1
|
Iftikhar-Ul-Haq, Ahmed M, Aslam AA, Aftab F, Sanaullah M, Hussain R, Eiman E, Aslam AA, Wani TA, Zargar S. Multivariate analysis of potentially toxic metal contents in soil and vegetables: Enrichment, bioconcentration, translocation from soil to vegetables, and assessment of human health toxicity. Food Chem Toxicol 2025; 200:115413. [PMID: 40154832 DOI: 10.1016/j.fct.2025.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The excessive accumulation of metals in agricultural soils can profoundly impact the quality of vegetables grown in contaminated soil. Understanding the bioaccumulation of these metals in vegetables is essential for assessing human exposure risks. The present study aimed to investigate the concentration of potentially toxic metals (PTMs: Fe, Mn, Cu, Zn, Al, As, Cr, Cd, and Pb) in agricultural soil and some commonly consumed vegetables (carrot, reddish, cauliflower, pumpkin, and spinach). The samples were collected from agrarian farmlands near the industrial area of Multan Road, Kasur-Pakistan. The mean contents of all metals in soil, root, and shoot samples were within the limits set by the EU, WHO, FAO, and US EPA, except for Cr in soil and Cr, Cd, and Pb in root samples. Across all analyzed vegetables, the bioconcentration factors (BCFroot and BCFshoot < 1, except As) and translocation factor (TF < 1) for all metals suggested that while these vegetables absorb metals, they generally do not accumulate or translocate them. Multivariate analysis indicated that both natural and anthropogenic activities contribute to metal contamination. The calculated hazard index (HI > 1) and cumulative cancer risk (CCR >1 × 10-3) values indicated the probability of non-carcinogenic and carcinogenic health risks for adults and children associated with the consumption of these vegetables. The findings provide critical insights for policymakers, agricultural regulators, and public health authorities to mitigate metal contamination risks and promote food safety.
Collapse
Affiliation(s)
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan.
| | - Ali Abbas Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Fatima Aftab
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Mudassar Sanaullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Eisha Eiman
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego4, 44-100, Gliwice, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 222452, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Bisht A, Kamboj V, Kamboj N, Bharti M, Bahukahndi KD, Saini H. Impact of solid waste dumping on soil quality and its potential risk on human health and environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:763. [PMID: 39052122 DOI: 10.1007/s10661-024-12914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The soil, comprising minerals, organic matter, and living organisms, serves as a critical component of our environment. However, anthropogenic activities, such as uncontrolled sewage disposal and industrial waste, have led to pervasive soil pollution, impacting ecosystems and human health. This comprehensive study scrutinizes the intricate dynamics of soil pollution resulting from open waste dumping, specifically examining its impact on the health of local communities and the environment in Haridwar municipality. In this study, four solid waste dumping sites were meticulously surveyed, with soil samples analyzed for 19 parameters through statistical tools like one-way ANOVA, Kruskal-Wallis tests, soil pollution indices, and potential health risk assessment. The Geo-accumulation Index (Igeo) and contamination factor (CF) followed the heavy metals in the order of Zn > Mn > Fe > Cu in all selected sites. Additionally, a potential health risk assessment considered ingestion, inhalation, and dermal exposure pathways, revealing a high non-carcinogenic risk of metals (Mn > Fe > Zn > Cu) for both children and adults. In the ingestion pathway, the hazard quotient indicated a high risk of metals for both children and adults in the range of 1192.73 to 2066.94 for child and 191.98 to 312.16 for adults. Crucially, the HQ revealed potential health risks, emphasizing the urgency of addressing metal contamination. However, the findings indicate that dumping sites directly or indirectly affects the local people of Haridwar municipality. Therefore, this study provides a baseline framework for minimizing the impact of dumping sites on local population and the environment.
Collapse
Affiliation(s)
- Aditi Bisht
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Vishal Kamboj
- Department of Environmental Science, BFIT Group of Institution, Suddhowala, Dehradun, Uttarakhand, 248007, India.
| | - Nitin Kamboj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| | - Manisha Bharti
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Kanchan Deoli Bahukahndi
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Himanshu Saini
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| |
Collapse
|
3
|
Amanpour A, Coskun B, Kanmaz H, Turan BK, Soylu M, Celik F, Hayaloglu AA. Elucidation of heavy metal content, phenolic profiles, and antioxidant activities of kale (Brassica oleracea L. var. acephala) and arugula (Brassica eruca L.) grown in urban gardens in Istanbul. J Food Sci 2024; 89:3506-3522. [PMID: 38660924 DOI: 10.1111/1750-3841.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
This study was conducted to evaluate the effect of two distances: close (0-10 m) and far (60 m) from the heavy traffic roadside, at three different cultivation sites (MS: Mevlanakapi-Silivrikapi, SB: Silivrikapi-Belgradkapi, and BY: Belgradkapi-Yedikule kapi) along the road line. First, the phenolic compounds, antioxidant activity, and physicochemical properties in kale and arugula vegetables were examined. Second, heavy metal concentrations in vegetables, soil, and irrigated water were investigated. In both vegetables, the highest total phenolic content was detected in samples obtained from far distance in SB site (3880.3 mg/kg) for kale and in BY site (1459.9 mg/kg) for arugula, whereas the lowest content was found at the close distance in MS site for both kale (448.5 mg/kg) and arugula (586.4 mg/kg). The antioxidant activity values [mg Trolox/kg (dw)] ranged from 366.74 to 586.10 and 2349.00 to 3757.4 for kale and from 520.00 to 945.60 and 3323.00 to 5814.70 for arugula in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl methods, respectively. The levels of Cd and Hg in kale and arugula and Fe content in arugula exceeded FAO/WHO permissible limits, making them unsafe for human consumption. Meanwhile, the Pb content in kale and arugula and Fe content in kale were observed to be within acceptable limits set by FAO/WHO. In the irrigated water, the Pb value was below the permissible limit, whereas the Cd value was above it and no Hg and Fe were detected. In the soil samples, the Pb and Fe values were below the limit, whereas the Cd and Hg values were higher.
Collapse
Affiliation(s)
- Armin Amanpour
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | - Beril Coskun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | - Hilal Kanmaz
- Department of Food Engineering, Inonu University, Malatya, Türkiye
| | - Busra Kaya Turan
- Department of Food Engineering, Inonu University, Malatya, Türkiye
| | - Meltem Soylu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Fatma Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | | |
Collapse
|
4
|
Aina OE, Mugivhisa LL, Olowoyo JO, Obi CL. Heavy metals and potential health risk assessment of Lactuca sativa and Daucus carrota from soil treated with organic manures and chemical fertilizer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:538. [PMID: 38730206 PMCID: PMC11087361 DOI: 10.1007/s10661-024-12687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The large-scale production of food crops with heavy application of chemical fertilizers in the effort to meet the astronomical increase in food demands may be counterproductive to the goal of food security. This study investigated the effect of different soil treatments on the levels of heavy metals (Cr, Cu, Fe, Ni, Pb, and Zn) in two types of vegetables Lactuca sativa (lettuce) and Daucus carrota (carrot). The potential carcinogenic and non-carcinogenic health risks from their consumption were also evaluated. Planting experiment was set up in a randomized block design, with different soil treatments of soil + cow dung (CD), soil + sewage sludge (SS), soil + chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and untreated soil (UNTRD). The vegetables were harvested at maturity, washed with distilled water, and subjected to an acid digestion process before the levels of heavy metals were measured by inductively coupled plasma spectrometry (ICP-MS). The mean concentrations of the metals in the vegetables across all treatments were below the maximum permissible limits. The pattern of heavy metal accumulation by the vegetables suggested that the lettuce from SS treatment accumulated higher concentrations of heavy metals like Cr (0.20 mg/kg), Cu (3.91 mg/kg), Ni (0.33 mg/kg), and Zn (20.44 mg/kg) than carrot, with highest concentrations of Fe (90.89 mg/kg) and Pb (0.16 mg/kg) recorded in lettuce from NPK treatment. The bioaccumulation factor (BAF) showed that lettuce, a leafy vegetable, has bioaccumulated more heavy metals than carrot, a root vegetable. The BAF was generally below the threshold value of 1 in both vegetables, except in lettuce from NPK and CD treatments and carrot from NPK treatments, with BAF values of 1.6, 1.69, and 1.39, respectively. The cancer risk assessment factors were well below the unacceptable maximum range of 10-4 suggesting that consuming these vegetables might not expose an individual to potential risk of cancer development. The hazard quotient estimations were below the threshold values of 1 for all heavy metals; however, the hazard index (HI) values of 1.27 and 1.58 for lettuce from NPK and SS treatments indicate a potential non-carcinogenic health risk to consumers from intake of all the heavy metals.
Collapse
Affiliation(s)
- O E Aina
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| | - L L Mugivhisa
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - J O Olowoyo
- Department of Health Sciences and The Water School, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - C L Obi
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
5
|
George II, Nawawi MGM, Mohd ZJ, Farah BS. Environmental effects from petroleum product transportation spillage in Nigeria: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1719-1747. [PMID: 38055166 DOI: 10.1007/s11356-023-31117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
Collapse
Affiliation(s)
- Ikenna Ignatius George
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia.
- Transport Technology Center, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria.
| | - Mohd Ghazali Mohd Nawawi
- Department of Chemical Engineering, (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Zaidi Jafaar Mohd
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Bayero Salih Farah
- Office of the Director General Chief Executive, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria
| |
Collapse
|
6
|
Batool M, Shah MH. Appraisal of contamination, source identification and health risk assessment of selected metals in the agricultural soil of Chakwal, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8295-8316. [PMID: 37594606 DOI: 10.1007/s10653-023-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Contamination of metals in agricultural soil is a serious global threat but there are limited reports related to their risks in major agronomic areas. The current study is aimed to assess the distribution of selected macroelements and essential/toxic trace metals (Ca, Mg, Na, K, Sr, Li, Ag, Fe, Zn, Co, Cu, Mn, Cd, Cr, Pb and Ni) in the agricultural soil of Chakwal, Pakistan, in order to appraise their contamination status, source identification and probable human health risks. Quantification of the metals was performed by AAS employing aqua regia digestion method. Among the selected metals, dominant mean concentrations were observed for Ca (48,285 mg/kg) and Fe (30,120 mg/kg), followed by Mg (9171 mg/kg), K (973.3 mg/kg), Mn (399.0 mg/kg) and Na (368.9 mg/kg). The correlation study indicated strong mutual relationships among the metals as well as physicochemical properties. Multivariate analysis (PCA/CA) of the metal levels revealed their diverse anthropogenic sources in the soil. Various pollution indices indicated extremely high contamination/enrichment of Cd, followed by moderate enrichment/contamination of Ag in the soil. The HQ values for most of the metals manifested insignificant non-cancer risks. The average CR value of Cr was exceeding the safe limit (1.0E-06) for both ingestion and inhalation exposure, indicating a considerable lifelong cancer risk for the population. The results of this study will provide a better understanding related to the contamination of agricultural soil and its effects on human health and to promote effective actions to reduce the soil pollution.
Collapse
Affiliation(s)
- Maryam Batool
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Roy J, Pore S, Roy K. Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO 2 with periodic table descriptors using machine learning approaches. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:939-950. [PMID: 37736658 PMCID: PMC10509545 DOI: 10.3762/bjnano.14.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Nanoparticles with their unique features have attracted researchers over the past decades. Heavy metals, upon release and emission, may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium dioxide (nano-TiO2) can adsorb heavy metals. The current idea is that nanoparticles (NPs) may act as carriers and facilitate the entry of heavy metals into organisms. Thus, the present study reports nanoscale quantitative structure-activity relationship (nano-QSAR) models, which are based on an ensemble learning approach, for predicting the cytotoxicity of heavy metals adsorbed on nano-TiO2 to human renal cortex proximal tubule epithelial (HK-2) cells. The ensemble learning approach implements gradient boosting and bagging algorithms; that is, random forest, AdaBoost, Gradient Boost, and Extreme Gradient Boost were constructed and utilized to establish statistically significant relationships between the structural properties of NPs and the cause of cytotoxicity. To demonstrate the predictive ability of the developed nano-QSAR models, simple periodic table descriptors requiring low computational resources were utilized. The nano-QSAR models generated good R2 values (0.99-0.89), Q2 values (0.64-0.77), and Q2F1 values (0.99-0.71). Thus, the present work manifests that ML in conjunction with periodic table descriptors can be used to explore the features and predict unknown compounds with similar properties.
Collapse
Affiliation(s)
- Joyita Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Souvik Pore
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
8
|
Cadondon J, Vallar E, Roque FJ, Rempillo O, Mandia P, Orbecido A, Beltran A, Deocaris C, Morris V, Belo L, Galvez MC. Elemental distribution and source analysis of atmospheric aerosols from Meycauayan, Bulacan, Philippines. Heliyon 2023; 9:e19459. [PMID: 37809711 PMCID: PMC10558599 DOI: 10.1016/j.heliyon.2023.e19459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
One of the industrialized cities in the Philippines is Meycauayan, Bulacan. This study reports the elemental distribution and source apportionment in eight varying land cover-land use type sampling points located along the Marilao-Meycauayan- Obando Rivers System. Elemental analysis was conducted using a scanning electron microscope coupled with energy dispersive x-ray. Cu, Pb, Zn, Cr, Mn, As, Cd, Co, Fe, Ni, Ti, and V concentrations were determined using Inductively Coupled Plasma Mass Spectrometry, and Hg concentrations by Mercury analyzer. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and Pearson's r correlation were used to analyze different sources of heavy metals and its corresponding land use-land cover type. The aerosol samples showed the presence of heavy metals Pb and Hg, elements that were also detected in trace amounts in the water measurements. Concentrations of heavy metals such as Cu, Fe, Pb, Zn, V, Ni, and As found in the atmospheric aerosols and urban dusts were attributed to anthropogenic sources such as residential, commercial and industrial wastes. Other source of aerosols in the area were traffic and crustal emissions in Meycauayan. Using HCA, there are 3 clusters observed based on the similar sets of heavy metals: (1) AQS1 (Caingin), AQS2 (Banga), and AQS8 (Malhacan); (2) AQS3(Calvario), AQS4 (Camalig), and AQS5(Langka); (3) AQS1(Sto Nino-Perez), and (AQS7) (Sterling). These groups are related based on different land use setting such as residential/commercial, agricultural, and commercial/industrial areas. Our study recommends the need to address heavy metal pollution in Meycauayan in support to the ongoing implementation of laws and regulations by the local and private sectors.
Collapse
Affiliation(s)
- Jumar Cadondon
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Division of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Edgar Vallar
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Floro Junior Roque
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Ofelia Rempillo
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Paulito Mandia
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Aileen Orbecido
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Arnel Beltran
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Custer Deocaris
- Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City, Philippines
| | - Vernon Morris
- School of Mathematical and Natural Sciences, New College for Interdisciplinary Arts and Sciences, Arizona State University PO Box 37100, MC 1251, Phoenix, AZ, USA
| | - Lawrence Belo
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Maria Cecilia Galvez
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| |
Collapse
|
9
|
Siddiqui SA, Fernando I, Nisa' K, Shah MA, Rahayu T, Rasool A, Aidoo OF. Effects of undesired substances and their bioaccumulation on the black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae)-a literature review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:823. [PMID: 37291225 DOI: 10.1007/s10661-023-11186-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/01/2023] [Indexed: 06/10/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (L.) (Diptera: Stratiomyidae), is predominantly reared on organic wastes and other unused complementary substrates. However, BSF may have a buildup of undesired substances in their body. The contamination of undesired substance, e.g., heavy metals, mycotoxins, and pesticides, in BSF mainly occurred during the feeding process in the larval stage. Yet, the pattern of accumulated contaminants in the bodies of BSF larvae (BSFL) is varied distinctively depending on the diets as well as the contaminant types and concentrations. Heavy metals, including cadmium, copper, arsenic, and lead, were reported to have accumulated in BSFL. In most cases, the cadmium, arsenic, and lead concentration in BSFL exceeded the recommended standard for heavy metals occurring in feed and food. Following the results concerning the accumulation of the undesired substance in BSFL's body, they did not affect the biological parameters of BSFL, unless the amounts of heavy metals in their diets are highly exceeding their thresholds. Meanwhile, a study on the fate of pesticides and mycotoxins in BSFL indicates that no bioaccumulation was detected for any of the target substances. In addition, dioxins, PCBs, PAHs, and pharmaceuticals did not accumulate in BSFL in the few existing studies. However, future studies are needed to assess the long-term effects of the aforementioned undesired substances on the demographic traits of BSF and to develop appropriate waste management technology. Since the end products of BSFL that are contaminated pose a threat to both human and animal health, their nutrition and production process must be well managed to create end products with a low contamination level to achieve a closed food cycle of BSF as animal feed.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany.
| | - Ito Fernando
- Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang, East Java, 65145, Indonesia
| | - Khoirun Nisa'
- Department of Environmental Engineering, Sepuluh Nopember Institute of Technology, Sukolilo, Surabaya, East Java, 60111, Indonesia
| | - Mohd Asif Shah
- Woxsen University, Kamkole, Sadasivpet, Hyderabad, Telangana, 502345, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya, 60189, Jawa Timur, Indonesia
| | - Adil Rasool
- Department of Management, Bakhtar University, Kabul, Afghanistan.
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, 00233, Somanya, Ghana
| |
Collapse
|
10
|
Adejumo AL, Azeez L, Kolawole TO, Aremu HK, Adedotun IS, Oladeji RD, Adeleke AE, Abdullah M. Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1676-1686. [PMID: 36905097 DOI: 10.1080/15226514.2023.2187224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study investigated the phytostabilization and plant-promoting abilities of silver nanoparticles (AgNPs). Twelve Zea mays seeds were planted in water and AgNPs (10, 15 and 20 mg mL-1) irrigated soil for 21 days on soil containing 0.32 ± 0.01, 3.77 ± 0.03, 3.64 ± 0.02, 69.91 ± 9.44 and 13.17 ± 0.11 mg kg-1 of As, Cr, Pb, Mn and Cu, respectively. In soil treated with AgNPs, the metal contents were reduced by 75%, 69%, 62%, 86%, and 76%. The different AgNPs concentrations significantly reduced accumulation of As, Cr, Pb, Mn, and Cu in Z. mays roots by 80%, 40%, 79%, 57%, and 70%, respectively. There were also reductions in shoots by 100%, 76%, 85%, 64%, and 80%. Translocation factor, bio-extraction factor and bioconcentration factor demonstrated a phytoremediation mechanism based on phytostabilization. Shoots, roots, and vigor index improved by 4%, 16%, and 9%, respectively in Z. mays grown with AgNPs. Also, AgNPs increased antioxidant activity, carotenoids, chlorophyll a and chlorophyll b by 9%, 56%, 64%, and 63%, respectively, while decreasing malondialdehyde contents in Z. mays by 35.67%. This study discovered that AgNPs improved the phytostabilization of toxic metals while also contributing to Z. mays' health-promoting properties.
Collapse
Affiliation(s)
- Ayoade L Adejumo
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Tesleem O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria
| | - Harun K Aremu
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | | - Ruqoyyah D Oladeji
- Department of Chemistry, School of Science, Federal College of Education (Special), Oyo, Iya Ibadan, Nigeria
| | | | - Monsurat Abdullah
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
11
|
Ifguis O, Moutcine A, Laghlimi C, Ziat Y, Bouhdadi R, Chtaini A, Moubarik A, Mbarki M. Biopolymer-Modified Carbon Paste Electrode for the Electrochemical Detection of Pb(II) in Water. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5348246. [PMID: 35140993 PMCID: PMC8820895 DOI: 10.1155/2022/5348246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 01/17/2022] [Indexed: 06/01/2023]
Abstract
During the present study, biopolymer lignin was extracted, in particular, from sugar beet pulp (molasses) from the Tadla region (224 km from Marrakech, Morocco). The lignin was characterized by infrared spectroscopy (FTIR) and thermogravimetric TG/DTA analysis and then used as a modifier to enhance the electroanalytical detection of heavy metal ion traces. The performance of the lignin/CPE sensor to detect lead (II) was studied by cyclic voltammetry (CV) and square-wave voltammetry in 0.3 mol L-1 NaCl. With optimized experimental parameters, the lignin/CPE sensor developed has a minimum detection limit of 2.252.10-11 M for Pb (II). The proposed working electrode has been successfully applied for the coanalysis of Pb (II) in tap water with good results.
Collapse
Affiliation(s)
- Ousama Ifguis
- Engineering Laboratory in Chemistry and Physics of Matter, Faculty of Science and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abdelaziz Moutcine
- Electrochemistry and Molecular Inorganic Materials Team, Sultan Moulay Slimane University, Faculty of Sciences and Technology in Beni-Mellal, Beni Mellal, Morocco
| | - Charaf Laghlimi
- Applied Chemistry Team, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Younes Ziat
- Engineering and Applied Physics Team (EAPT), Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Rachid Bouhdadi
- Engineering Laboratory in Chemistry and Physics of Matter, Faculty of Science and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abdelilah Chtaini
- Electrochemistry and Molecular Inorganic Materials Team, Sultan Moulay Slimane University, Faculty of Sciences and Technology in Beni-Mellal, Beni Mellal, Morocco
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials, Sultan Moulay Slimane University, Polydisciplinary Faculty, Beni Mellal, Morocco
| | - Mohamed Mbarki
- Engineering Laboratory in Chemistry and Physics of Matter, Faculty of Science and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
12
|
Rani Saha T, Abu Rayhan Khan M, Kundu R, Naime J, Md Rezaul Karim K, Hosna Ara M. Heavy metal contaminations of soil in waste dumping and non-dumping sites in Khulna: Human health risk assessment. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Githaiga KB, Njuguna SM, Gituru RW, Yan X. Assessing heavy metal contamination in soils using improved weighted index (IWI) and their associated human health risks in urban, wetland, and agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66012-66025. [PMID: 34327642 DOI: 10.1007/s11356-021-15404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Contamination of nine heavy metals (HMs) Zn, Pb, Cu, Cd, As, Co, Cr, Mo, and Ni in agricultural, urban, and wetland soils from Western and Rift Valley parts of Kenya was assessed using improved weighted index (IWI) and pollution loading index (PLI). Non-carcinogenic risks posed by the HMs were assessed using hazard quotients (HQ) and hazard index (HI), while carcinogenic risks were assessed using cancer risks (CR) and total cancer risks (TCR). The average concentration of Zn, Cr, Ni, Pb, Co, Cu, As, Mo, and Cd was 94.7 mg/kg, 43.6 mg/kg, 22.3 mg/kg, 21.0 mg/kg, 19.8 mg/kg, 18.0 mg/kg, 16.3 mg/kg, 1.83 mg/kg, and 1.16 mg/kg, respectively. IWI ranged from 0.57 to 6.04 and categorized 6.82% of the study sites as not polluted, 27.3% as slightly polluted, 43.2% as moderately polluted, and 22.7% as seriously polluted. PLI ranged from 0.38 to 3.95 and classified 15.9% of the sites as not polluted, 61.4% as slightly polluted, 20.5% as moderately polluted, and only 2.3% as seriously polluted. Wetlands retained more HMs from both urban and agricultural runoff and were therefore the most polluted. The heavy metals did not pose any risks via inhalation and dermal contact, but HQingestion for As for children was >1 in 2.3% of the sites studied. CR via ingestion and TCR for As were above the allowable limits for children and adults indicating high risks of cancer. Intensive agriculture and urbanization should be closely monitored to prevent further HM pollution.
Collapse
Affiliation(s)
- Kelvin Babu Githaiga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Samwel Maina Njuguna
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Wahiti Gituru
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000, Nairobi, 00200, Kenya
| | - Xue Yan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
14
|
Abd-Elhakim YM, Hashem MM, Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-Exposure of Nanoparticles and Metals on Different Organisms: A Review. TOXICS 2021; 9:284. [PMID: 34822675 PMCID: PMC8623643 DOI: 10.3390/toxics9110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Wide nanotechnology applications and the commercialization of consumer products containing engineered nanomaterials (ENMs) have increased the release of nanoparticles (NPs) to the environment. Titanium dioxide, aluminum oxide, zinc oxide, and silica NPs are widely implicated NPs in industrial, medicinal, and food products. Different types of pollutants usually co-exist in the environment. Heavy metals (HMs) are widely distributed pollutants that could potentially co-occur with NPs in the environment. Similar to what occurs with NPs, HMs accumulation in the environment results from anthropogenic activities, in addition to some natural sources. These pollutants remain in the environment for long periods and have an impact on several organisms through different routes of exposure in soil, water, and air. The impact on complex systems results from the interactions between NPs and HMs and the organisms. This review describes the outcomes of simultaneous exposure to the most commonly found ENMs and HMs, particularly on soil and aquatic organisms.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 41639, Egypt;
| | - Khlood M. Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|