1
|
Li J, Deng X, Li Y, Hu J, Miao W, Lin C, Jiang J, Shi S. Terahertz Science and Technology in Astronomy, Telecommunications, and Biophysics. RESEARCH (WASHINGTON, D.C.) 2025; 8:0586. [PMID: 39845706 PMCID: PMC11751206 DOI: 10.34133/research.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
This paper reviews recent developments and key advances in terahertz (THz) science, technology, and applications, focusing on 3 core areas: astronomy, telecommunications, and biophysics. In THz astronomy, it highlights major discoveries and ongoing projects, emphasizing the role of advanced superconducting technologies, including superconductor-insulator-superconductor (SIS) mixers, hot electron boundedness spectroscopy (HEB), transition-edge sensors (TESs), and kinetic inductance detectors (KIDs), while exploring prospects in the field. For THz telecommunication, it discusses progress in solid-state sources, new communication technologies operating within the THz band, and diverse modulation methods that enhance transmission capabilities. In THz biophysics, the focus shifts to the physical modulation of THz waves and their impact across biological systems, from whole organisms to cellular and molecular levels, emphasizing nonthermal effects and fundamental mechanisms. This review concludes with an analysis of the challenges and perspectives shaping the future of THz technology.
Collapse
Affiliation(s)
- Jing Li
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Xianjin Deng
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jie Hu
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Wei Miao
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| | - Changxing Lin
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Jun Jiang
- Microsystem and Terahertz Research Center,
China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
- Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Shengcai Shi
- Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing 210023, China
| |
Collapse
|
2
|
Liu Y, Liu X, Shu Y, Yu Y. Progress of the Impact of Terahertz Radiation on Ion Channel Kinetics in Neuronal Cells. Neurosci Bull 2024; 40:1960-1974. [PMID: 39231899 PMCID: PMC11625045 DOI: 10.1007/s12264-024-01277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 09/06/2024] Open
Abstract
In neurons and myocytes, selective ion channels in the plasma membrane play a pivotal role in transducing chemical or sensory stimuli into electrical signals, underpinning neural and cardiac functionality. Recent advancements in biomedical research have increasingly spotlighted the interaction between ion channels and electromagnetic fields, especially terahertz (THz) radiation. This review synthesizes current findings on the impact of THz radiation, known for its deep penetration and non-ionizing properties, on ion channel kinetics and membrane fluid dynamics. It is organized into three parts: the biophysical effects of THz exposure on cells, the specific modulation of ion channels by THz radiation, and the potential pathophysiological consequences of THz exposure. Understanding the biophysical mechanisms underlying these effects could lead to new therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Yanjiang Liu
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China
| | - Xi Liu
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China
- MOE Frontiers Center for Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200433, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 20043, China
- Institute for Translational Brain Research, Fudan University, Shanghai, 200433, China
- Department of Neurosurgery, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Yousheng Shu
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China.
- MOE Frontiers Center for Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200433, China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 20043, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200433, China.
| | - Yuguo Yu
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China.
- MOE Frontiers Center for Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200433, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
3
|
Guo YM, Ong CK. Possible mechanism of action potential propagation mediated by static electric field: A novel assumption of understanding nerve interaction and ephaptic coupling. Heliyon 2024; 10:e37637. [PMID: 39323782 PMCID: PMC11422045 DOI: 10.1016/j.heliyon.2024.e37637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
The generation and propagation of physical signals in living biosystems are continuous issues. Traditional Hodgkin-Huxley model based on ionic current conduction could not explain the fast transmission of action potential in myelinated axons and factors influencing action potential velocity. We propose that the ion flow induced by N a v channel generates near field quasi-static electric field at extracellular space, termed as an ephaptic field which is able to excite nearby passive axons. Our simulation indicates that the static electric field produced by sodium ion channels in one node of Ranvier is improbable to stimulate the ion channels in the adjacent neighboring node. However, the ion channel ring in one node of Ranvier could induce the shift of membrane potential (0.01 mV) on the node at nearby axons (100 μm) in a bundle of axon synchronously, suggesting zig-zag propagation of action potential. Together with the superposition effect of ephaptic feedback field generated by the synchronized movement of adjacent parallel axons stimulate the adjacent node of the original axon, strengthen the action potential to travel in a zig-zag pattern. Our model also provides an explanation for the rapid velocity of action potential propagation reported in experimental studies.
Collapse
Affiliation(s)
- Y M Guo
- Department of Physics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia
| | - C K Ong
- Department of Physics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia
- Department of Physics, National University of Singapore, 2, Science Drive, 117551, Singapore
- The Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Niu X, Wu Z, Gao F, Hou S, Liu S, Zhao X, Wang L, Guo J, Zhang F. Resonating with Cellular Pathways: Transcriptome Insights into Nonthermal Bioeffects of Middle Infrared Light Stimulation and Vibrational Strong Coupling on Cell Proliferation and Migration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0353. [PMID: 38694203 PMCID: PMC11062510 DOI: 10.34133/research.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Middle infrared stimulation (MIRS) and vibrational strong coupling (VSC) have been separately applied to physically regulate biological systems but scarcely compared with each other, especially at identical vibrational frequencies, though they both involve resonant mechanism. Taking cell proliferation and migration as typical cell-level models, herein, we comparatively studied the nonthermal bioeffects of MIRS and VSC with selecting the identical frequency (53.5 THz) of the carbonyl vibration. We found that both MIRS and VSC can notably increase the proliferation rate and migration capacity of fibroblasts. Transcriptome sequencing results reflected the differential expression of genes related to the corresponding cellular pathways. This work not only sheds light on the synergistic nonthermal bioeffects from the molecular level to the cell level but also provides new evidence and insights for modifying bioreactions, further applying MIRS and VSC to the future medicine of frequencies.
Collapse
Affiliation(s)
- Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhongyu Wu
- Department of Nuclear Medicine,
The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250013, China
- School of Radiology,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Feng Gao
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shaojie Hou
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- The School of Biomedical Engineering,
Guangzhou Medical University, Panyu District, Guangzhou 511436, China
| | - Shihao Liu
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jun Guo
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Feng Zhang
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
5
|
Yuan Y, Zhang J, Li C, Li H, Han Y, Lou J. Ultrafast light-driven metasurfaces with an ultra-broadband frequency agile channel for sensing. NANOSCALE 2024. [PMID: 38639481 DOI: 10.1039/d3nr06686j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Active terahertz metasurface devices have been widely used in communication technology, optical computing and biosensing. However, numerous dynamically tunable metasurfaces are only operating at a single frequency point or in a narrow range, limiting the further possibility of the devices to meet contemporary broad-spectrum biosensing requirements. In this paper, a novel compact biosensor is proposed with an ultrawide resonance frequency agile channel shifted from 0.82 to 1.85 THz, with a tuning functionality up to 55.7%. In addition, under optical pumping irradiation, the modulator with ultra-fast response is able to complete the ultra-wideband resonant mode conversion from the Fano mode to the electromagnetically induced transparency (EIT) mode within 4 ps, and achieves a frequency shift sensitivity of 118 GHz RIU-1 and 247 GHz RIU-1 at 0.82 and 1.85 THz, respectively. This mechanism implements both refractive index and conductivity sensing functions, which provide a wealth of sensing information. Thus, this work presents the possibility of realising the detection of ultra-wide fingerprint spectra and can be extended to a wider range of optical fields.
Collapse
Affiliation(s)
- Yifang Yuan
- School of Physics, Xidian University, Xi'an 700071, China
| | - Jing Zhang
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Chenyu Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Li
- GBA Research Institute of AIRCAS, Guangzhou, 510530, China
| | - Yiping Han
- School of Physics, Xidian University, Xi'an 700071, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| |
Collapse
|
6
|
Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng XC, Wang C. Tunable Surface Wettability via Terahertz Electrowave Controlled Vicinal Subnanoscale Water Layer. NANO LETTERS 2024; 24:3243-3248. [PMID: 38427592 DOI: 10.1021/acs.nanolett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junquan Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Chonghai Qi
- School of Physical and Intelligent Engineering, Jining University, Qufu 273155, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Wu K, He Y, Chen K, Cui M, Yang Z, Yuan Y, Tian Y, Peng W. Enhancement of K + channel permeation by selective terahertz excitation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123538. [PMID: 37866260 DOI: 10.1016/j.saa.2023.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The optical excitation effects offer an opportunity to gain insights into the structure and the function of K+ channel, contributing to the prediction of possible targets for drug design and precision therapy. Although there has been increasing research attention on the modulation of ion permeation in K+ channel by terahertz electromagnetic (THz-EM) stimuli, little exploration has been conducted regarding the dependence of ion permeation on frequencies. By using two-dimensional (2D) infrared excitation spectrum calculation for the K+ channel, we have discovered that the frequency of 53.60 THz serves as an optimal excitation modulation mode. This mode leads to an almost twofold enhancement in the rate of K+ ion permeation and a tenfold increase in selectivity efficiency. These improvements can be attributed to the coupling mode matching of the excited properties of CO groups in the K+ channel. Our findings propose a promising application of terahertz technology to improve the performance of ion channels, nanomembrane sieves, nanodevices, as well as neural therapy.
Collapse
Affiliation(s)
- Kaijie Wu
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yong He
- School of Electronics, Peking University, Beijing 100081, China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Mengda Cui
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Zhikai Yang
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Yifang Yuan
- Cross Research Center of Frontier Technology, National Institute of Science and Technology Innovation for National Defense, Beijing 100071, China
| | - Yuchen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Wenyu Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Wang Z, Xu Z, Luo Y, Peng S, Song H, Li T, Zheng J, Liu N, Wu S, Zhang J, Zhang L, Hu Y, Liu Y, Lu D, Dai J, Zhang J. Reduced biophotonic activities and spectral blueshift in Alzheimer's disease and vascular dementia models with cognitive impairment. Front Aging Neurosci 2023; 15:1208274. [PMID: 37727319 PMCID: PMC10505668 DOI: 10.3389/fnagi.2023.1208274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background Although clinically, Alzheimer's disease (AD) and vascular dementia (VaD) are the two major types of dementia, it is unclear whether the biophotonic activities associated with cognitive impairments in these diseases share common pathological features. Methods We used the ultraweak biophoton imaging system (UBIS) and synaptosomes prepared by modified percoll method to directly evaluate the functional changes in synapses and neural circuits in AD and VaD model animals. Results We found that biophotonic activities induced by glutamate were significantly reduced and spectral blueshifted in synaptosomes and brain slices. These changes could be partially reversed by pre-perfusion of the ifenprodil, a specific antagonist of the GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs). Conclusion Our findings suggest that AD and VaD pathology present similar but complex changes in biophotonic activities and transmission at synapses and neural circuits, implying that communications and information processing of biophotonic signals in the brain are crucial for advanced cognitive functions.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Liu
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
| | - Shenjia Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junxia Zhang
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiapei Dai
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sci 2023; 13:brainsci13040686. [PMID: 37190651 DOI: 10.3390/brainsci13040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Terahertz waves lie within the rotation and oscillation energy levels of biomolecules, and can directly couple with biomolecules to excite nonlinear resonance effects, thus causing conformational or configuration changes in biomolecules. Based on this mechanism, we investigated the effect pattern of 0.138 THz radiation on the dynamic growth of neurons and synaptic transmission efficiency, while explaining the phenomenon at a more microscopic level. We found that cumulative 0.138 THz radiation not only did not cause neuronal death, but that it promoted the dynamic growth of neuronal cytosol and protrusions. Additionally, there was a cumulative effect of terahertz radiation on the promotion of neuronal growth. Furthermore, in electrophysiological terms, 0.138 THz waves improved synaptic transmission efficiency in the hippocampal CA1 region, and this was a slow and continuous process. This is consistent with the morphological results. This phenomenon can continue for more than 10 min after terahertz radiation ends, and these phenomena were associated with an increase in dendritic spine density. In summary, our study shows that 0.138 THz waves can modulate dynamic neuronal growth and synaptic transmission. Therefore, 0.138 terahertz waves may become a novel neuromodulation technique for modulating neuron structure and function.
Collapse
Affiliation(s)
- Shaoqing Ma
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Zhiwei Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shixiang Gong
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Chengbiao Lu
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Lin Y, Wu X, Wang K, Shang S, Gong Y, Zhao H, Wu D, Zhang P, Lu X. Spectral Characteristics and Functional Responses of Phospholipid Bilayers in the Terahertz Band. Int J Mol Sci 2023; 24:ijms24087111. [PMID: 37108273 PMCID: PMC10138992 DOI: 10.3390/ijms24087111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.
Collapse
Affiliation(s)
- Yanyun Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingjuan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaicheng Wang
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yubin Gong
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Peng Zhang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Xu X, Lou J, Gao M, Wu S, Fang G, Huang Y. Ultrafast Modulation of THz Waves Based on MoTe 2-Covered Metasurface. SENSORS (BASEL, SWITZERLAND) 2023; 23:1174. [PMID: 36772214 PMCID: PMC9921109 DOI: 10.3390/s23031174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The sixth generation (6G) communication will use the terahertz (THz) frequency band, which requires flexible regulation of THz waves. For the conventional metallic metasurface, its electromagnetic properties are hard to be changed once after being fabricated. To enrich the modulation of THz waves, we report an all-optically controlled reconfigurable electromagnetically induced transparency (EIT) effect in the hybrid metasurface integrated with a 10-nm thick MoTe2 film. The experimental results demonstrate that under the excitation of the 800 nm femtosecond laser pulse with pump fluence of 3200 μJ/cm2, the modulation depth of THz transmission amplitude at the EIT window can reach 77%. Moreover, a group delay variation up to 4.6 ps is observed to indicate an actively tunable slow light behavior. The suppression and recovery of the EIT resonance can be accomplished within sub-nanoseconds, enabling an ultrafast THz photo-switching and providing a promising candidate for the on-chip devices of the upcoming 6G communication.
Collapse
Affiliation(s)
- Xing Xu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Mingxin Gao
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shiyou Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyou Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yindong Huang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| |
Collapse
|
12
|
Tan X, Gao M, Chang C. A new means of energy supply driven by terahertz photons recovers related neural activity. iScience 2023; 26:105979. [PMID: 36756372 PMCID: PMC9900506 DOI: 10.1016/j.isci.2023.105979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Continuous and efficient energy capture represents a long-sought dream of mankind. The brain is a major energy-consuming organ; an adult brain accounts for about 2% of the body weight but consumes about 20% of the body's energy. However, it is still unclear how the brain achieves efficient use of energy. Here, using nerve cells as test subjects, we found that THz photons with a specific frequency can effectively restore the reduced frequency of action potentials caused by inadequate ATP supply, which has been demonstrated as a novel mode of energy supply, present photons emission at a particular frequency from the breaking of the ATP phosphate bond. This energy supply mechanism may play a key biophysical basis for explaining how the body efficiently obtains energy, because the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity compared with the traditional thermochemistry and photochemistry.
Collapse
Affiliation(s)
- Xiaoxuan Tan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China,Astronaut Center of China, Beijing 100084, China,Corresponding author
| | - Mingxin Gao
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China,School of physics, Peking University, Beijing 100084, China,Corresponding author
| |
Collapse
|
13
|
Shaoqing M, Zhiwei L, Shixiang G, Chengbiao L, Xiaoli L, Yingwei L. The laws and effects of terahertz wave interactions with neurons. Front Bioeng Biotechnol 2023; 11:1147684. [PMID: 37180041 PMCID: PMC10170412 DOI: 10.3389/fbioe.2023.1147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Terahertz waves lie within the energy range of hydrogen bonding and van der Waals forces. They can couple directly with proteins to excite non-linear resonance effects in proteins, and thus affect the structure of neurons. However, it remains unclear which terahertz radiation protocols modulate the structure of neurons. Furthermore, guidelines and methods for selecting terahertz radiation parameters are lacking. Methods: In this study, the propagation and thermal effects of 0.3-3 THz wave interactions with neurons were modelled, and the field strength and temperature variations were used as evaluation criteria. On this basis, we experimentally investigated the effects of cumulative radiation from terahertz waves on neuron structure. Results: The results show that the frequency and power of terahertz waves are the main factors influencing field strength and temperature in neurons, and that there is a positive correlation between them. Appropriate reductions in radiation power can mitigate the rise in temperature in the neurons, and can also be used in the form of pulsed waves, limiting the duration of a single radiation to the millisecond level. Short bursts of cumulative radiation can also be used. Broadband trace terahertz (0.1-2 THz, maximum radiated power 100 μW) with short duration cumulative radiation (3 min/day, 3 days) does not cause neuronal death. This radiation protocol can also promote the growth of neuronal cytosomes and protrusions. Discussion: This paper provides guidelines and methods for terahertz radiation parameter selection in the study of terahertz neurobiological effects. Additionally, it verifies that the short-duration cumulative radiation can modulate the structure of neurons.
Collapse
Affiliation(s)
- Ma Shaoqing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Li Zhiwei
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Gong Shixiang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Lu Chengbiao
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Xiaoli
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Yingwei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| |
Collapse
|
14
|
Tan X, Zhong Y, Li R, Chang C. Neuromodulation of Chemical Synaptic Transmission Driven by THz Photons. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0010. [PMID: 39285946 PMCID: PMC11404318 DOI: 10.34133/research.0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/25/2022] [Indexed: 09/19/2024]
Abstract
Postsynaptic currents of chemical synapse are modulated by multitudinous neurotransmitters, such as acetylcholine, dopamine, glutamate, and γ-aminobutyric acid, many of which have been used in the treatment of neurological diseases. Here, based on molecular dynamics simulations and quantum chemical calculation, we propose that 30- to 45-THz photons can resonate with a variety of typical neurotransmitter molecules and make them absorb photon energy to activate the transition to high energy state, which is expected to be a new method of neural regulation. Furthermore, we verified the calculated results through experiments that THz irradiation could substantively change neuronal signal emission and enhance the frequency, amplitude, and dynamic properties of excitatory postsynaptic current and inhibitory postsynaptic current. In addition, we demonstrated the potential of neural information regulation by THz photons through 2-photon imaging in vivo. These findings are expected to improve the understanding of the physical mechanism of biological phenomena and facilitate the application of terahertz technology in neural regulation and the development of new functional materials.
Collapse
Affiliation(s)
- Xiaoxuan Tan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Astronaut Center of China, Beijing 100084, China
| | - Yuan Zhong
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Shi H, Li T, Liu Z, Zhao J, Qi F. Early detection of gastric cancer via high-resolution terahertz imaging system. Front Bioeng Biotechnol 2022; 10:1052069. [PMID: 36588946 PMCID: PMC9794757 DOI: 10.3389/fbioe.2022.1052069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Terahertz (THz) wave has demonstrated a good prospect in recent years, but the resolution is still one of the problems that restrict the application of THz technology in medical imaging. Paraffin-embedded samples are mostly used in THz medical imaging studies, which are thicker and significantly different from the current gold standard slice pathological examination in sample preparation. In addition, THz absorption in different layers of normal and cancerous tissues also remains to be further explored. In this study, we constructed a high-resolution THz imaging system to scan non-tumorous adjacent tissue slices and gastric cancer (GC) tissue slices. In this system, a THz quantum cascade laser emitted a pulsed 3 THz signal and the transmitted THz wave was received by a THz detector implemented in a 65 nm CMOS process. The slice thickness was only 20 μm, which was close to that of the medical pathology examination. We successfully found THz transmittance differences between different layers of normal gastric tissues based on THz images, and the resolution could reach 60 μm for the first time. The results indicated that submucosa had a lower THz transmittance than that of mucosa and muscular layer in non-tumorous adjacent tissue. However, in GC tissue, THz transmittance of mucosa and submucosa was similar, caused by the decreased transmittance of mucosa, where the cancer occurs. Therefore, we suppose that the similar terahertz transmittance between gastric mucosa and submucosa may indicate the appearance of cancerization. The images obtained from our THz imaging system were clearer than those observed with naked eyes, and can be directly compared with microscopic images. This is the first application of THz imaging technology to identify non-tumorous adjacent tissue and GC tissue based on the difference in THz wave absorption between different layers in the tissue. Our present work not only demonstrated the potential of THz imaging to promote early diagnosis of GC, but also suggested a new direction for the identification of normal and cancerous tissues by analyzing differences in THz transmittance between different layers of tissue.
Collapse
Affiliation(s)
- Han Shi
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Zhaoyang Liu
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terahertz Imaging and Sensing, Liaoning Province, Shenyang, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Feng Qi
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terahertz Imaging and Sensing, Liaoning Province, Shenyang, China
| |
Collapse
|
16
|
Bai P, Li X, Yang N, Chu W, Bai X, Huang S, Zhang Y, Shen W, Fu Z, Shao D, Tan Z, Li H, Cao J, Li L, Linfield EH, Xie Y, Zhao Z. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector. SCIENCE ADVANCES 2022; 8:eabn2031. [PMID: 35613269 PMCID: PMC9132437 DOI: 10.1126/sciadv.abn2031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/07/2022] [Indexed: 05/25/2023]
Abstract
High-performance broadband infrared (IR)/terahertz (THz) detection is crucial in many optoelectronic applications. However, the spectral response range of semiconductor-based photodetectors is limited by the bandgaps. This paper proposes a ratchet structure based on the GaAs/AlxGa1-xAs heterojunction, where the quasi-stationary hot hole distribution and intravalence band absorption from light or heavy hole states to the split-off band overcome the bandgap limit, ensuring an ultrabroadband photoresponse from near-IR to THz region (4 to 300 THz). The peak responsivity of the proposed structure can reach 7.3 A/W, which is five orders of magnitude higher than that of the existing broadband photon-type detector. Because of the ratchet effect, the proposed photodetector has a bias-tunable photoresponse characteristic and can operate in the photovoltaic mode with a broad photocurrent spectrum (18 to 300 THz). This work not only demonstrates a broadband photon-type THz/IR photodetector but also provides a method to study the light-responsive ratchet.
Collapse
Affiliation(s)
- Peng Bai
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Xiaohong Li
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Yang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Weidong Chu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Xueqi Bai
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siheng Huang
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueheng Zhang
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenzhong Shen
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhanglong Fu
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dixiang Shao
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhiyong Tan
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hua Li
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Juncheng Cao
- Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lianhe Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | | - Yan Xie
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Ziran Zhao
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Zeng H, Zhang Y, Ma Y, Li S. Electromagnetic modeling and simulation of the biophoton propagation in myelinated axon waveguide. APPLIED OPTICS 2022; 61:4013-4021. [PMID: 36256074 DOI: 10.1364/ao.446845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/21/2022] [Indexed: 06/16/2023]
Abstract
Biophotons in the nervous system are a potential carrier of neural signals. Previous experiments and studies indicated that biophotons are closely related to the neuronal activity and can propagate along myelinated axons. We establish a multilayer electromagnetic simulation model and demonstrate that the myelinated axon waveguide has low attenuation and low dispersion and operates in a narrow bandwidth on the order of 10 nm. We also find that the operating wavelength of the waveguide is almost linearly related to the axon diameter and the number of myelin layers. Each additional layer of the myelin sheath causes the operating wavelength of the myelinated axon waveguide to shift 52.3 nm to the long-wave direction, while an increase in the axon diameter of 1.0 µm causes the operating wavelength to shift 94.5 nm to the short-wave direction. These findings well explain the tendency of the spectral redshift among different species and the spectral blueshift during the aging process of mice. Via the analysis method in this paper, we can predict the wavelength of the propagating biophotons based on the neural structure.
Collapse
|
18
|
Zhou Z, Li W, Qian J, Liu W, Wang Y, Zhang X, Guo Q, Yashchyshyn Y, Wang Q, Shi Y, Zhang Y. Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules 2022; 27:1336. [PMID: 35209131 PMCID: PMC8877632 DOI: 10.3390/molecules27041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/03/2022] Open
Abstract
With the emergence of fifth-generation (5G) cellular networks, millimeter-wave (mmW) and terahertz (THz) frequencies have attracted ever-growing interest for advanced wireless applications. The traditional printed circuit board materials have become uncompetitive at such high frequencies due to their high dielectric loss and large water absorption rates. As a promising high-frequency alternative, liquid crystal polymers (LCPs) have been widely investigated for use in circuit devices, chip integration, and module packaging over the last decade due to their low loss tangent up to 1.8 THz and good hermeticity. The previous review articles have summarized the chemical properties of LCP films, flexible LCP antennas, and LCP-based antenna-in-package and system-in-package technologies for 5G applications, although these articles did not discuss synthetic LCP technologies. In addition to wireless applications, the attractive mechanical, chemical, and thermal properties of LCP films enable interesting applications in micro-electro-mechanical systems (MEMS), biomedical electronics, and microfluidics, which have not been summarized to date. Here, a comprehensive review of flexible LCP technologies covering electric circuits, antennas, integration and packaging technologies, front-end modules, MEMS, biomedical devices, and microfluidics from microwave to THz frequencies is presented for the first time, which gives a broad introduction for those outside or just entering the field and provides perspective and breadth for those who are well established in the field.
Collapse
Affiliation(s)
- Zepeng Zhou
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Wenqing Li
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Jun Qian
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Weihong Liu
- School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China;
| | - Yiming Wang
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Xijian Zhang
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Qinglei Guo
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Yevhen Yashchyshyn
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, 00-665 Warsaw, Poland;
| | - Qingpu Wang
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Yanpeng Shi
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| | - Yifei Zhang
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250100, China; (Z.Z.); (W.L.); (J.Q.); (Y.W.); (X.Z.); (Q.G.); (Q.W.)
| |
Collapse
|
19
|
Hu ZH, Lv WP, Hui DX, Wang XJ, Wang YN. Permeability enhancement of the KcsA channel under radiation of a terahertz wave. Phys Rev E 2022; 105:024104. [PMID: 35291137 DOI: 10.1103/physreve.105.024104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion channels are essential elements in cellular electrical excitability and help maintain a resting potential in nonexcitable cells. Their universality is based on a unique combination of strong selectivity for K^{+} ions and near-diffusion-limited permeation efficiency. Understanding how the channel regulates the ion conduction would be instructive to the treatment of ion channelopathies. In this work, by means of molecular dynamics simulations, we demonstrate the significantly enhanced permeation of KcsA channel in reaction to an external terahertz wave, due to the effective response of the K^{+} ions in the selectivity filter regions of the channel. Compared to the case without external terahertz wave, a fourfold increase in the ion current through the channel is found.
Collapse
Affiliation(s)
- Zhang-Hu Hu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wen-Ping Lv
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - De-Xuan Hui
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xiao-Juan Wang
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - You-Nian Wang
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
20
|
Yan Z, Zhu LG, Meng K, Huang W, Shi Q. THz medical imaging: from in vitro to in vivo. Trends Biotechnol 2022; 40:816-830. [PMID: 35012774 DOI: 10.1016/j.tibtech.2021.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/29/2023]
Abstract
Terahertz (THz) radiation has attracted considerable attention in medical imaging owing to its nonionizing and spectral fingerprinting characteristics. To date, most studies have focused on in vitro and ex vivo objects with water-removing pretreatment because the water in vivo excessively absorbs the THz waves, which causes deterioration of the image quality. In this review, we discuss how THz medical imaging can be used for a living body. The development of imaging contrast agents has been particularly useful to this end. In addition, we also introduce progress in novel THz imaging methods that could be more suitable for in vivo applications. Based on our discussions, we chart a developmental roadmap to take THz medical imaging from in vitro to in vivo.
Collapse
Affiliation(s)
- Zhiyao Yan
- College of Material Science and Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li-Guo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China; Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu, Sichuan 610200, China
| | - Kun Meng
- Qingdao QUNDA Terahertz Technology Co. Ltd, Qingdao, Shandong 266104, China
| | - Wanxia Huang
- College of Material Science and Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qiwu Shi
- College of Material Science and Engineering, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
21
|
Zhang Z, Yang G, Fan F, Zhong C, Yuan Y, Zhang X, Chang S. Terahertz circular dichroism sensing of living cancer cells based on microstructure sensor. Anal Chim Acta 2021; 1180:338871. [PMID: 34538326 DOI: 10.1016/j.aca.2021.338871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Terahertz (THz) waves have the advantages of being noninvasive and nonionizing because of their low radiation energy, so they have potential applications in the biomedical field, but thus far, those have been limited by the strong absorption in water and low detection sensitivity. Herein, we propose a reflective THz time-domain circular dichroism (CD) sensing system and a silicon subwavelength grating as the microstructure sensor to generate and detect the THz chiral polarization states, to realize quantitative detection of living cell numbers and qualitative identification of cell kinds in a liquid environment. Three kinds of hepatoma cell proliferation and inhibition with different concentrations of aspirin were measured by this sensing method, and the experimental results show that the sensitivities for CD resonance intensity and frequency shift can reach 3.44 dB mL/106 cells and 5.88 GHz mL/106 cells, respectively, and the minimum detection concentration is in the order of 104 cells/mL for THz detection in a liquid environment for the first time. This new THz sensing system and sensing method are expected to become a broadband, label-free, noncontact, real-time detection technology that can be used for quantitative detection and qualitative identification of cells or other active biochemical materials.
Collapse
Affiliation(s)
- Ziyang Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China.
| | - Changzhi Zhong
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Shengjiang Chang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China
| |
Collapse
|
22
|
Zangari A, Micheli D, Galeazzi R, Tozzi A, Balzano V, Bellavia G, Caristo ME. Photons detected in the active nerve by photographic technique. Sci Rep 2021; 11:3022. [PMID: 33542392 PMCID: PMC7862265 DOI: 10.1038/s41598-021-82622-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
The nervous system is one of the most complex expressions of biological evolution. Its high performance mostly relies on the basic principle of the action potential, a sequential activation of local ionic currents along the neural fiber. The implications of this essentially electrical phenomenon subsequently emerged in a more comprehensive electromagnetic perspective of neurotransmission. Several studies focused on the possible role of photons in neural communication and provided evidence of the transfer of photons through myelinated axons. A hypothesis is that myelin sheath would behave as an optical waveguide, although the source of photons is controversial. In a previous work, we proposed a model describing how photons would arise at the node of Ranvier. In this study we experimentally detected photons in the node of Ranvier by Ag+ photoreduction measurement technique, during electrically induced nerve activity. Our results suggest that in association to the action potential a photonic radiation takes place in the node.
Collapse
Affiliation(s)
- Andrea Zangari
- Pediatric Surgery and Urology Unit, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Davide Micheli
- Wireless Access Engineering Department, TIM S.P.A., Via Oriolo Romano, 240, 00189, Rome, Italy
| | - Roberta Galeazzi
- Departement of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| | - Antonio Tozzi
- UOC Fisica Sanitaria, Azienda USL Toscana Sud Est, via Senese 161, 58100, Grosseto, Italy
| | - Vittoria Balzano
- UOC Anatomy and Pathological Histology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | | | - Maria Emiliana Caristo
- Centro Ricerche Sperimentali, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 1, 00168, Rome, Italy
| |
Collapse
|