1
|
Sun X, Xu Z, Zhang N, Miao Y, Zhang C, Ma X, Shen Q, Zhang R. Biofertilizer Industry and Research Developments in China: A Mini-Review. Microb Biotechnol 2025; 18:e70163. [PMID: 40411486 PMCID: PMC12103079 DOI: 10.1111/1751-7915.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025] Open
Abstract
Reliance on chemical fertilizers has significantly boosted food production in China, but it has also led to soil degradation, environmental pollution, and greenhouse gas emissions. To address these pressing issues, the Chinese government has launched various initiatives to reduce chemical fertilizer consumption and promote biofertilizers as effective alternatives to enhance soil fertility and mitigate environmental pollution. Biofertilizers promote crop growth by providing or activating essential nutrients, suppressing plant pathogens, improving soil health, and increasing resilience to abiotic stresses. The growing adoption of biofertilizers in China is reflected in the registration of more than 10,000 products, an annual production exceeding 35 million tons, and a market value of over US$5.5 billion, indicating a significant shift towards sustainable agricultural practices. Despite this progress, challenges such as the dominance of nitrogen fertilizers, inconsistent product performance, and the need for cultivar-specific microbial inoculants remain. Foundational research on the microbial genera utilised in biofertilizers, including nitrogen-fixing genera Rhizobium, Paenibacillus, and Pseudomonas, the widely used genus, Bacillus and Trichoderma, as well as multipurpose synthetic communities, is essential for overcoming these obstacles and enhancing the efficacy of biofertilizers. This review delves into the historical development of the biofertilizer industry and recent advancements in fundamental research on biofertilizers in China, highlighting the essential role of biofertilizers in promoting green agricultural development.
Collapse
Affiliation(s)
- Xinli Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Chao Zhang
- Shandong Jinyimeng Shengtai Feiye CO. LTDLinsuChina
| | - Xiaoli Ma
- Shandong Jinyimeng Shengtai Feiye CO. LTDLinsuChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
2
|
Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha JH. Biofertilizer use in the United States: definition, regulation, and prospects. Appl Microbiol Biotechnol 2024; 108:511. [PMID: 39531072 PMCID: PMC11557716 DOI: 10.1007/s00253-024-13347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term "biofertilizer" and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated by Rhizobium genus, Mycorrhizae fungi, and Azospirillum species and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. KEY POINTS: • The term "biofertilizer" lacks a universally accepted definition • It is necessary establishing a national regulation for biofertilizers in the USA • The biofertilizer market is growing fast and the biggest one is in America.
Collapse
Affiliation(s)
- Flavia Santos
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Suraj Melkani
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | | | - Daniel Bini
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Luke Gatiboni
- North Carolina State Extension, North Carolina State University, Raleigh, NC, USA
| | - Anik Mahmud
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | - Maria Torres
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Eric McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, USA
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Jehangir H Bhadha
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA.
| |
Collapse
|
3
|
Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid Bioformulation: A Trending Approach Towards Achieving Sustainable Agriculture. Mol Biotechnol 2024; 66:2725-2750. [PMID: 37923941 DOI: 10.1007/s12033-023-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023]
Abstract
The human population is expanding at an exponential rate, and has created a great surge in the demand for food production. To intensify the rate of crop production, there is a tremendous usage of chemical pesticides and fertilizers. The practice of using these chemicals to enhance crop productivity has resulted in the degradation of soil fertility, leading to the depletion of native soil microflora. The constant application of these hazardous chemicals in the soil possesses major threat to humans and animals thereby impacting the agroecosystem severely. Hence, it is very important to hunt for certain new alternatives for enhancing crop productivity in an eco-friendly manner by using the microbial bioformulations. Microbial bioformulations can be mainly divided into two types: solid and liquid. There is a lot of information available on the subject of solid bioformulation, but the concept of liquid bioformulation is largely ignored. This article focuses on the diverse spectrum of liquid bioformulation pertaining to the market capture, its different types, potency of the product, mode of usage, and the limitations encountered. Also the authors have tried to include all the strategies required for sensitizing and making liquid bioformulation approach cost effective and as a greener strategy to succeed in developing countries.
Collapse
Affiliation(s)
- Samaksh Rai
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Geetika Aggarwal
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anjali Yadav
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
4
|
Ghorui M, Chowdhury S, Balu P, Burla S. Arbuscular Mycorrhizal inoculants and its regulatory landscape. Heliyon 2024; 10:e30359. [PMID: 38711654 PMCID: PMC11070868 DOI: 10.1016/j.heliyon.2024.e30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
One of the most prominent means for sustainable agriculture and ecosystem management are Arbuscular Mycorrhizal (AM) inoculants. These inoculants establish beneficial symbiotic relationships with land plant roots, offering a wide range of benefits, from enhanced nutrient absorption to improved resilience against environmental stressors. However, several currently available commercial AM inoculants face challenges such as inconsistency in field applications, ecological risks associated with non-native strains, and the absence of universal regulations. Currently, regulations for AM inoculants vary globally, with some regions leading efforts to standardize and ensure quality control. Proposed regulatory frameworks aim to establish parameters for composition, safety, and efficacy. Nevertheless, challenges persist in terms of scientific data, standardization, testing under real conditions, and the ecological impact of these inoculants. To address these challenges and unlock the full potential of AM inoculants, increased research funding, public-private partnerships, monitoring, awareness, and ecosystem impact studies are recommended. Future regulations have the potential to improve product quality, soil health, and crop productivity while reducing reliance on chemical inputs and benefiting the environment. However, addressing issues related to compliance, standardization, education, certification, monitoring, and cost is essential for realizing these benefits. Global harmonization and collaborative efforts are vital to maximize their impact on agriculture and ecosystem management, leading to healthier soils, increased crop yields, and a more sustainable agricultural industry.
Collapse
Affiliation(s)
- Maunata Ghorui
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Shouvik Chowdhury
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Prakash Balu
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600 117, India
| | - Sashidhar Burla
- ATGC Biotech Pvt. Ltd., Sy. No. 494, 495 & 496, ATGC Agri Biotech Innovation Square, TSIC Kolthur Biotech Park, Genome Valley, Shamirpet Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
5
|
Ahmed N, Zhang B, Deng L, Bozdar B, Li J, Chachar S, Chachar Z, Jahan I, Talpur A, Gishkori MS, Hayat F, Tu P. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation-a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1357153. [PMID: 38685958 PMCID: PMC11057267 DOI: 10.3389/fpls.2024.1357153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Itrat Jahan
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Afifa Talpur
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Hu S, Li G, Berlinches de Gea A, Teunissen J, Geisen S, Wilschut RA, Schwelm A, Wang Y. Microbiome predators in changing soils. Environ Microbiol 2023; 25:2057-2067. [PMID: 37438930 DOI: 10.1111/1462-2920.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Microbiome predators shape the soil microbiome and thereby soil functions. However, this knowledge has been obtained from small-scale observations in fundamental rather than applied settings and has focused on a few species under ambient conditions. Therefore, there are several unaddressed questions on soil microbiome predators: (1) What is the role of microbiome predators in soil functioning? (2) How does global change affect microbiome predators and their functions? (3) How can microbiome predators be applied in agriculture? We show that there is sufficient evidence for the vital role of microbiome predators in soils and stress that global changes impact their functions, something that urgently needs to be addressed to better understand soil functioning as a whole. We are convinced that there is a potential for the application of microbiome predators in agricultural settings, as they may help to sustainably increase plant growth. Therefore, we plea for more applied research on microbiome predators.
Collapse
Affiliation(s)
- Shunran Hu
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guixin Li
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Alejandro Berlinches de Gea
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Joliese Teunissen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Department of Environment, Soils and Landuse, Teagasc Johnstown Castle, Wexford, Ireland
| | - Yuxin Wang
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| |
Collapse
|
7
|
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A Look at Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:1668. [PMID: 37111891 PMCID: PMC10145503 DOI: 10.3390/plants12081668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Javier Ireta-Moreno
- Centro de Investigación Regional Pacífico Centro, Centro Altos Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 2470, Jalisco, Mexico
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| |
Collapse
|
8
|
Harerimana B, Zhou M, Zhu B, Xu P. Regional estimates of nitrogen budgets for agricultural systems in the East African Community over the last five decades. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:27. [PMID: 36909277 PMCID: PMC9993390 DOI: 10.1007/s13593-023-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The great challenge of reducing soil nutrient depletion and assuring agricultural system productivity in low-income countries caused by limited synthetic fertilizer use necessitates local and cost-effective nutrient sources. We estimated the changes of the nitrogen budget of agricultural systems in the East African Community from 1961 to 2018 to address the challenges of insufficient nitrogen inputs and serious soil nitrogen depletion in agricultural systems of the East African Community region. Results showed that total nitrogen input increased from 12.5 kg N ha-1yr-1 in the 1960s to 21.8 kg N ha-1yr-1 in the 2000s and 27 kg N ha-1yr-1 in the 2010s. Total nitrogen crop uptake increased from 12.8 kg N ha-1yr-1 in the 1960s to 18.2 kg N ha-1yr-1 in the 2000s and 21.8 kg N ha-1yr-1 in the 2010s. Soil nitrogen stock increased from -2.0 kg N ha-1yr-1 in the 1960s to -0.5 kg N ha-1yr-1 in the 2000s and 0.3 kg N ha-1yr-1 in the 2010s. Our results allow us to substantiate for the first time that soil nitrogen depletion decreases with increasing input of nitrogen in agricultural systems of the East African Community region. This suggests that increases in nitrogen inputs through biological nitrogen fixation and animal manure are the critical nitrogen management practices to curb soil nitrogen depletion and sustain agricultural production systems in the East African Community region in order to meet food demand for a growing population. Supplementary Information The online version contains supplementary material available at 10.1007/s13593-023-00881-0.
Collapse
Affiliation(s)
- Barthelemy Harerimana
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No.189, QunXianNan Street, Tianfu New Area, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No.189, QunXianNan Street, Tianfu New Area, Chengdu, 610041 China
| | - Bo Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No.189, QunXianNan Street, Tianfu New Area, Chengdu, 610041 China
| | - Peng Xu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No.189, QunXianNan Street, Tianfu New Area, Chengdu, 610041 China
| |
Collapse
|
9
|
Allouzi MMA, Allouzi SMA, Keng ZX, Supramaniam CV, Singh A, Chong S. Liquid biofertilizers as a sustainable solution for agriculture. Heliyon 2022; 8:e12609. [PMID: 36619398 PMCID: PMC9813699 DOI: 10.1016/j.heliyon.2022.e12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This paper provides a mini review of liquid biofertilizers, which have been proven to perform better than the other forms in lasting for longer periods of time, improving crop quality, and requiring less amounts for application. The production of liquid biofertilizers, types of liquid inoculants, and their effect on plant growth are covered in this review. Liquid biofertilizers can be made from wastes and by-products of several industries, making zero or near-zero discharge possible and thus gearing towards circular economy. Despite their usefulness in enhancing crop quality and eco-friendliness, in order to compete with chemical fertilizers, there are a number of challenges to overcome, such as extending the shelf life, making them more susceptible to seasonal climate conditions and soil types, and development of suitable machineries for production and application. More field trials, cost-benefit analysis and long-term studies should also be evaluated for commercialization purposes.
Collapse
Affiliation(s)
- Mintallah Mousa A. Allouzi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Safa Mousa A. Allouzi
- Department of Medicine, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Zi Xiang Keng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Christina Vimala Supramaniam
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Ajit Singh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia,Corresponding author.
| | - Siewhui Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia,Corresponding author.
| |
Collapse
|
10
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
11
|
Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. FRONTIERS IN PLANT SCIENCE 2022; 13:1002448. [PMID: 36186083 PMCID: PMC9523260 DOI: 10.3389/fpls.2022.1002448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Recent decades have witnessed increased agricultural production to match the global demand for food fueled by population increase. Conventional agricultural practices are heavily reliant on artificial fertilizers that have numerous human and environmental health effects. Cognizant of this, sustainability researchers and environmentalists have increased their focus on other crop fertilization mechanisms. Biofertilizers are microbial formulations constituted of indigenous plant growth-promoting rhizobacteria (PGPR) that directly or indirectly promote plant growth through the solubilization of soil nutrients, and the production of plant growth-stimulating hormones and iron-sequestering metabolites called siderophores. Biofertilizers have continually been studied, recommended, and even successfully adopted for the production of many crops in the world. These microbial products hold massive potential as sustainable crop production tools, especially in the wake of climate change that is partly fueled by artificial fertilizers. Despite the growing interest in the technology, its full potential has not yet been achieved and utilization still seems to be in infancy. There is a need to shed light on the past, current, and future prospects of biofertilizers to increase their understanding and utility. This review evaluates the history of PGPR biofertilizers, assesses their present utilization, and critically advocates their future in sustainable crop production. It, therefore, updates our understanding of the evolution of PGPR biofertilizers in crop production. Such information can facilitate the evaluation of their potential and ultimately pave the way for increased exploitation.
Collapse
Affiliation(s)
- Becky N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Vishal Tripathi
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Billy A. Makumba
- Department of Biological and Physical Sciences, Moi University, Eldoret, Kenya
| | - Ernest R. Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
12
|
Abuhena M, Al-Rashid J, Azim MF, Khan MNM, Kabir MG, Barman NC, Rasul NM, Akter S, Huq MA. Optimization of industrial (3000 L) production of Bacillus subtilis CW-S and its novel application for minituber and industrial-grade potato cultivation. Sci Rep 2022; 12:11153. [PMID: 35778426 PMCID: PMC9249890 DOI: 10.1038/s41598-022-15366-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
A commercial plant probiotic product was developed employing Bacillus subtilis CW-S in submerged fermentation. The effects of molasses and urea on cell growth were investigated with the goal of low-cost manufacturing. Plackett–Burman and Central-Composite Design (CCD) were utilized to optimize production parameters to maximize productivity. The stability of the formulated product and its efficacy in cultivating minituber in aeroponics and industrial-grade potatoes in the field were assessed. The results showed that the medium BS10 (molasses and urea) produced satisfactory cell density (7.19 × 108 CFU/mL) as compared to the control (1.51 × 107 CFU/mL) and BS1-BS9 (expensive) media (1.84 × 107–1.37 × 109 CFU/mL). According to validated CCD results, optimized parameters fitted well in pilot (300 L; 2.05 × 109 CFU/mL) and industrial (3000 L; 2.01 × 109 CFU/mL) bioreactors, resulting in a two-fold increase in cell concentration over laboratory (9.84 × 108 CFU/mL) bioreactors. In aeroponics, CW-S produced excellent results, with a significant increase in the quantity and weight of minitubers and the survival rate of transplanted plantlets. In a field test, the yield of industrial-grade (> 55 mm) potatoes was increased with a reduction in fertilizer dose. Overall, the findings suggest that CW-S can be produced commercially utilizing the newly developed media and optimized conditions, making plant probiotics more cost-effective and accessible to farmers for crop cultivation, particularly in aeroponic minituber and industrial-grade potato production.
Collapse
Affiliation(s)
- Md Abuhena
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh
| | - Jubair Al-Rashid
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Md Faisal Azim
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.
| | - Md Niuz Morshed Khan
- Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Md Golam Kabir
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Nirmal Chandra Barman
- Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Noorain Munim Rasul
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 461-701, Republic of Korea.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
13
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
14
|
Ahmad A, Zafar U, Khan A, Haq T, Mujahid T, Wali M. Effectiveness of compost inoculated with phosphate solubilizing bacteria. J Appl Microbiol 2022; 133:1115-1129. [DOI: 10.1111/jam.15633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Areesha Ahmad
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Urooj Zafar
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Adnan Khan
- Department of Geology University of Karachi Karachi‐75270 Pakistan
| | - Tooba Haq
- Centre of Environmental Studies, PCSIR labs Complex Karachi Karachi‐75280 Pakistan
| | - Talat Mujahid
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Mahreen Wali
- Dow University of Health Sciences, Ojha campus University Road Karachi‐75270 Pakistan
| |
Collapse
|
15
|
Batista BD, Singh BK. Realities and hopes in the application of microbial tools in agriculture. Microb Biotechnol 2021; 14:1258-1268. [PMID: 34156754 PMCID: PMC8313292 DOI: 10.1111/1751-7915.13866] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
The use of microbial tools to sustainably increase agricultural production has received significant attention from researchers, industries and policymakers. Over the past decade, the market access and development of microbial products have been accelerated by (i) the recent advances in plant-associated microbiome science, (ii) the pressure from consumers and policymakers for increasing crop productivity and reducing the use of agrochemicals, (iii) the rising threats of biotic and abiotic stresses, (iv) the loss of efficacy of some agrochemicals and plant breeding programs and (v) the calls for agriculture to contribute towards mitigating climate change. Although the sector is still in its infancy, the path towards effective microbial products is taking shape and the global market of these products has increased faster than that of agrochemicals. Promising results from using microbes either as biofertilizers or biopesticides have been continually reported, fuelling optimism and high expectations for the sector. However, some limitations, often related to low efficacy and inconsistent performance in field conditions, urgently need to be addressed to promote a wider use of microbial tools. We propose that advances in in situ microbiome manipulation approaches, such as the use of products containing synthetic microbial communities and novel prebiotics, have great potential to overcome some of these current constraints. Much more progress is expected in the development of microbial inoculants as areas such as synthetic biology and nano-biotechnology advance. If key technical, translational and regulatory issues are addressed, microbial tools will not only play an important role in sustainably boosting agricultural production over the next few decades but also contribute towards other sustainable development goals, including job creation and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Bruna D. Batista
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityRichmondNSWAustralia
| |
Collapse
|
16
|
Hernández-Fernández M, Cordero-Bueso G, Ruiz-Muñoz M, Cantoral JM. Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:822. [PMID: 33919047 PMCID: PMC8142971 DOI: 10.3390/plants10050822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
The extensive use of synthetic fertilizers and pesticides has negative consequences in terms of soil microbial biodiversity and environmental contamination. Faced with this growing concern, a proposed alternative agricultural method is the use of microorganisms as biofertilizers. Many works have been focused on bacteria, but the limited literature on yeasts and their potential ability to safely promote plant growth is gaining particular attention in recent years. Thus, the objective of this review is to highlight the application of yeasts as biological agents in different sectors of sustainable agricultural practices through direct or indirect mechanisms of action. Direct mechanisms include the ability of yeasts to provide soluble nutrients to plants, produce organic acids and phytohormones (indole-3-acetic acid). Indirect mechanisms involve the ability for yeasts to act as biocontrol agents through their high antifungal activity and lower insecticidal and herbicidal activity, and as soil bioremediating agents. They also act as protective agents against extreme environmental factors by activating defense mechanisms. It is evident that all the aspects that yeasts offer could be useful in the creation of quality biofertilizers and biopesticides. Hence, extensive research on yeasts could be promising and potentially provide an environmentally friendly solution to the increased crop production that will be required with a growing population.
Collapse
Affiliation(s)
| | - Gustavo Cordero-Bueso
- Laboratory of Microbiology, Department Biomedicine, Biotechnology and Public Health, University of Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-F.); (M.R.-M.); (J.M.C.)
| | | | | |
Collapse
|