1
|
Truong-Phuoc L, Duong-Viet C, Nhut JM, Pappa A, Zafeiratos S, Pham-Huu C. Induction Heating for the Electrification of Catalytic Processes. CHEMSUSCHEM 2024:e202402335. [PMID: 39714867 DOI: 10.1002/cssc.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits. Current practices rely heavily on fossil fuel-based burners, primarily using natural gas, which contribute significantly to greenhouse gas emissions. Therefore, replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production. Additionally, the energy-intensive production of metal catalysts used in these processes further exacerbates the environmental impact. This review focuses on the electrification of chemical processes, particularly using induction heating (IH), as a method to reduce the environmental impact of both catalyst production and operation. IH shows promise compared to conventional heating methods, since it offers a cleaner, more efficient, and precise way to heat catalysts in chemical processes by directly generating heat within the catalyst itself. It can potentially even enhance the reaction performance through its influence on the reaction mechanism. By exploring recent advancements in IH-driven catalytic processes, the review delves into how this method is revolutionizing catalysis by enhancing performance, selectivity, and sustainability. It highlights recent breakthroughs and discusses perspectives for further exploration in this rapidly developing field.
Collapse
Affiliation(s)
- Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Cuong Duong-Viet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Jean-Mario Nhut
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Anastasia Pappa
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Spyridon Zafeiratos
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| |
Collapse
|
2
|
Luan J, Li J, Sun Y, Wei J, Wei M, Wang Y, Yin K, Zhu H, Pan H. Effects of transition metal substitution doping on the structure and magnetic properties of biphenylene. Phys Chem Chem Phys 2024; 26:29948-29954. [PMID: 39620250 DOI: 10.1039/d4cp03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This study employed first-principles calculations to comprehensively explore the structural, electronic, and magnetic properties of transition metal-doped biphenylene networks (BPNs). Initially, we optimized the most stable structures of biphenylene doped with various transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and analysed their doping energies and electronic structures in detail. The results indicate that the introduction of transition metals induces varying degrees of spin polarization. Specifically, the Cr-doped BPN exhibits almost 100% spin polarization at the Fermi level, exhibiting the properties of a half-metal or a spin-gapless semiconductor. In contrast, V-doped, Mn-doped and Co-doped BPNs show incomplete spin polarization, and exhibit antiferromagnetic like properties on the C atom. Furthermore, an analysis of the energy differences between the spin states and the non-spin states confirmed the stability of spin states, providing theoretical support for the application of BPNs as a new class of magnetic materials. In summary, through transition metal doping, BPNs exhibit promising applications, particularly in the fields of magnetic storage and magnetic sensors, highlighting their significant potential.
Collapse
Affiliation(s)
- Jinfeng Luan
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Jiangwen Li
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Yuanyuan Sun
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Jie Wei
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Mingzhen Wei
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Youchun Wang
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Ketao Yin
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| | - Hongyang Zhu
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
- Department of Physics and Engineering Physics, University of Tulsa, Tulsa, Oklahoma 74104, USA
| | - Hongzhe Pan
- School of Physics and Electronic Engineering, LinYi University, LinYi 276000, China.
| |
Collapse
|
3
|
Melchakova IA, Oyeniyi GT, Polyutov SP, Avramov PV. Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes. MICROMACHINES 2023; 14:1889. [PMID: 37893326 PMCID: PMC10609095 DOI: 10.3390/mi14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Advanced two-dimensional spin-polarized heterostructures based on twisted (TBG) and nanoporous (NPBG) bilayer graphenes doped with Eu ions were theoretically proposed and studied using Periodic Boundary Conditions Density Functional theory electronic structure calculations. The significant polarization of the electronic states at the Fermi level was discovered for both Eu/NPBG(AA) and Eu/TBG lattices. Eu ions' chemi- and physisorption to both graphenes may lead to structural deformations, drop of symmetry of low-dimensional lattices, interlayer fusion, and mutual slides of TBG graphene fragments. The frontier bands in the valence region at the vicinity of the Fermi level of both spin-polarized 2D Eu/NPBG(AA) and Eu/TBG lattices clearly demonstrate flat dispersion laws caused by localized electronic states formed by TBG Moiré patterns, which could lead to strong electron correlations and the formation of exotic quantum phases.
Collapse
Affiliation(s)
- Iu. A. Melchakova
- School of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia;
| | - G. T. Oyeniyi
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - S. P. Polyutov
- International Research Center of Spectroscopy and Quantum Chemistry (IRC SQC), Siberian Federal University, Svobodniy pr. 79/10, 600041 Krasnoyarsk, Russia;
| | - P. V. Avramov
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
4
|
Zhang MH, Ren YN, Zheng Q, Zhou XF, He L. Observation of Robust and Long-Ranged Superperiodicity of Electronic Density Induced by Intervalley Scattering in Graphene/Transition Metal Dichalcogenide Heterostructures. NANO LETTERS 2023; 23:2630-2635. [PMID: 37011340 DOI: 10.1021/acs.nanolett.2c04957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) h-BN and transition metal dichalcogenides (TMDs) are widely used as substrates of graphene because they are insulating, atomically flat, and without dangling bonds. Usually, it is believed that such insulating substrates will not affect the electronic properties of graphene, especially when the moiré pattern generated between them is quite small. Here, we present a systematic study of the electronic properties of graphene/TMD heterostructures with the period of the moiré pattern <1 nm, and our results reveal an unexpected sensitivity of electronic properties in graphene to the 2D insulating substrates. We demonstrate that there is a robust and long-ranged superperiodicity of electronic density in graphene, which arises from the scattering of electrons between the two valleys of graphene in the graphene/TMD heterostructures. By using scanning tunneling microscope and spectroscopy, three distinct atomic-scale patterns of the electronic density are directly imaged in every graphene/TMD heterostructure.
Collapse
Affiliation(s)
- Mo-Han Zhang
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ya-Ning Ren
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qi Zheng
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiao-Feng Zhou
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Telychko M, Noori K, Biswas H, Dulal D, Chen Z, Lyu P, Li J, Tsai HZ, Fang H, Qiu Z, Yap ZW, Watanabe K, Taniguchi T, Wu J, Loh KP, Crommie MF, Rodin A, Lu J. Gate-Tunable Resonance State and Screening Effects for Proton-Like Atomic Charge in Graphene. NANO LETTERS 2022; 22:8422-8429. [PMID: 36214509 DOI: 10.1021/acs.nanolett.2c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ability to create a robust and well-defined artificial atomic charge in graphene and understand its carrier-dependent electronic properties represents an important goal toward the development of graphene-based quantum devices. Herein, we devise a new pathway toward the atomically precise embodiment of point charges into a graphene lattice by posterior (N) ion implantation into a back-gated graphene device. The N dopant behaves as an in-plane proton-like charge manifested by formation of the characteristic resonance state in the conduction band. Scanning tunneling spectroscopy measurements at varied charge carrier densities reveal a giant energetic renormalization of the resonance state up to 220 meV with respect to the Dirac point, accompanied by the observation of gate-tunable long-range screening effects close to individual N dopants. Joint density functional theory and tight-binding calculations with modified perturbation potential corroborate experimental findings and highlight the short-range character of N-induced perturbation.
Collapse
Affiliation(s)
- Mykola Telychko
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Keian Noori
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 117543, Singapore
| | - Hillol Biswas
- Centre for Advanced 2D Materials, National University of Singapore, 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Dikshant Dulal
- Yale-NUS College, 16 College Avenue West, 138527, Singapore
| | - Zhaolong Chen
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jing Li
- Centre for Advanced 2D Materials, National University of Singapore, 117543, Singapore
| | - Hsin-Zon Tsai
- Department of Physics, University of California, Berkeley94720, California, United States
| | - Hanyan Fang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Zhun Wai Yap
- Yale-NUS College, 16 College Avenue West, 138527, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 08-03, 2 Fusionopolis Way, Singapore138634, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley94720, California, United States
| | - Aleksandr Rodin
- Centre for Advanced 2D Materials, National University of Singapore, 117543, Singapore
- Yale-NUS College, 16 College Avenue West, 138527, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 117543, Singapore
| |
Collapse
|
6
|
Zhang Y, Gao F, Gao S, Brandbyge M, He L. Characterization and Manipulation of Intervalley Scattering Induced by an Individual Monovacancy in Graphene. PHYSICAL REVIEW LETTERS 2022; 129:096402. [PMID: 36083638 DOI: 10.1103/physrevlett.129.096402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Intervalley scattering involves microscopic processes that electrons are scattered by atomic-scale defects on the nanoscale. Although central to our understanding of electronic properties of materials, direct characterization and manipulation of range and strength of the intervalley scattering induced by an individual atomic defect have so far been elusive. Using scanning tunneling microscope, we visualize and control intervalley scattering from an individual monovacancy in graphene. By directly imaging the affected range of monovacancy-induced intervalley scattering, we demonstrate that it is inversely proportional to the energy; i.e., it is proportional to the wavelength of massless Dirac fermions. A giant electron-hole asymmetry of the intervalley scattering is observed because the monovacancy is charged. By further charging the monovacancy, the bended electronic potential around the monovacancy softens the scattering potential, which, consequently, suppresses the intervalley scattering of the monovacancy.
Collapse
Affiliation(s)
- Yu Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, 100875 Beijing, China
| | - Fei Gao
- Center for Nanostructured Graphene, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Shiwu Gao
- Beijing Computational Science Research Center, 100193 Beijing, China
| | - Mads Brandbyge
- Center for Nanostructured Graphene, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
7
|
Bhatt MD, Kim H, Kim G. Various defects in graphene: a review. RSC Adv 2022; 12:21520-21547. [PMID: 35975063 PMCID: PMC9347212 DOI: 10.1039/d2ra01436j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Pristine graphene has been considered one of the most promising materials because of its excellent physical and chemical properties. However, various defects in graphene produced during synthesis or fabrication hinder its performance for applications such as electronic devices, transparent electrodes, and spintronic devices. Due to its intrinsic bandgap and nonmagnetic nature, it cannot be used in nanoelectronics or spintronics. Intrinsic and extrinsic defects are ultimately introduced to tailor electronic and magnetic properties and take advantage of their hidden potential. This article emphasizes the current advancement of intrinsic and extrinsic defects in graphene for potential applications. We also discuss the limitations and outlook for such defects in graphene.
Collapse
Affiliation(s)
| | - Heeju Kim
- Hybrid Materials Center, Sejong University Seoul 05006 Korea
- Department of Physics and Astronomy, Sejong University Seoul 05006 Korea
| | - Gunn Kim
- Hybrid Materials Center, Sejong University Seoul 05006 Korea
- Department of Physics and Astronomy, Sejong University Seoul 05006 Korea
| |
Collapse
|
8
|
Brown PA, Kołacz J, Fischer SA, Spillmann CM, Gunlycke D. Insertion of the Liquid Crystal 5CB into Monovacancy Graphene. Molecules 2022; 27:1664. [PMID: 35268764 PMCID: PMC8911687 DOI: 10.3390/molecules27051664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Interfacial interactions between liquid crystal (LC) and two-dimensional (2D) materials provide a platform to facilitate novel optical and electronic material properties. These interactions are uniquely sensitive to the local energy landscape of the atomically thick 2D surface, which can be strongly influenced by defects that are introduced, either by design or as a byproduct of fabrication processes. Herein, we present density functional theory (DFT) calculations of the LC mesogen 4-cyan-4'-pentylbiphenyl (5CB) on graphene in the presence of a monovacancy (MV-G). We find that the monovacancy strengthens the binding of 5CB in the planar alignment and that the structure is lower in energy than the corresponding homeotropic structure. However, if the molecule is able to approach the monovacancy homeotropically, 5CB undergoes a chemical reaction, releasing 4.5 eV in the process. This reaction follows a step-by-step process gradually adding bonds, inserting the 5CB cyano group into MV-G. We conclude that this irreversible insertion reaction is likely spontaneous, potentially providing a new avenue for controlling both LC behavior and graphene properties.
Collapse
Affiliation(s)
- Paul A. Brown
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Jakub Kołacz
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Sean A. Fischer
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Daniel Gunlycke
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| |
Collapse
|
9
|
Zhang Y, Su Y, He L. Quantum Interferences of Pseudospin-Mediated Atomic-Scale Vortices in Monolayer Graphene. NANO LETTERS 2021; 21:2526-2531. [PMID: 33687218 DOI: 10.1021/acs.nanolett.0c05066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A vortex is a universal and significant phenomenon that has been known for centuries. However, creating vortices to the atomic limit has remained elusive. Very recently, it was demonstrated that intervalley scattering induced by the single carbon defect of graphene leads to phase winding over a closed path surrounding the defect. Motivated by this, we demonstrate that the single carbon defects at A and B sublattices of graphene can be regarded as pseudospin-mediated atomic-scale vortices with angular momenta l = +2 and -2, respectively. The quantum interference measurements of the vortices indicate that the vortices cancel each other, resulting in zero total angular momentum, in the |A| = |B| case, and they show aggregate chirality and angular momenta similar to a single vortex of the majority in the |A| ≠ |B| case, where |A| (|B|) is the number of vortices with angular momenta l = +2 (l = -2).
Collapse
Affiliation(s)
- Yu Zhang
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
- School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Su
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Wang Y, Duan X, Xie Y, Sun H, Wang S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04232] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yongbing Xie
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Zhang Y, Su Y, He L. Local Berry Phase Signatures of Bilayer Graphene in Intervalley Quantum Interference. PHYSICAL REVIEW LETTERS 2020; 125:116804. [PMID: 32976000 DOI: 10.1103/physrevlett.125.116804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Chiral quasiparticles in Bernal-stacked bilayer graphene have valley-contrasting Berry phases of ±2π. This nontrivial topological structure, associated with the pseudospin winding along a closed Fermi surface, is responsible for various novel electronic properties. Here we show that the quantum interference due to intervalley scattering induced by single-atom vacancies or impurities provides insights into the topological nature of the bilayer graphene. The scattered chiral quasiparticles between distinct valleys with opposite chirality undergo a rotation of pseudospin that results in the Friedel oscillation with wavefront dislocations. The number of dislocations reflects the information about pseudospin texture and hence can be used to measure the Berry phase. As demonstrated both experimentally and theoretically, the Friedel oscillation, depending on the single-atom vacancy or impurity at different sublattices, can exhibit N=4, 2, or 0 additional wavefronts, characterizing the 2π Berry phase of the bilayer graphene. Our results provide a comprehensive study of the intervalley quantum interference in bilayer graphene and can be extended to multilayer graphene, shedding light on the pseudospin physics.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ying Su
- Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
12
|
Huelmo CP, Menezes MG, Capaz RB, Denis PA. Structural and magnetic properties of a defective graphene buffer layer grown on SiC(0001): a DFT study. Phys Chem Chem Phys 2020; 22:16096-16106. [PMID: 32638763 DOI: 10.1039/d0cp02167a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the role of defects in the magnetic properties of the graphene buffer layer (BL) grown on substrates should be important to provide hints for manufacturing future graphene-based spintronic devices in a controlled fashion. Herein, density functional theory was applied to assess the structure and magnetic properties of defective BL on 6H-SiC(0001). Particularly, we conducted a thorough study of one and two vacancies and Stone-Wales defects in the BL. Our results reveal that the removal of a carbon atom in the BL framework that was originally bonded to a Si atom in the substrate is preferred over that of a sp2-bonded atom. As a result, a hexacoordinated silicon atom is formed with a slightly deviated octahedral geometry. A stable antiferromagnetic (AF) state was verified for the single vacancy system, with a quite different spin-density distribution to the one obtained for the perfect BL. Also, this AF state is nearly degenerate with the non-magnetic and low magnetic states. As for the Stone-Wales defect, the AF sate is almost degenerate with the most stable M = 2 μB magnetic configuration. However, the introduction of two vacancies in the carbon network of BL causes the loss of magnetism of the BL-SiC system. Our theoretical calculations support experimental predictions favoring the BL as the site for single vacancy formation rather than the epitaxial monolayer graphene, by 4.3 eV.
Collapse
Affiliation(s)
- C Pereyra Huelmo
- Computational Nanotechnology, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Montevideo C.P. 11800, Uruguay.
| | - Marcos G Menezes
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
| | - Rodrigo B Capaz
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
| | - Pablo A Denis
- Computational Nanotechnology, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Montevideo C.P. 11800, Uruguay.
| |
Collapse
|