1
|
Ademoyegun JK, Aremu SO. Socioeconomic determinants of malaria and hepatitis infections: insights from the Federal Medical Center, Makurdi, North Central, Nigeria. BMC Public Health 2024; 24:3187. [PMID: 39550538 PMCID: PMC11568671 DOI: 10.1186/s12889-024-20666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Malaria and hepatitis are prevalent public health issues in Nigeria, significantly impacting health outcomes. Given the importance of the Federal Medical Center, Makurdi, as a key healthcare provider in the region, it is crucial to understand the prevalence and factors associated with these diseases within this setting. This study is designed to address this need, aiming to evaluate the prevalence and risk factors of malaria and hepatitis B and C among patients at the Federal Medical Center, Makurdi. METHODOLOGY A cross-sectional study design was employed, involving the meticulous analysis of patient records and diagnostic data from the Federal Medical Center, Makurdi. Data on malaria and hepatitis B and C prevalence were collected from laboratory reports and patient interviews. Socioeconomic information, including income, education level, and healthcare access, was also gathered. Statistical analyses were performed with utmost care to identify associations between disease prevalence and risk factors. RESULTS The study examined 248 patients at the Federal Medical Centre, Makurdi, assessing malaria, Hepatitis B surface antigen (HBsAg), and Hepatitis C virus (HCV). Malaria prevalence was 52.4%, with higher rates in males (57.7%) than females (47.2%). HBsAg prevalence was 6.9%, and HCV was 4.8%, with no significant differences by sex or marital status. Income level impacted HCV rates, with middle-income individuals showing higher prevalence (21.4%). Malaria was most common in the 26-40 age group (35.4%). DISCUSSION The findings underscore the need for targeted public health interventions. Enhanced access to preventive measures, such as insecticide-treated nets and safer blood transfusion practices, and educational disease prevention programs, are essential. Addressing socioeconomic disparities is crucial for effective disease control. CONCLUSION To mitigate the burden of malaria and hepatitis B and C at the Federal Medical Center, Makurdi, a multifaceted approach is required. Improving preventive measures, healthcare access, and addressing socioeconomic determinants will reduce disease prevalence and improve patient outcomes.
Collapse
Affiliation(s)
| | - Stephen Olaide Aremu
- Department of Microbiology, Joseph Sarwuan Tarka University, Benue State, Makurdi, Nigeria.
- Faculty of Medicine, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
2
|
Aninagyei E, Puopelle DM, Tukwarlba I, Ghartey-Kwansah G, Attoh J, Adzakpah G, Acheampong DO. Molecular speciation of Plasmodium and multiplicity of P. falciparum infection in the Central region of Ghana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002718. [PMID: 38236793 PMCID: PMC10796036 DOI: 10.1371/journal.pgph.0002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Malaria is endemic in the Central region of Ghana, however, the ecological and the seasonal variations of Plasmodium population structure and the intensity of malaria transmission in multiple sites in the region have not been explored. In this cross-sectional study, five districts in the region were involved. The districts were Agona Swedru, Assin Central and Gomoa East (representing the forest zone) and Abura-Asebu-Kwamankese and Cape Coast representing the coastal zone. Systematically, blood samples were collected from patients with malaria. The malaria status was screened with a rapid diagnostic test (RDT) kit (CareStart manufactured by Access Bio in Somerset, USA) and the positive ones confirmed microscopically. Approximately, 200 μL of blood was used to prepare four dried blood spots of 50μL from each microscopy positive sample. The Plasmodium genome was sequenced at the Malaria Genome Laboratory (MGL) of Wellcome Sanger Institute (WSI), Hinxton, UK. The single nucleotide polymorphisms (SNPs) in the parasite mitochondria (PfMIT:270) core genome aided the species identification of Plasmodium. Subsequently, the complexity of infection (COI) was determined using the complexity of infection likelihood (COIL) computational analysis. In all, 566 microscopy positive samples were sequenced. Of this number, Plasmodium genome was detected in 522 (92.2%). However, whole genome sequencing was successful in 409/522 (72.3%) samples. In total, 516/522 (98.8%) of the samples contained P. falciparum mono-infection while the rest (1.2%) were either P. falciparum/P. ovale (Pf/Po) (n = 4, 0.8%) or P. falciparum/P. malariae/P. vivax (Pf/Pm/Pv) mixed-infection (n = 2, 0.4%). All the four Pf/Po infections were identified in samples from the Assin Central municipality whilst the two Pf/Pm/Pv triple infections were identified in Abura-Asebu-Kwamankese district and Cape Coast metropolis. Analysis of the 409 successfully sequenced genome yielded between 1-6 P. falciparum clones per individual infection. The overall mean COI was 1.78±0.92 (95% CI: 1.55-2.00). Among the study districts, the differences in the mean COI between ecological zones (p = 0.0681) and seasons (p = 0.8034) were not significant. However, regression analysis indicated that the transmission of malaria was more than twice among study participants aged 15-19 years (OR = 2.16, p = 0.017) and almost twice among participants aged over 60 years (OR = 1.91, p = 0.021) compared to participants between 20-59 years. Between genders, mean COI was similar except in Gomoa East where females recorded higher values. In conclusion, the study reported, for the first time, P. vivax in Ghana. Additionally, intense malaria transmission was found to be higher in the 15-19 and > 60 years, compared to other age groups. Therefore, active surveillance for P. vivax in Ghana and enhanced malaria control measures in the 15-19 year group years and those over 60 years are recommended.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Dakorah Mavis Puopelle
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Tukwarlba
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Juliana Attoh
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Godwin Adzakpah
- Department of Health Information Management, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Kojom Foko LP, Jakhan J, Tamang S, Hawadak J, Kouemo Motse FD, Singh V. First Insight into Drug Resistance Genetic Markers, Glucose-6-Phosphate Dehydrogenase and Phylogenetic Patterns of Misdiagnosed Plasmodium vivax Malaria in Far North Region, Cameroon. Curr Microbiol 2023; 81:9. [PMID: 37968386 DOI: 10.1007/s00284-023-03522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Plasmodium falciparum (Pf) is the predominant malaria species in Africa, but growing rates of non-falciparum species such as P. vivax (Pv) have been reported recently. This study aimed at characterizing drug resistance genes, glucose-6-phosphate dehydrogenase gene (G6PD), and phylogenetic patterns of a Pv + Pf co-infection misdiagnosed as a Pf mono-infection in the Far North region of Cameroon. Only one non-synonymous mutation in the pvdhps gene A383G was found. Pv drug resistance gene sequences were phylogenetically closer to the reference SAL-I strain and isolates from Southeast Asia and Western Pacific countries. Analyzing co-infecting Pf revealed no resistance mutations in Pfmdr1 and Pfk13 genes, but mutations in Pfcrt (C72V73I74E75T76) and Pfdhfr-Pfdhps genes (A16C50I51R59N108L164 - A436A437K540G581S613) were observed. No G6PD deficiency-related mutations were found. This is first study from Cameroon reporting presence of putative drug resistance mutations in Pv infections, especially in the pvdhps gene, and also outlined the absence of a G6PD-deficiency trait in patients.
Collapse
Affiliation(s)
| | - Jahnvi Jakhan
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | - Suman Tamang
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | - Joseph Hawadak
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | | | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India.
| |
Collapse
|
4
|
Sendor R, Banek K, Kashamuka MM, Mvuama N, Bala JA, Nkalani M, Kihuma G, Atibu J, Thwai KL, Svec WM, Goel V, Nseka T, Lin JT, Bailey JA, Emch M, Carrel M, Juliano JJ, Tshefu A, Parr JB. Epidemiology of Plasmodium malariae and Plasmodium ovale spp. in a highly malaria-endemic country: a longitudinal cohort study in Kinshasa Province, Democratic Republic of Congo. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.20.23288826. [PMID: 37790376 PMCID: PMC10543032 DOI: 10.1101/2023.04.20.23288826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Increasing reports suggest that non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa, but their epidemiology is not well-defined. This is particularly true in regions of high P. falciparum endemicity such as the Democratic Republic of Congo (DRC), where 12% of the world's malaria cases and 13% of deaths occur. Methods and Findings The cumulative incidence and prevalence of P. malariae and P. ovale spp. infection detected by real-time PCR were estimated among children and adults within a longitudinal study conducted in seven rural, peri-urban, and urban sites from 2015-2017 in Kinshasa Province, DRC. Participants were sampled at biannual household survey visits (asymptomatic) and during routine health facility visits (symptomatic). Participant-level characteristics associated with non-falciparum infections were estimated for single- and mixed-species infections. Among 9,089 samples collected from 1,565 participants over a 3-year period, the incidence of P. malariae and P. ovale spp. infection was 11% (95% CI: 9%-12%) and 7% (95% CI: 5%-8%) by one year, respectively, compared to a 67% (95% CI: 64%-70%) one-year cumulative incidence of P. falciparum infection. Incidence continued to rise in the second year of follow-up, reaching 26% and 15% in school-age children (5-14yo) for P. malariae and P. ovale spp., respectively. Prevalence of P. malariae, P. ovale spp., and P. falciparum infections during household visits were 3% (95% CI: 3%-4%), 1% (95% CI: 1%-2%), and 35% (95% CI: 33%-36%), respectively. Non-falciparum malaria was more prevalent in rural and peri-urban vs. urban sites, in school-age children, and among those with P. falciparum co-infection. A crude association was detected between P. malariae and any anemia in the symptomatic clinic population, although this association did not hold when stratified by anemia severity. No crude associations were detected between non-falciparum infection and fever prevalence. Conclusions P. falciparum remains the primary driver of malaria morbidity and mortality in the DRC. However, non-falciparum species also pose an infection risk across sites of varying urbanicity and malaria endemicity within Kinshasa, DRC, particularly among children under 15 years of age. As P. falciparum interventions gain traction in high-burden settings like the DRC, continued surveillance and improved understanding of non-falciparum infections are warranted.
Collapse
Affiliation(s)
- Rachel Sendor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Banek
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Nono Mvuama
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Joseph A. Bala
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Marthe Nkalani
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Georges Kihuma
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Joseph Atibu
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Kyaw L. Thwai
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - W. Matthew Svec
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Varun Goel
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tommy Nseka
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jessica T. Lin
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Michael Emch
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonathan J. Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Antoinette Tshefu
- Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
5
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
6
|
Genetic Diversity and Phylogenetic Relatedness of Plasmodium ovale curtisi and Plasmodium ovale wallikeri in sub-Saharan Africa. Microorganisms 2022; 10:microorganisms10061147. [PMID: 35744665 PMCID: PMC9227610 DOI: 10.3390/microorganisms10061147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
P. ovale was until recently thought to be a single unique species. However, the deployment of more sensitive tools has led to increased diagnostic sensitivity, including new evidence supporting the presence of two sympatric species: P. ovale curtisi (Poc) and P. ovale wallikeri (Pow). The increased reports and evolution of P. ovale subspecies are concerning for sub-Saharan Africa where the greatest burden of malaria is borne. Employing published sequence data, we set out to decipher the genetic diversity and phylogenetic relatedness of P. ovale curtisi and P. ovale wallikeri using the tryptophan-rich protein and small subunit ribosomal RNA genes from Gabon, Senegal, Ethiopia and Kenya. Higher number of segregating sites were recorded in Poc isolates from Gabon than from Ethiopia, with a similar trend in the number of haplotypes. With regards to Pow, the number of segregating sites and haplotypes from Ethiopia were higher than from those in Gabon. Poc from Kenya, had higher segregating sites (20), and haplotypes (4) than isolates from Senegal (8 and 3 respectively), while nucleotide from Senegal were more diverse (θw = 0.02159; π = 0.02159) than those from Kenya (θw = 0.01452; π = 0.01583). Phylogenetic tree construction reveal two large clades with Poc from Gabon and Ethiopia, and distinct Gabonese and Ethiopian clades on opposite ends. A similar observation was recorded for the phylogeny of Poc isolates from Kenya and Senegal. With such results, there is a high potential that ovale malaria control measures deployed in one country may be effective in the other since parasite from both countries show some degree of relatedness. How this translates to malaria control efforts throughout the continent would be next step deserving more studies.
Collapse
|