100, Torun, Poland
| | - Aleksandra Burkowska-But
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Gagarina 11, 87100, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Gagarina 11, 87100, Torun, Poland
| |
Collapse
|
9
|
Singh RK, Singh P, Sharma A, Guo DJ, Upadhyay SK, Song QQ, Verma KK, Li DP, Malviya MK, Song XP, Yang LT, Li YR. Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. Int J Mol Sci 2022; 23:ijms23116242. [PMID: 35682919 PMCID: PMC9181200 DOI: 10.3390/ijms23116242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.) is one of the world’s highly significant commercial crops. The amounts of synthetic nitrogen (N2) fertilizer required to grow the sugarcane plant at its initial growth stages are higher, which increases the production costs and adverse environmental consequences globally. To combat this issue, sustainable environmental and economic concerns among researchers are necessary. The endophytic diazotrophs can offer significant amounts of nitrogen to crops through the biological nitrogen fixation mediated nif gene. The nifH gene is the most extensively utilized molecular marker in nature for studying N2 fixing microbiomes. The present research intended to determine the existence of novel endophytic diazotrophs through culturable and unculturable bacterial communities (EDBCs). The EDBCs of different tissues (root, stem, and leaf) of five sugarcane cultivars (Saccharum officinarum L. cv. Badila, S. barberi Jesw.cv Pansahi, S. robustum, S. spontaneum, and S. sinense Roxb.cv Uba) were isolated and molecularly characterized to evaluate N2 fixation ability. The diversity of EDBCs was observed based on nifH gene Illumina MiSeq sequencing and a culturable approach. In this study, 319766 operational taxonomic units (OTUs) were identified from 15 samples. The minimum number of OTUs was recorded in leaf tissues of S. robustum and maximum reads in root tissues of S. spontaneum. These data were assessed to ascertain the structure, diversity, abundance, and relationship between the microbial community. A total of 40 bacterial families with 58 genera were detected in different sugarcane species. Bacterial communities exhibited substantially different alpha and beta diversity. In total, 16 out of 20 genera showed potent N2-fixation in sugarcane and other crops. According to principal component analysis (PCA) and hierarchical clustering (Bray–Curtis dis) evaluation of OTUs, bacterial microbiomes associated with root tissues differed significantly from stem and leaf tissues of sugarcane. Significant differences often were observed in EDBCs among the sugarcane tissues. We tracked and validated the plethora of individual phylum strains and assessed their nitrogenase activity with a culture-dependent technique. The current work illustrated the significant and novel results of many uncharted endophytic microbial communities in different tissues of sugarcane species, which provides an experimental system to evaluate the biological nitrogen fixation (BNF) mechanism in sugarcane. The novel endophytic microbial communities with N2-fixation ability play a remarkable and promising role in sustainable agriculture production.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Pratiksha Singh
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India;
| | - Qi-Qi Song
- Guangxi Subtropical Crop Research Institute, Sugarcane Research Institute, Nanning 530001, China;
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
- Correspondence: ; Tel.: +86-771-3899033
| |
Collapse
|
10
|
Azmat A, Tanveer Y, Yasmin H, Hassan MN, Shahzad A, Reddy M, Ahmad A. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. CHEMOSPHERE 2022; 297:133982. [PMID: 35181419 DOI: 10.1016/j.chemosphere.2022.133982] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 05/25/2023]
Abstract
This study intended to investigate the potential of the plant growth-promoting rhizobacteria (PGPR) and green synthesized zinc oxide nanoparticles (ZnO-NPs) (fruit extract of Papaya) against heat and drought stress in wheat. The characterization of green-synthesized ZnO-NPs was done through UV-vis spectrophotometry, Fourier-transform infrared spectrometry, X-ray diffraction and scanning electron microscopy. Individual and combination of PGPR (Pseudomonas sp.) and ZnO-NPs (10 ppm) amendments were tested in a pot experiment to upregulate wheat defence system under three stress groups (drought, heat and combined heat and drought stress). Drought and heat stress synergistically caused higher damage to wheat plants than individual heat and drought stress. This observation was confirmed with remarkable higher MDA and hydrogen peroxide (H2O2) content. Treated plants exposed to all stress groups showed an improved wheat growth and stress resistance through better biomass, photosynthetic pigments, nutrients, soluble sugars, protein and indole acetic acid content. Combination of ZnO-NPs and Pseudomonas sp. Protects the plants from all stress groups by producing higher proline, antioxidant enzymes i. e superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase, and abscisic acid. Moreover, higher stress alleviation by this treatment was manifested by marked reduced electrolyte leakage, MDA and H2O2. The findings of current study confirmed that the synergistic actions of PGPR and ZnO-NPs can rescue plants from both single and combined heat and drought stress.
Collapse
Affiliation(s)
- Ammar Azmat
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Yashfa Tanveer
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | | | - Asim Shahzad
- Department of Botany, Mohi- Ud-Din Islamic University, Nerian Sharif, 12080, AJ&K, Pakistan
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Potential role of rhizobia to enhance chickpea-growth and yield in low fertility-soils of Tunisia. Antonie van Leeuwenhoek 2022; 115:921-932. [PMID: 35639296 DOI: 10.1007/s10482-022-01745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Plant growth-promoting rhizobacteria are bacteria that improve plant growth and reduce plant pathogen damages. In this study, 100 nodule bacteria were isolated from chickpea, screened for their plant growth-promoting (PGP) traits and then characterised by PCR-RFLP of 16 S rDNA. Results showed that most of the slow-growing isolates fixed nitrogen but those exhibiting fast-growth did not. Fourteen isolates solubilized inorganic phosphorus, 16 strains produced siderophores, and 17 strains produced indole acetic acid. Co-culture experiments identified three strains having an inhibitory effect against Fusarium oxysporum, the primary pathogenic fungus for chickpea in Tunisia. Rhizobia with PGP traits were assigned to Mesorhizobium ciceri, Mesorhizobium mediterraneum, Sinorhizobium meliloti and Agrobacterium tumefaciens. We noted that PGP activities were differentially distributed between M. ciceri and M. mediterraneum. The region of Mateur in northern Tunisia, with clay-silty soil, was the origin of 53% of PGP isolates. Interestingly, we found that S. meliloti and A. tumefaciens strains did not behave as parasitic nodule-bacteria but as PGP rhizobacteria useful for chickpea nutrition and health. In fact, S. meliloti strains could solubilize phosphorus, produce siderophore and auxin. The A. tumefaciens strains could perform the previous PGP traits and inhibit pathogen growth also. Finally, one candidate strain of M. ciceri (LL10)-selected for its highest symbiotic nitrogen fixation and phosphorus solubilization-was used for field experiment. The LL10 inoculation increased grain yield more than three-fold. These finding showed the potential role of rhizobia to be used as biofertilizers and biopesticides, representing low-cost and environment-friendly inputs for sustainable agriculture.
Collapse
|
12
|
Assessing Africa’s Agricultural TFP for Food Security and Effects on Human Development: Evidence from 35 Countries. SUSTAINABILITY 2022. [DOI: 10.3390/su14116411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Population growth, food shortages, and low levels of human development have been longstanding issues confronting many African countries. Agricultural productivity remains a critical goal for mitigating these challenges and ensuring overall economic development. Total factor productivity (TFP) is a crucial metric for determining a sector’s overall growth. However, due to a lack of comprehensive assessments of the trends and determinants of TFP growth in African agriculture, there are disagreements. Within the context of inclusive human development, the impact of agricultural productivity is frequently misrepresented in the current literature. This paper estimated TFP growth and assessed its impact on human development in Africa. Due to technological improvement, TFP increased moderately at a 5.4% growth rate across African countries over the period (2001–2019). Empirical evidence indicates that TFP growth enhances human development in the long run, but the effect varies according to levels of human development (HDI) and the nature of growth over time. For instance, higher levels of human development tend to mitigate the impact of TFP. Further analysis revealed that technical efficiency improvement is critical for enhancing food safety and human development. Policy recommendations for improving TFP for food security and human development in Africa are provided. Further investigation into agricultural TFP’s impact beyond the poverty measure in Africa is encouraged.
Collapse
|
13
|
Tanveer Y, Yasmin H, Nosheen A, Ali S, Ahmad A. Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118889. [PMID: 35085652 DOI: 10.1016/j.envpol.2022.118889] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants' defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
Collapse
Affiliation(s)
- Yashfa Tanveer
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Sajad Ali
- Department of Biotechnology Yeungnam University Gyeongsan, 38541, South Korea.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
14
|
Omomowo OI, Babalola OO. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. FRONTIERS IN PLANT SCIENCE 2021; 12:751731. [PMID: 34745184 PMCID: PMC8570086 DOI: 10.3389/fpls.2021.751731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/30/2021] [Indexed: 05/23/2023]
Abstract
Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
15
|
Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021; 9:microorganisms9091988. [PMID: 34576883 PMCID: PMC8470069 DOI: 10.3390/microorganisms9091988] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
A vast microbial community inhabits in the rhizosphere, among which, specialized bacteria known as Plant Growth-Promoting Rhizobacteria (PGPR) confer benefits to host plants including growth promotion and disease suppression. PGPR taxa vary in the ways whereby they curtail the negative effects of invading plant pathogens. However, a cumulative or synergistic effect does not always ensue when a bacterial consortium is used. In this review, we reassess the disease-suppressive mechanisms of PGPR and present explanations and illustrations for functional diversity and/or stability among PGPR taxa regarding these mechanisms. We also provide evidence of benefits when PGPR mixtures, rather than individuals, are used for protecting crops from various diseases, and underscore the critical determinant factors for successful use of PGPR mixtures. Then, we evaluate the challenges of and limitations to achieving the desired outcomes from strain/species-rich bacterial assemblages, particularly in relation to their role for plant disease management. In addition, towards locating additive or synergistic outcomes, we highlight why and how the benefits conferred need to be categorized and quantified when different strains/species of PGPR are used in combinations. Finally, we highlight the critical approaches needed for developing PGPR mixtures with improved efficacy and stability as biocontrols for utilization in agricultural fields.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences, Xianyang 712100, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ming Pei You
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Martin J. Barbetti
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
- Correspondence:
| |
Collapse
|
16
|
Ghani MU, Asghar HN, Niaz A, Ahmad Zahir Z, Nawaz MF, Häggblom MM. Efficacy of rhizobacteria for degradation of profenofos and improvement in tomato growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:463-473. [PMID: 34304658 DOI: 10.1080/15226514.2021.1952927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides are widely used for managing pathogens and pests for sustainable agricultural output to feed around seven billion people worldwide. After their targeted role, residues of these compounds may build up and persist in soils and in the food chain. This study evaluated the efficiency of bacterial strains capable of plant growth promotion and biodegradation of profenofos. To execute this, bacteria were isolated from an agricultural area with a history of repeated application of profenofos. The profenofos degrading bacterial strains with growth-promoting characteristics were identified based on biochemical and molecular approaches through partial 16S ribosomal rRNA gene sequencing. The results revealed that one strain, Enterobacter cloacae MUG75, degraded over 90% profenofos after 9 days of incubation. Similarly, plant growth was significantly increased in plants grown in profenofos (100 mg L-1) contaminated soil inoculated with the same strain. The study demonstrated that inoculation of profenofos degrading bacterial strains increased plant growth and profenofos degradation. Novelty statementPesticides are extensively applied in the agriculture sector to overcome pest attacks and to increase food production to fulfill the needs of the growing world population. Residues of these pesticides can persist in the environment for long periods, may enter the groundwater reservoirs and cause harmful effects on living systems highlighting the need for bioremediation of pesticide-contaminated environments. Microbes can use pesticides as a source of carbon and energy and convert them into less toxic and non-toxic products. Application of profenofos degrading rhizobacteria in interaction with the plants in the rhizosphere can remediate the pesticide-contaminated soils and minimize their uptake into the food chain. Hence, this approach can improve soil health and food quality without compromising the environment.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|